Data Compression Techniques

Grzegorz Pastuszak Warsaw University of Technology

Trieste 22.05.2019

Need for compression

- Saving disk space for the archiving
- Limited bandwidth between detectors and the data acquisition system (DAQ)
- Saving RAM capacity in detector modules in case of pile-ups

Constraints on resources and power

Input Waveforms

- Acquired PMT waveforms:
 - seems to be similar,
 - Stability is limited,
 - Shaping changes original signal from PMT.
- Allowable losses in processing should be small to preserve key waveform features
- How strong is the correlation of waveforms from neighboring PMTs?

Compression Methods

- Modeling
 - Linear Prediction
 - Signal Models
 - Transforms
- Quantization
 - Scalar quantization
 - Vector quantization using signal models
- Entropy Coding
 - Variable length coding
 - Arithmetic coding more complex and better compression

Signal Modelling

- Predictions, Transformations decrease the dynamics
- Distributions of residual signal concentrated around zero
- Signal reconstruction using reverse operations

Linear Prediction

Prediction as a sum of previous samples multiplied by coefficients/weights <u>N</u>

$$x_{predicted}[t] = \sum_{i=1}^{N} a_i x[t-i]$$

 Residuals (equal to difference between input samples and their predictions) have much lower values and energy

$$\Delta x[t] = x[t] - \sum_{i=1}^{N} a_i x[t-i]$$

- Coefficients must be known at the decoder -> precomputed or sent with residuals
- Error energy: $E = \sum_{t=0}^{T} (\mathcal{E}[t])^2 = \sum_{t=0}^{T} \left(x[t] \sum_{i=1}^{N} a_i x[t-i] \right)^2$

Signal Models

• Set of representative waveforms are compared with acquired samples to find the best matching in terms of SAD or MSE

100

SAD:
$$i = \arg \min \left(\sum_{t} |x[t,i] - x[t]| \right)$$

MSE: $i = \arg \min \left(\sum_{t} (x[t,i] - x[t])^2 \right)$
 $x_{predicted}[t] = x[t,i]$

 Residuals (equal to difference between input samples and their predictions) have much lower values and energy

120

• In vector quantization residuals are neglected

Transforms

- Karhunen-Loeve Transform (KLT)
 - Best efficiency expected
 - Computed based on a number of waveforms
 - Required similarity of signals to obtain better energy compaction

DCT base:

DWT base:

Quantization

- Scalar Quantization division by quantization step
- Scalar Dequantization multiplication by quantization step
- Quantization step can be dependent on charge to keep sufficient SNR

- Possible to apply quantization from video coding
 - Quantization parameter (QP: 6 bits) determines quantization step
 - Increments decrease SNR by about 1dB
 - Division replaced by equivalent multiplication by multiple constants

Quantizer: $X_q = sign\{X\} \cdot \left[\left(|X| \cdot A(QP\%6) + f \cdot 2^{17+QP/6} \right) \gg (17 + QP/6) \right]$ Tables of constants

Dequantizer: $X_r = sign\{X_q\} \cdot [X_q \cdot B(QP\%6) \ll QP/6]$

Entropy coding (1)

- Assignment of input values to codewords
 - Codewords have variable lengths proportional to the logarithm of inversed probabilities of a symbol/value $L \approx \log(1/p)$
- Variable Length Coding:
 - Simple in implementation
 - Bit rate greater than the information entropy by a fraction of bit per sample
- Arithmetic Coding:
 - Higher implementation complexity
 - Achieve entropy $-\sum_{i=1}^{n} P(a_i) \log P(a_i) = H(S_{DMS})$

Entropy coding (2)

- Golomb/Rice codes suitable for geometric distribution
- Exp-Golomb codes suitable for exponential distribution

Golomb Codewords for different orders

i	m = 1	m=2	m = 3	m = 4	m = 5	m = 6	m = 7
0	0	0 0	0 0	0 00	0 00	0 00	0 00
1	10	0 1	0 10	0 01	0 01	0 01	0 010
2	110	10 0	0 11	0 10	0 10	0 100	0 011
3	1110	10 1	10 0	0 11	0 110	0 101	0 100
4	11110	110 0	10 10	10 00	0 111	0 110	0 101
5	111110	110 1	10 11	10 01	10 00	0 111	0 110
6	1111110	1110 0	110 0	10 10	10 01	10 00	0 111
7	11111110	1110 1	110 10	10 11	10 10	10 01	10 00
8	111111110	11110 0	110 11	110 00	10 110	10 100	10 010
9	1111111110	11110 1	1110 0	110 01	10 111	10 101	10 011
10	111111111110	111110 0	1110 10	110 10	110 00	10 110	10 100
:							

Compression Efficiency

- Lossless Coding of waveforms
 - Compression ratio: about 2-6
 - Depends on SNR, sampling frequency, signal dynamics
- Lossy Coding of waveforms
 - Compression ratio: more than 3, e.g. 10, 20 ...
 - Distortion (D) and bit rate (R) depend on quantization step
 - RD Tradeoff
 - Allowable losses should be lower than signal noise

