

# Geospace Environmental Research at the Air Force Research Laboratory

Ron Caton
Air Force Research Laboratory
Space Vehicles Directorate

20-24 May 2019 - International Space Weather Initiative Workshop Abdus Salam International Center for Theoretical Physics

### AFRL Space Vehicles Directorate – Geospace Environment Branch

#### **Outline**

- AFRL & ISWI
- Who we are
   ✓AFRL Heritage & Mission
- Basic Research Opportunities
- AFRL Science & Technology Needs





Basic and Applied R&D to better understand the Sun-to-Earth environment

AFRL Space Vehicles Directorate - International Heliophysical Year &

International Space Weather Initiative

#### **IHY Sponsored SCINDA Workshops**

#### 2006 - Cape Verde

20 participants representing 7 nations

#### 2007 - Addis, Ethiopia

~50 participants from 12 nations at 2007 IHY in Ethiopia

#### 2009 – Livingston, Zambia

116 delegates from 27 nations including
 19 African countries

Led to installation of space weather sensors at >20 sites

#### 2010 – ISWI Summer School - Bahir Dar, Ethiopia

Hardware demos & lectures on ionospheric dynamics

#### 2010 - ISWI Workshop - Helwan University

Hosted sessions on scintillation and ionospheric modeling



## Air Force Research Laboratory Nine Technical Directorates













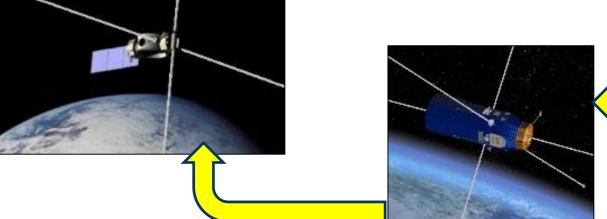






**AFRL Space Weather Heritage** 

Going back to 1949 with observations from solar telescopes at Sacramento Peak


To supporting **IGY** science in 1957-1958 from Greenland



To Ionospheric observations with DMSP beginning in the 1970s



To the Demonstration and Science Experiment (DSX) high power VLF experiment scheduled to launch next month!



To the C/NOFS mission from 2008-2015

## AFRL's Role in Space Weather

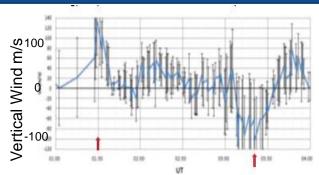
AFRL invests in, creates, and matures Space Wx technology

- In-house research with Gov't scientists
- Grants, contracts and other agreements

**ISWI Goal:** develop the scientific insight necessary to understand the science, and to reconstruct and forecast near-Earth space weather

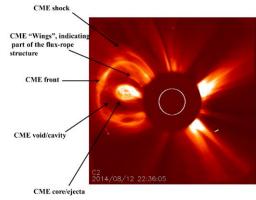
- Basic & Applied Research Space Vehicles Directorate
- Basic Research Air Force Office of Scientific Research
  - Domestic & Int'l Grants for Basic Research
  - International Offices of Aerospace Research & Development
    - ✓ Japan: Asian Office AOARD
    - √ London: European Office EOARD
    - ✓ Chile: Southern Office SOARD




## AFOSR International Office - Space Environment R&D

- Basic Research Grants
- Topic areas include Space Sciences, Space Technology, Quantum Sciences, and more
- Focus on research areas with significant and comprehensive benefits to AFRL programs
   Highlighted in USAF 2030 S&T Strategy!




AGU 2017 African Award for Research Excellence in Space Science

Melessew Nigussie, University of Bahir Dar, Ethiopia




Ionosphere-Thermosphere
Physics and Chemistry

University College London, UK



Solar wind / Interplanetary Coronal Mass Ejections

Rutherford-Appleton Laboratory, UK




Tropospheric effects on satellite communication

University of Rome, Italy

## AFRL Space Vehicles – Int'l Cooperation for Space Weather

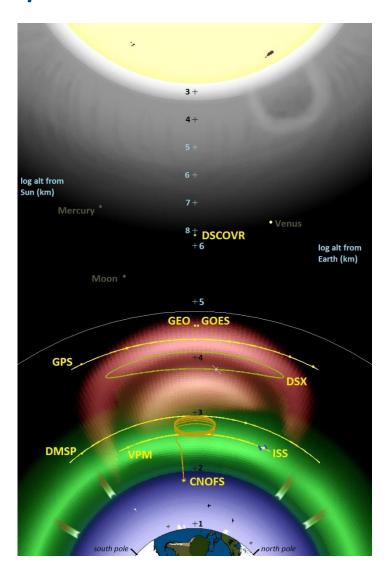
- Global space weather monitoring requires increased interoperability
- Sharing of observations & models with the global community
  - AFRL is working to release more of our observational data
  - Necessary to build better models & improve fundamental understandings
- Interested in working together to mature promising technologies to support space weather specification & forecasting
- Communicate our S&T needs to the community

We need a partnership with international space weather research community to work the hard research problems



## AFRL Geospace Environment Research & Development

Communicating our S&T needs to the community


AFRL interests span the full range of the geospace environment from the sun to the earth

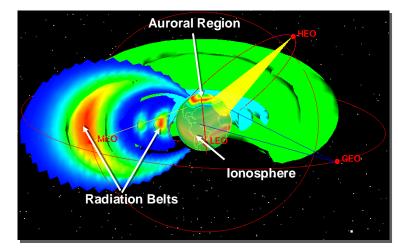
#### **BASIC RESEARCH**

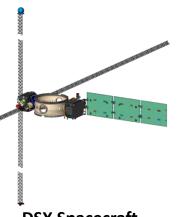
- Solar processes
- CME propagation
- Radiation belt processes
- Magnetospherelonosphere coupling
- Wave-particle interactions
- Ionospheric processes
- Plasma chemistry
- Thermospheric modeling

