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Motivation

● Two main alternatives for firmware development for microcontrollers
– Baremetal
– Based on a O.S.

● The baremetal approach, based on a superloop:
– forever loop that sequences the set of tasks
– Polled or interrupt-based I/O
– Typical in standalone implementations
– Pros:

● Simple
● No OS overhead

– Cons
● Difficult to scale (low number of tasks)
● Difficult to balance time and tasks priorities

int main() {
    init_system();
    …
    While(1) {
        do_a();
        do_b();
        do_c();
    }
    // You’l never get here
}
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Motivation

● Based on a O.S.
– Multi-threaded: multiple threads spawn to carry out multiple tasks 

concurrently
– Each task has different priority and timing requirements
– The operating system provides some hardware abstraction layer
– Extra services, such as a filesystem, network stack, ...
– Pros:

● More modular architecture
● Tasks can be pre-empted. Avoid priority inversion

– Cons:
● More complex and extra overhead 
● Higher memory requirements
● Thread execution is difficult to test
● Deterministic??



Introduction to FreeRTOS Smr3298 – ICTP (May  2019) 5

FreeRTOS

● Born in 2003 and initially conceived for microcontrollers
– Really light
– Really simple: the core of the O.S. are just 3 C files
– Minimal processing overhead

● FreeRTOS IRQ dispatch 10 cycles aprox.
● Embedde Linux IRQ dispatch = 100 cycles aprox.
● Ported to a large number of architectures

● Currently is Amazon the company that stewards the development of 
the O.S.

● Open Source MIT license
● More information at www.FreeRTOS.org
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FreeRTOS

● An ecosystem of products:
– Amazon FreeRTOS for IoT devices
– Network communication stack
– Command Line Interface
– SSL and TLS security
– FAT file system
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FreeRTOS & Zynq

● FreeRTOS completely integrated in Xilinx 
Software Development Flow

● Provided as a BSP:
– Extension of the standalone BSP

● All low level drivers can be directly used
– Includes the O.S. runtime
– Optional extensions:

● Filesystem
● Network
● ... 
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FreeRTOS Design Flow

Architectural design

Platform export

Platform generation

FreeRTOS BSP generation

FreeRTOS application

Vivado

SDK

This information will be used for the gen-
eration of the appropriate drivers for the 
peripherals

It includes the standalone drivers plus the 
extra libraries selected

Based on the FreeRTOS API plus the 
peripheral drivers
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FreeRTOS Configuration

● Through a header file: FreeRTOSConfig.h
Tasks can be interrupted by others 
with higher priority

This will include a timer service task

Hooks are used to trigger the execution 
of functions upon the happening of cer-
tain events

Some functionality can be optionally in-
cluded/excluded from the core of the
O.S.
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FreeRTOS Configuration

● The Xilinx way to handle configuration is through the mss file in the 
FreeRTOS BSP generated in the SDK
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FreeRTOS tasks

● Every thread of execution is a task
● Tasks are independent between them. They have their own 

execution context (memory)
● Tasks are never called from the program
● Tasks are executed by the FreeRTOS scheduler depending on 

their priorities and as a response to events
● Only one task active at the same time
● Tasks never return
● There’s a special IDLE task

– No need to create it
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FreeRTOS tasks

● A typical FreeRTOS application will look like this

void main()
{
  xTaskCreate (Task_A, ….);
  xTaskCreate (Task_A, ….);
  xTaskCreate (Task_A, ….);
  xTaskStartScheduler ();
}

void Task_A ()
{
  Init_A();
  while (1)
 {
    do_A();
 }
}

void Task_B ()
{
  Init_B();
  while (1)
 {
   do_B();
 }
}

void Task_C ()
{
  Init_C();
  while (1)
 {
   do_C();
 }
}
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FreeRTOS task model

● Tasks can be in different states of execution
– Ready

● When the task can be selected for execution, but 
is kept waiting since the CPU is busy with another 
task (depends on priority – next slide)

– Running 
● Really executing the code

– Blocked 
● Waiting for something:

– An event. (e.g. a message has been received 
in a queue)

– vTaskDelay() has been called so a certain 
time must pass.

– Suspended
● After calling vTaskSuspend()
● Can later be resumed using xTaskResume()
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FreeRTOS priorities

● Tasks have priorities, used to the scheduler to select the most urgent 
one

● The range of different priorities is configurable in FreeRTOSConfig.h
– configMAX_PRIORITIES

● Tasks can change their own priority, as well as the priority of other 
tasks.