More accurate estimation of compression ratios after the statistical analysis

Multi-channel Compression

- Neighboring PMTs may be excited in similar moments in the case of Cherenkov photons
 - common packets where one-bit flags can indicate the presence of the hit in each channel
 - each separate time descriptor consumes 27 bits
 - common time descriptor (offset) for 19 channels is useful
 - Time Delta values for each channel should be close to zero
 ->suitable variable length coding

- Waveforms from neighboring PMTs may be similar
 - Use of one waveform to predict others

Data in Super-Kamiokande (SK)

	Hit-DATA cell Format									
	Bit									
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0									
1st_Word	Chi	Ch# (HEADER) QTC gate count								
2nd_word	Range	TF	RG	Event #						
3rd_Word				TDC count						

	Bit Location	Length	Function	
Ch #	MSB: 1st_Word Bit15 LSB: 1st_Word Bit11	5bits	Channel Number: 0~23 (00000B~10111B)	
QTC gate count	MSB: 1st_Word Bit10 LSB: 1st_Word Bit0	d Bit10 ord Bit0 QTC gate count value: 0~2047 (000H~7FFH)→0~1064ns, 0.52ns/bit		
Range	MSB: 2nd_Word Bit15 LSB: 2nd_Word Bit14	2bits	Range code: 00B = small, 01B = medium, 10B = large	
TRG	MSB: 2nd_Word Bit13 LSB: 2nd_Word Bit12	2bits	Trigger ID: 00B = Narrow, 01B = Wide, 10B = Pedestal, 11B = Calibration	
Event # MSB: 1st_Word Bit11 LSB: 2nd_Word Bit0 12bits		TDC Event Number: 0~4095 (000H~FFFH)		
TDC count	MSB: 3rd_Word Bit15 LSB: 3rd_Word Bit0	16bits	TDC count (T1 leading edge): 0~65535 (0000H~FFFFH)	

- Time: Event + TDC count = 28 bits
- Charge: QTC gate count = 11 bits

48 bits

Time-Stamp Compression

- Efficiency limited by the entropy
- Differential coding
 - Difference between successive time stamps of any channel
 - Data dominated by dark counts
- Division of bits into two parts: variable-length code (VLC) and fixed-length code
 - More bits to VLC -> better compression and complex code

Division of bits	MSB Entropy + fixed length	Entropy	Entropy gain
12/15	1.1728 +15	16.1728	
13/14	1.7035 +14	15.7035	-0.4693
14/13	2.3766 +13	15.3766	-0.7962
15/12	3.1632 +12	15.1632	-1.0096
16/11	4.0454 +11	15.0454	-1.1274
17/10	4.9914 +10	14.9914	-1.1814
18/9	5.9600 + 9	14.9600	-1.2128
19/8	6.9390 + 8	14.9390	-1.2338
20/7	7.9216 + 7	14.9216	-1.2512
21/6	8.9051 + 6	14.9051	-1.2677
22/5	9.8891 + 5	14.8891	-1.2837
23/4	10.8736 + 4	14.8736	-1.2992
24/3	11.8582 + 3	14.8582	-1.3146
25/2	12.8426 + 2	14.8426	-1.3302
26/1	13.8266 + 1	14.8266	-1.3462
27/0	14.8106 + 0	14.8106	-1.3622

Charge Compression (1)

• 11 bits in original representation

Charge Compression (2)

• 11 bits in original representation

Simplified Code Table: Bit-Rate: 7.466 bits Loss: 0.49 bits

Subrange	Prefix	Suffix	Length
0-947	1110	+10 bits	=14 bits
948-979	110	+5 bits	=8 bits
980-1011	0	+5 bits	=6 bits
1012-1075	10	+6 bits	=8 bits
1076-2047	1111	+10 bits	=14 bits

Channel number

- Identification one of 24/19 channels in mPMT
 - Equal probabilities prevent the compression gain
 - Fixed-length codes require 5 bits
 - Almost fixed-length codes uses 4-bit and 5-bit codewords. Average bit rate is:

Triger Type and Range

- Originally coded with 4 bits
 - Three ranges of signal dynamic: small/medium/large
 - Four trigger types: narrow/wide/pedestal/calibration

Statistics in SK	Small (S)	Medium (M)	Large (L)	All
Narrow (N)	48	0	0	48
Wide (W)	122653704	850692	494	123504890
Pedestal (P)	438115	437982	437887	1313984
Calibration (C)	0	0	0	0

• Common code built with the Huffman method

0	W_S	111110	N_S
100	W_M	11111100	N_M
101	P_S	11111101	N_L
110	P_M	11111110	C_S
1110	P_L	111111110	C_M
11110	W_L	111111111	C_L

- Entropy: 0.16 bits
- Bit-Rate: 1.0581 bits

Summary

 A number of compression methods must be examined for signal waveforms

- The level of loss must be decided

 The compression of extracted parameters allows reduction 48 bits ->28 bits ≈ 0.58 ratio

- Optimized methods can slightly improve the ratio

• Compression oriented to dark counts