Front-End Electronics based on Waveform Sampling *Feature Extraction*

> Grzegorz Pastuszak and Marcin Ziembicki Warsaw University of Technology and AstroCeNT

Advanced Workshop on Modern FPGA Based Technology for Scientific Computing ICTP, Trieste, 2019-05-22

Introduction

- Possibility to implement completely dead-time free system.
- Ability to disentangle overlapping pulses (pile-up)
- **Can subtract off periodic EMI by digital filters implemented in FPGA firmware.**
- There is a price to pay: **power consumption,** cost, **data rate**.
	- Can we reduce the above without affecting the physics performance?

Fast Digitizer at Reasonable Power & Cost *Switched Capacitor Arrays (DRS4 example)*

INTRODUCTION OF DEAD TIME

 \rightarrow Not a problem if mean inter-pulse period is large compared to the dead time

Avoiding dead time in capacitor arrays: slow sampling →

- Use multiple arrays for single waveform
- Use chip with segmented memory (if available)

SCA

fast sampling \rightarrow

ADC

Study of Sampling Systems

High resolution Low resolution

How poor can the **system specs** be to still be able to tell when and how big the **tree** is with **satisfactory precision**? and how big the **pulse was** with **satisfactory precision**?

QUESTIONS:

- Type and cutoff frequency of analog shaper/anti-aliasing filter?
- Speed and resolution of the ADC?
- Signal processing methods and sharing of signal processing between FPGA and DAQ
- Optimization of resource usage within the FPGA
- Quality of time & charge estimates
- Two independent compression methods:
	- Waveform (potentially lossy)
	- Time/charge (lossless)
- Disentanglement of pulse pile-up

Need decent model of the full signal chain → having one allows exploration of **various variants of shaper/ADC combinations without the need for building prototypes (thus saves labor time)**

Timing Resolution of Sampling Digitizers

PURPOSE OF THE STUDY:

Determine how fast and how precise does a system needs to be to achieve given performance specs?

- Use AWG instead of PMT.
- Use large reference pulse (timing accuracy $\sigma \approx 10$ ps) and small, shaped signal pulse (1 mV \sim 100 mV).
- Apply signal processing methods and calculate time difference Δt between ref. and sig. channels.
- Repeat multiple times and compute RMS of Δt values.
- Two shapers:
	- 15 ns and 30 ns rise time (10% to 90%), 5-th order **Bessel-type** low-pass filters.
- Shared project WUT/TRIUMF

Agilent 33600A (1 GSPS/80 MHz)

Custom shapers

Commercial ADCs (CAEN) *V1720 (250 MSPS/12b) V1730 (500 MSPS/14b)*

7

Signal Processing Methods

Digital Constant Fraction Discriminator:

- Simple processing \rightarrow needs little FPGA resources
- Does not make any assumption as to the pulse shape
- Favors high sampling rate, but some improvements are possible for low sampling rates if pulse shape is invariant
- Poor performance in low SNR conditions

Time errors and

possible correction

Signal Processing – FIR DPLMS

Synthesizing FIR filter – Method 1 *Digital Penalized LMS Method*

Gatti E., et al., "Digital Penalized LMS method for filter synthesis with 10^{10} *arbitrary constraints and noise*", NIM A523, 167-185, 2004

Synthesizing FIR filter – Method 1 (cont.) *Digital Penalized LMS Method*

Add additional constraints for frequency response, including gain at DC ...

Add constraints related to bit-gain (i.e. how well we are supposed to reject quantization noise) …

All components are square functions, so there exists a global minimum – just need to properly choose N , \vec{v} , $\vec{\alpha}$, β , φ and $\gamma \rightarrow$ papers don't say much about that $_{11}$ $\frac{\pi}{2} \rightarrow \frac{\pi}{2}$

Signal Processing - FIR Filters

• Trigger on matched filter response (red)

- Use adaptive threshold to prevent false positives (dotted black line)
	- Average signal to get the threshold and delay FIR processing to check for pulses and their timing
- Get time using the 'timing' filter (blue)
- Apply correction to counteract non-linear shape of the waveform near zero-crossing.

Method assumes that shape is constant

Sample no.

Need on-line Quality Factor to judge accuracy of estimation

Signal Processing – Continued

Matched FIR Filter and Cross-Correlation Processing:

- Much more complex processing
	- Works well with filter orders of 9-12
- **Assumes that shape is constant**
- Similar timing performance to zeroaverage FIR filter
- Relatively easy to disentangle piled-up pulses

Sub-sample shifts done using windowed sinc interpolation (Blackman window). FFT interpolation also possible if shifting impulse response.

