
Advanced Workshop on modern
FPGA-based technology for

Scientific Computing

Smr3298 – ICTP (May 2019)

FreeRTOS Operating system for
SoC

Fernando Rincón
fernando.rincon@uclm.es

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 2

Contents

● Motivation for using FreeRTOS
● Some facts about FreeRTOS
● FreeRTOS in the Zynq
● FreeRTOS programming abstractions

– Tasks
– Queues
– Other synchronization primitives

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 3

Motivation

● Two main alternatives for firmware development for microcontrollers
– Baremetal
– Based on a O.S.

● The baremetal approach, based on a superloop:
– forever loop that sequences the set of tasks
– Polled or interrupt-based I/O
– Typical in standalone implementations
– Pros:

● Simple
● No OS overhead

– Cons
● Difficult to scale (low number of tasks)
● Difficult to balance time and tasks priorities

int main() {
 init_system();
 …
 While(1) {
 do_a();
 do_b();
 do_c();
 }
 // You’l never get here
}

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 4

Motivation

● Based on a O.S.
– Multi-threaded: multiple threads spawn to carry out multiple tasks

concurrently
– Each task has different priority and timing requirements
– The operating system provides some hardware abstraction layer
– Extra services, such as a filesystem, network stack, ...
– Pros:

● More modular architecture
● Tasks can be pre-empted. Avoid priority inversion

– Cons:
● More complex and extra overhead
● Higher memory requirements
● Thread execution is difficult to test
● Deterministic??

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 5

FreeRTOS

● Born in 2003 and initially conceived for microcontrollers
– Really light
– Really simple: the core of the O.S. are just 3 C files
– Minimal processing overhead

● FreeRTOS IRQ dispatch 10 cycles aprox.
● Embedde Linux IRQ dispatch = 100 cycles aprox.
● Ported to a large number of architectures

● Currently is Amazon the company that stewards the development of
the O.S.

● Open Source MIT license
● More information at www.FreeRTOS.org

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 6

FreeRTOS

● An ecosystem of products:
– Amazon FreeRTOS for IoT devices
– Network communication stack
– Command Line Interface
– SSL and TLS security
– FAT file system

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 7

FreeRTOS & Zynq

● FreeRTOS completely integrated in Xilinx
Software Development Flow

● Provided as a BSP:
– Extension of the standalone BSP

● All low level drivers can be directly used
– Includes the O.S. runtime
– Optional extensions:

● Filesystem
● Network
● ...

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 8

FreeRTOS Design Flow

Architectural design

Platform export

Platform generation

FreeRTOS BSP generation

FreeRTOS application

Vivado

SDK

This information will be used for the gen-
eration of the appropriate drivers for the
peripherals

It includes the standalone drivers plus the
extra libraries selected

Based on the FreeRTOS API plus the
peripheral drivers

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 9

FreeRTOS Configuration

● Through a header file: FreeRTOSConfig.h
Tasks can be interrupted by others
with higher priority

This will include a timer service task

Hooks are used to trigger the execution
of functions upon the happening of cer-
tain events

Some functionality can be optionally in-
cluded/excluded from the core of the
O.S.

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 10

FreeRTOS Configuration

● The Xilinx way to handle configuration is through the mss file in the
FreeRTOS BSP generated in the SDK

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 11

FreeRTOS tasks

● Every thread of execution is a task
● Tasks are independent between them. They have their own

execution context (memory)
● Tasks are never called from the program
● Tasks are executed by the FreeRTOS scheduler depending on

their priorities and as a response to events
● Only one task active at the same time
● Tasks never return
● There’s a special IDLE task

– No need to create it

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 12

FreeRTOS tasks

● A typical FreeRTOS application will look like this

void main()
{
 xTaskCreate (Task_A, ….);
 xTaskCreate (Task_A, ….);
 xTaskCreate (Task_A, ….);
 xTaskStartScheduler ();
}

void Task_A ()
{
 Init_A();
 while (1)
 {
 do_A();
 }
}

void Task_B ()
{
 Init_B();
 while (1)
 {
 do_B();
 }
}

void Task_C ()
{
 Init_C();
 while (1)
 {
 do_C();
 }
}

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 13

FreeRTOS task model

● Tasks can be in different states of execution
– Ready

● When the task can be selected for execution, but
is kept waiting since the CPU is busy with another
task (depends on priority – next slide)

– Running
● Really executing the code

– Blocked
● Waiting for something:

– An event. (e.g. a message has been received
in a queue)

– vTaskDelay() has been called so a certain
time must pass.

– Suspended
● After calling vTaskSuspend()
● Can later be resumed using xTaskResume()

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 14

FreeRTOS priorities

● Tasks have priorities, used to the scheduler to select the most urgent
one

● The range of different priorities is configurable in FreeRTOSConfig.h
– configMAX_PRIORITIES

● Tasks can change their own priority, as well as the priority of other
tasks.

