Strategies that Engage Undergraduate Students to Learn about Space Weather

M. CHANTALE DAMAS, PHD

QUEENSBOROUGH COMMUNITY COLLEGE (QCC) OF THE CITY UNIVERSITY OF NEW YORK (CUNY)

THE INTERNATIONAL SPACE WEATHER INITIATIVE WORKSHOP 2019: MAY 20 - 24, 2019 Trieste, Italy

Outline

- 1. The case for undergraduate research- Why is it important?
- 2. Why Space Weather (Swx)?
- 3. Four strategies that engage students successfully in research
 - -Case study: Queensborough Community College (QCC) of the City University of New York (CUNY)
- 4. Challenges
- 5. Outcomes
- 6. Summary--Broader Impact

Case for Undergraduate Research

Undergraduate research experiences in science, technology, engineering and mathematics (STEM) fields provide a variety of benefits to students including:

- Sophisticated understandings of science and its nature
- ✓ Improved attitudes toward STEM
 ✓ Career awareness in STEM fields
 ✓ Enhanced critical thinking, and
 ✓ Improved self-efficacy, persistence and confidence

Case for Undergraduate Research (cont.)

 Motivated students that are ready for graduate programs
 Preparing the next generation of researchers
 Passing the research baton to the next generation

Why Space Weather (Swx)?

- -Space Weather? Never heard of it.
- -Relevant to students because of technology
- -Considered a natural hazard (www.Ready.gov)
- -Learn about NASA- 60 years on, NASA still got it! (still a big draw!)
- -Learn about National Oceanic & Atmospheric Administration (NOAA)
- -Tons of freely available data online (both archival & realtime)—computational thinking &data analytic skills
- -Lots of models that help with visualization
- -Great way to teach physics without scaring students too much! -Sounds interesting
- -Pretty cool stuff!

- 1. Adopt & Adapt (A&A)
- 2. Find partners (universities, research labs, private industries, etc.)
- 3. Develop a Community of scholars (COS)—Learning Community
- 4. Program Assessment

1. Adopt & Adapt (A&A)

-No need to reinvent the wheel!-Plenty of materials freely available online (public domain)

2. Find partners (other universities, research labs, private industry, etc.)

- -Don't have do it alone!
- -Seek partners that can:
 - Share resources (research facilities, library, etc.)
 - Host students during the summer
 - Mentor students
 - Support/Write proposals

- 3. Develop a Community of scholars (COS)—Learning Community
 - -Faculty & Peer mentoring
 -Continuity More advanced students train new students
 -Academic & Social support Students offer support to each other both academically & socially
 - -Integrate student into the academy—Students feel part of a greater community and have a sense of belonging.

4. Program Assessment

What is working and what is not working

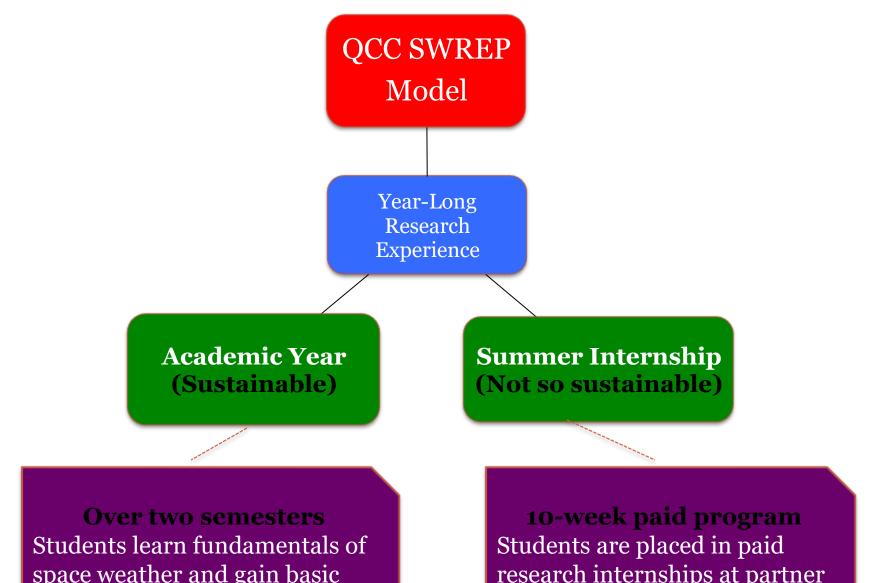
Methods: Surveys & focus groups (many available online– adopt & adapt)

1) What gains do students make from their year-long research?

2) Are students satisfied with their year-long research experience, and with the training and support provided by project?