System Model (each channel)

Signal Models

All pulses matched by FWHM All pulses matched by FWHM

15

Interpolation artefacts

nterpolation artefacts

Noise models

- Good match of simulated periodogram with an experimental one.
- Potential problem:
	- Some of the deterministic components (peaks in spectrum) do not have random phase, but are correlated to the sampling clock.

Results – Digital CFD

$SNR \geq 20$ dB

Good match of model and data for 100 MHz ADC, slightly worse for 250 MHz ADC

Poor match, data worse than model. Not a useful range anyway, as we need σ_{time} < 1 ns. **SNR < 20 dB**

Timing resolution is proportional to

Results – FIR DPLMS

Good match of model and data for 100 MHz ADC, slightly worse for 250 MHz ADC

250 MHz data better than model – possibly due to some correlation which is not reflected by simulation.

Example Histograms – FIR Timing

Large SNR case (approx. 60 dB)

100 MSPS ADC, 14-bit, 15 ns shaper

10 ps resolution from a system with 10 ns sampling

Digital CFD / FIR DPLMS – Normalized

- Don't need extremely high sampling rates to maintain good timing resolution, as long as SNR is sufficient
- It seems that it is better to maintain sharp edge \rightarrow logical, as we don't cut bandwidth of the signal that still has valid information
	- Sharp edges help in pile-up resolution
- Oversampling help only in case of FIR-based algorithms \rightarrow SNR gets better

R14374 – Waveforms

- Visible dependence of waveform shape on position of the light source on the photocathode
- $t_{rise} \in (1.9 \text{ ns}, 3.0 \text{ ns})$, FWHM $\in (3.0 \text{ ns})$, 4.7 ns); both increase with PE level (expected)

 4.5

R14374 - Waveform Shape

R14374 - Pulse Bandwidth

 \approx 350 MHz Bandwidth

almost unchanged in the passband region of the anti-aliasing filter

At sufficiently low cut-off pulse shape will be constant – but we will loose in pile-up resolution

Where are we now?

- Re-designing the shaper
	- Old shaper used for tests was too noisy, had too low cutoff frequency
	- Decided to switch to fully passive design (LC-ladder) – still need one amplifier to separate LC circuit from the twisted pair
	- Switch from Bessel to elliptic (hopefully)
- Need additional digital all-pass filter to correct passband ripple and phase

- Much work already done
- Prototype foreseen in July
- Need to foresee that in FIRbased methods the estimate may be completely wrong in case of non-standard shape (for ex. pile-up)
	- Need quality factor for each time/charge estimate
	- Should send full waveform for off-line processing
- We're also involved in photosensor characterization
	- Can't design good electronics without understanding signal source

Revised time estimation

- Summary Digital CFD limit shift to leading edge only – trailing edge not well defined
	- For FIR-based method, depending on cutoff frequency we many need to parameterize impulse response of the filter wrt. charge

compression

BACKUP

FIR synthesis

STEP 1: Detect template

- Compute cross-correlation between two events.
- Align pulses using sinc interpolation – resample $2nd$ event to maximize crosscorrelation.
- Average events.
- Take next event and resample it to maximize cross-correlation with the averaged event.
	- Repeat last step for desired amount of events.

FIR synthesis STEP 2: Calculate noise autocovariance matrix

If the images are smeared, then it is PDF's image compression rather than strange covariance matrix.

FIR synthesis STEP 3: Calculate 'gate' filter

The 'gate' filter will be used to detect pulse. It is a standard matched filter that maximizes SNR.

FIR synthesis

STEP 4: Calculate desired FIR response

- Use solver and compute waveform shape that meets desired shape, length and linear edge requirements.
- Downsample resulting waveform so that Nyquist criteria is met.
- Figures show downsampled responses.

FIR synthesis STEP 5: Calculate 'timing' FIR

• Use DPLMS method to calculate FIR filter based on pulse template, desired response and noise autocovariance matrix.

FIR synthesis

STEP 6: Calculate shift between maximums of 'gate' and 'timing' filter response

- Make separate calculation for 'reference' and 'signal' channels
- This value will later be used to start searching for zero-crossing of 'timing' filter response.

FIR synthesis

STEP 6: Calculate correction function to account for non-linear shape near zero crossing of 'timing' filter response