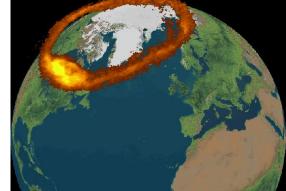
#### **APPLIED RESEARCH**

- Solar flare forecasting
- CME prediction
- Energetic charged particle sensors
- Spacecraft/plasma interactions
- Ionospheric modeling and data assimilation
- Scintillation impacts
- HF propagation modeling




## AFRL Geospace Environment R&D – Magnetospheric


Communicating our S&T needs to the community


#### Need:

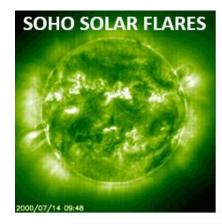
Novel space environment sensing techniques, specification models, and <u>forecast models</u>; modern climatologies; improved understanding of space environment interactions with space systems

- Remote sensing techniques to specify the space environ
- Advanced Energetic Charged Particle sensors
- Radiation environment and solar particle specification models
- Auroral oval/precipitating electron specification & forecast models
- Spacecraft-plasma interaction models

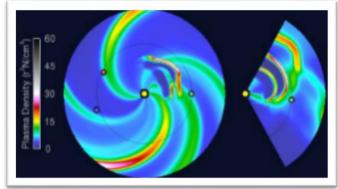




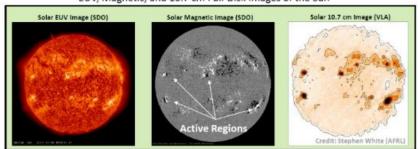



DSX Spacecraft (2019 launch)

### AFRL Geospace Environment R&D - Solar


## Communicating our S&T needs to the community Need:

Understanding and <u>forecasting</u> solar driven mechanisms impacting space systems from CMEs to solar flares and the interaction of the solar wind with Earth's magnetic field


- Next-gen ground-based solar observing networks
- Automated probabilistic forecasting of solar events
- Post-eruption forecast of timing, peak fluxes, fluences, & spectral hardness
- Development of coronal and solar wind modeling providing accurate 3-day forecasts (particularly Bz)
- 3-day forecasts of solar radio bursts (timing, frequency, & intensity)

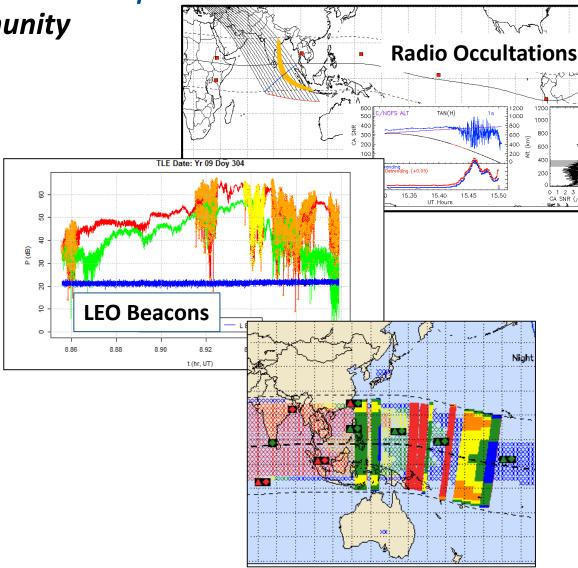






EUV, Magnetic, and 10.7 cm Full-Disk Images of the Sun




## AFRL Geospace Environment R&D – Ionospheric

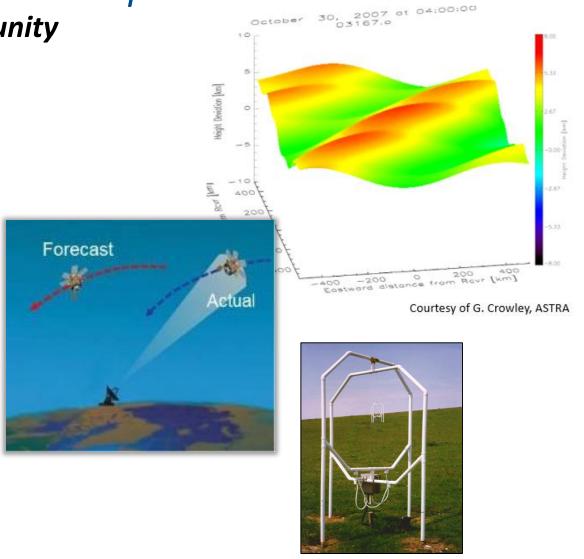
Communicating our S&T needs to the community

#### Need:

Monitoring, <u>predicting</u>, & characterizing the natural space environment and mitigating its effects on space systems

- Understanding the fundamental drivers that control the ionospheric phenomena
- Physics-based models of the ionosphere: densities, winds, irregularity development, response to environmental drivers
- Coupled assimilation models for new and disparate data sources




AFRL Geospace Environment R&D – Ionospheric

Communicating our S&T needs to the community

#### Need:

Monitoring, <u>predicting</u>, & characterizing the natural space environment and mitigating its effects on space systems

- Bottomside ionospheric specification
- Global mapping of sporadic-E with available sensors, eg. Radio Occultation
- Physics-based neutral density models for precise orbit determination