Know what's available on campus

- QCC is a 2-Yr College mission is primarily teaching, not research (QCC requiring research more and more)
- Very heavy teaching load
- Library resources (scientific journals, books, etc.)
 very limited
- Very little time to attend meetings/conferences
- Only person in department doing research (lone wolf)


Know Students

- 2-Yr community college students (US)
- 1st year at university
- Little to no background in physics (~ 1-2 semesters of introductory physics)
- Diverse academic background, i.e., math skills
- Diverse population (minorities & women)
- Many work full-time/part-time + heavy course load + family obligations + commute = no time for research
- First generation college students

QCC Space Weather Research & Education Program Model

Program: Queensborough Community College (QCC) Space Weather Research & Education Program (SWREP)

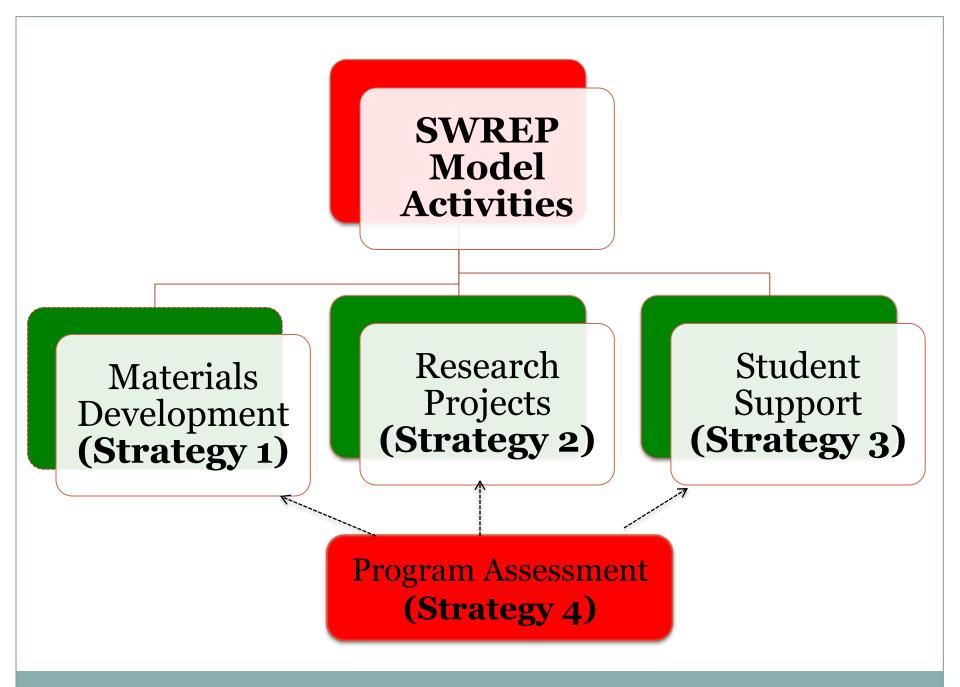
Main Goal: Engage undergraduate students as early as their first year in research and education activities in solar, geospace and atmospheric physics under the **umbrella discipline of space weather**

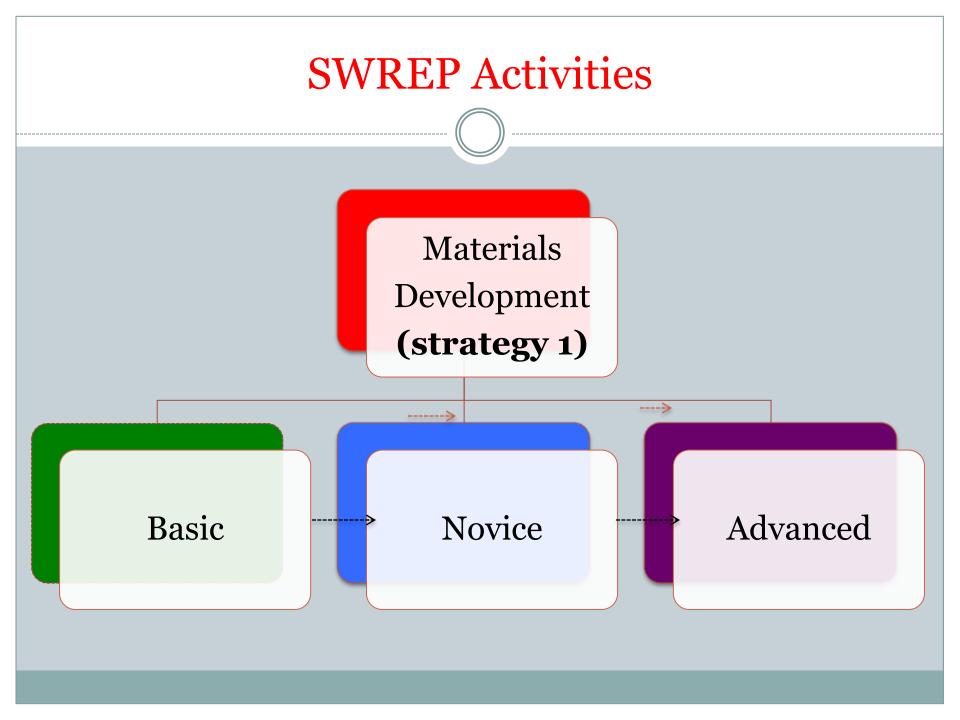
space weather and gain basic research skills.

research internships at partner institutions.