● The IDLE task is the one with the lowest priority
– tskIDLE_PRIORITY = 0

● The FreeRTOS scheduler is preemptive:
– If a task with a higher priority that the actual one is READY, then the 

RUNNING one will be evicted and moved to the READY state, while the 
former will start the execution
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FreeRTOS tasks creation

● Tasks are modelled after normal C functions

– void return:
● And remember in fact they should never return

– void pointer for arguments. Can be later casted to the right type
● Since not called, they must be registered (created) into the scheduler

– The IDLE task is created automatically (special case)
● Can also be destroyed at run-time
● Some related functions:

– xtaskCreate()
– xtaskDelete()
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FreeRTOS Tasks
● In order to create a Task:

BaseType_t xTaskCreate(TaskFunction_t pxTaskCode,

     const char * const pcName,

     const configSTACK_DEPTH_TYPE usStackDepth,

     void * const pvParameters,

     UBaseType_t uxPriority,

     TaskHandle_t * const pxCreatedTask 

– pxTaskCode: pointer to the function that really implements the task
– pcName: name assigned, mainly used for debug purposes
– usStackDepth: refers to the local memory assigned to the task

● The configMINIMAL_STACK_SIZE parameter set in the FreeRTOSConfig.h configuration file
– pvParameters: since no parameters are sent to the task
– uxPriority: priority assigned to the task. 

● This constant is defined as the minimum possible priority
● The lowest the number, the lowest the priority

– pxCreatedTask: task handler
● Previously declared as: 

Task creation example
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FreeRTOS hello world

1. main function is normally used to 
create at least one task

2. The scheduler is a never-ending loop, so 
the program should never get to this point

3. Once the scheduler is started, functions 
will be executed depending on the schedul-
ing policy
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FreeRTOS hello world

● sayHello task activation:
– Once the scheduler is started, the task becomes ready
– Since it’s the only task apart from the IDLE one (always present) it will be 

scheduled to RUN.
– There are no other tasks but the IDLE one, with lower priority, so the 

task is always chosen to RUN.
– But when the task executes vTaskDelay to force a wating time, it 

becomes BLOCKED, waiting for the time to pass
– Once the time has passed, 

● The task will be moved to the READY state
● The IDLE task (priority 0) will be evicted
● The sayHello task will move to RUN
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FreeRTOS Task Communication

● Two mechanisms:
– Global variables which can be read from all tasks
– Queues as the main mechanism for inter-task communication

● Queues:
– Asynchronous model of communication based on a FIFO
– Data can written to both the head and tail of the queue
– Of arbitrary size and depth, but defined at compile time
– Items are passed by value → not zero copy
– Access can be blocking or non-blocking
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Global variables and their risks

● The global variable is shared by all tasks
● Access control should be managed by the programmer

– Since processes can be evicted, the state can be inconsistent
● E.g.:

– One process writes and another reads: Ok
– Two processes write

● You may assume wrong states
● Need for explicit synchronization mechanisms such as locks
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FreeRTOS queues
● Queue creation:

xQueueHandle xQueueCreate (unsigned portBASE_TYPE uxQueueLength,

                           unsigned portBASE_TYPE uxItemSize) 

● Queue data insertion at the back of the queue:
portBASE_TYPE xQueueSendToBack (xQueueHandle xQueue, 

                                const void * pvItemToQueue, 

                                portTickType xTicksToWait)

– If xTicksToWait is 0 it will return immediately if full otherwise it will wait 
● Data insertion at the front of the queue:

portBASE_TYPE xQueueSendToFront (xQueueHandle xQueue, 

                                 const void * pvItemToQueue,

                                 portTickType xTicksToWait) 

● Data extraction:
portBASE_TYPE xQueueReceive (xQueueHandle xQueue, 

                             void * pvBuffer,

                             portTickType xTicksToWait) 
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FreeRTOS queues

● The producer-consumer example
Queue declaration

Queue creation with limited size

Blocking read

If the queue is full, it will return im-
mediately

Be careful with priorities
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FreeRTOS synchronization
● Queues can also be used as a synchronization primitive
● But FreeRTOS includes some other types:

– Binary semaphores
● SemaphoreHandle_t xSemaphoreCreateBinary( void );
● Used to prevent concurrent access
● Typically used in Interrupt Service Routines (ISR)

– Counting semaphores can be used in two scenarios
● Counting events:

– An event generator gives a semaphore for each event
– Another task will take the event
– The count value is the difference

● Resource management
– The semaphore tells the number of available instances of a resource

– Mutexes
● SemaphoreHandle_t xSemaphoreCreateMutex( void )
● Similar to binary semaphores but the task taking the semaphore inherits the priority
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