● The IDLE task is the one with the lowest priority
– tskIDLE_PRIORITY = 0

● The FreeRTOS scheduler is preemptive:
– If a task with a higher priority that the actual one is READY, then the

RUNNING one will be evicted and moved to the READY state, while the
former will start the execution

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 15

FreeRTOS tasks creation

● Tasks are modelled after normal C functions

– void return:
● And remember in fact they should never return

– void pointer for arguments. Can be later casted to the right type
● Since not called, they must be registered (created) into the scheduler

– The IDLE task is created automatically (special case)
● Can also be destroyed at run-time
● Some related functions:

– xtaskCreate()
– xtaskDelete()

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 16

FreeRTOS Tasks
● In order to create a Task:

BaseType_t xTaskCreate(TaskFunction_t pxTaskCode,

 const char * const pcName,

 const configSTACK_DEPTH_TYPE usStackDepth,

 void * const pvParameters,

 UBaseType_t uxPriority,

 TaskHandle_t * const pxCreatedTask

– pxTaskCode: pointer to the function that really implements the task
– pcName: name assigned, mainly used for debug purposes
– usStackDepth: refers to the local memory assigned to the task

● The configMINIMAL_STACK_SIZE parameter set in the FreeRTOSConfig.h configuration file
– pvParameters: since no parameters are sent to the task
– uxPriority: priority assigned to the task.

● This constant is defined as the minimum possible priority
● The lowest the number, the lowest the priority

– pxCreatedTask: task handler
● Previously declared as:

Task creation example

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 17

FreeRTOS hello world

1. main function is normally used to
create at least one task

2. The scheduler is a never-ending loop, so
the program should never get to this point

3. Once the scheduler is started, functions
will be executed depending on the schedul-
ing policy

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 18

FreeRTOS hello world

● sayHello task activation:
– Once the scheduler is started, the task becomes ready
– Since it’s the only task apart from the IDLE one (always present) it will be

scheduled to RUN.
– There are no other tasks but the IDLE one, with lower priority, so the

task is always chosen to RUN.
– But when the task executes vTaskDelay to force a wating time, it

becomes BLOCKED, waiting for the time to pass
– Once the time has passed,

● The task will be moved to the READY state
● The IDLE task (priority 0) will be evicted
● The sayHello task will move to RUN

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 19

FreeRTOS Task Communication

● Two mechanisms:
– Global variables which can be read from all tasks
– Queues as the main mechanism for inter-task communication

● Queues:
– Asynchronous model of communication based on a FIFO
– Data can written to both the head and tail of the queue
– Of arbitrary size and depth, but defined at compile time
– Items are passed by value → not zero copy
– Access can be blocking or non-blocking

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 20

Global variables and their risks

● The global variable is shared by all tasks
● Access control should be managed by the programmer

– Since processes can be evicted, the state can be inconsistent
● E.g.:

– One process writes and another reads: Ok
– Two processes write

● You may assume wrong states
● Need for explicit synchronization mechanisms such as locks

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 21

FreeRTOS queues
● Queue creation:

xQueueHandle xQueueCreate (unsigned portBASE_TYPE uxQueueLength,

 unsigned portBASE_TYPE uxItemSize)

● Queue data insertion at the back of the queue:
portBASE_TYPE xQueueSendToBack (xQueueHandle xQueue,

 const void * pvItemToQueue,

 portTickType xTicksToWait)

– If xTicksToWait is 0 it will return immediately if full otherwise it will wait
● Data insertion at the front of the queue:

portBASE_TYPE xQueueSendToFront (xQueueHandle xQueue,

 const void * pvItemToQueue,

 portTickType xTicksToWait)

● Data extraction:
portBASE_TYPE xQueueReceive (xQueueHandle xQueue,

 void * pvBuffer,

 portTickType xTicksToWait)

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 22

FreeRTOS queues

● The producer-consumer example
Queue declaration

Queue creation with limited size

Blocking read

If the queue is full, it will return im-
mediately

Be careful with priorities

Introduction to FreeRTOS Smr3298 – ICTP (May 2019) 23

FreeRTOS synchronization
● Queues can also be used as a synchronization primitive
● But FreeRTOS includes some other types:

– Binary semaphores
● SemaphoreHandle_t xSemaphoreCreateBinary(void);
● Used to prevent concurrent access
● Typically used in Interrupt Service Routines (ISR)

– Counting semaphores can be used in two scenarios
● Counting events:

– An event generator gives a semaphore for each event
– Another task will take the event
– The count value is the difference

● Resource management
– The semaphore tells the number of available instances of a resource

– Mutexes
● SemaphoreHandle_t xSemaphoreCreateMutex(void)
● Similar to binary semaphores but the task taking the semaphore inherits the priority

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