QCC SWREP Model Year-long Format

 Table 2. Space Weather Research and Education Curriculum


Item	Contribution
Course: Research Projects in Space Weather (Swx)	Semester 1: Fundamentals of Swx and Impact technological systems. Semester 2: Research project through case studies of storm events.
Summer research internship program	 -10-week research internship at GSFC or CUNY to expand academic year experience -Includes a one week Space weather bootcamp at NASA/CCMC
Synergistic Activities	Workshops & training, i.e., data analysis techniques, virtual community, research integrity, etc.


From Damas et.al., 2019 in preparation

QCC SWREP Model Year-long Format (cont.)

Students receive course credit
Students meet ~ 4-hours/week as a class
Students work independently and in groups

Students meet individually with faculty mentors

SWREP Activities: Materials-Basic

Fundamentals of Swx

A. Materials available freely on line that introduce students to space weather:

- 1. Jack Eddy's Book-The Sun, the Earth, and Near-Earth Space: A Guide to the Sun-Earth System published by NASA and the International Living with a Star (ILWS)
- 2. NASA@science videos—short videos on YouTube on the Sun, CMEs, solar flares, etc.
- 3. Community Coordinated Modeling Center (CCMC) materials & support

B. Websites:

- 1. Spaceweatherlive.com
- 2. Spaceweather.com
- 3. NASA, NOAA, etc.

C. Books:

- **1**. Marc Moldwin's Introduction to Space Weather (basic & novice)
- 2. Delores Knipp's Understanding Space weather and the Physics behind it (for more advanced students because of E&M)

SWREP Activities: Research Projects (strategy 2)

Work with partners to develop student projects that:

- Are well-defined and have an end (not too open ended). There are some results even if more questions are raised.
- Take into account student level when developing projects
- Take into account home university's resources (library, computer lab space, software, etc.)
- ✓ With little or no background in physics (electricity & magnetism (E&M), plasma, etc.) use large data sets freely available on the internet from both space and ground-based instruments
- ✓ Require team work
- ✓ Are Interdisciplinary
- Take into account System Science, which views the Sun– heliosphere–magnetosphere–ionosphere–atmosphere complex as an integrated system.

Students, Meet Data!

Students:

- Get to know (intimately) large data sets
- ✓ Analyze both historical (archival) & real-time data
- ✓ Learn that data can be very messy!! with lots of gaps, etc.
- Perform data/statistical analysis using mainly MS EXCEL or MATLAB, etc.
- Gain both data analysis and computational thinking skills
- Write and present their results to scientists and peers

Where to get data

- **1.** NOAA Space weather Prediction Center (SWPC)
- 2. SPDF Coordinated Data Analysis Web (CDAWeb)

(https://cdaweb.sci.gsfc.nasa.gov/index.html/)

3. Individual spacecrafts (SDO, STEREO, SOHO, etc.)

SWREP Activities: Student Support (Strategy 3)

"A good mentor is hard to find."

Need to establish a strong mentoring program consisting of a diverse team. Mentoring can be done face-to-face or online. Students are mentored by:

✓ Faculty

Research scientists from science labs, industry, etc.

Graduate students

 Peer tutoring—very powerful--establish a community of scholars where students feel part of a community where they help and mentor each other.

Challenges

- Preparedness of students (math skills)
- Have students for only one or two years
- Resources: access to journals, software, etc.
- Time: heavy teaching load (4-5 courses/semester) plus research and committee work
- Funds to travel and pay students (always writing proposals!!)
- Look for and foster research collaboration
- Own research suffers

- Research projects that are manageable & at proper level, yet challenging for students
- Competition for students' time (courses, work, clubs, etc.)
- Sustainability (Can we continue without funds? YES and NO)
 - Yes—Academic Year
 - No- Summer

Program Outcomes (strategy 4)

- 1. Well-trained students with research/interdisciplinary skills
- 2. Communication skills (oral, written)
 - 1. Abstract, scientific paper, ppt presentation (oral), poster
- 3. Computer skills (programming-Python, C++, Matlab, etc.)
- **4.** Publish in peer-reviewed proceedings/journals
- 5. Attend and present at a scientific meeting
- 6. Desire to continue in STEM, including transferring to 4-Yr university STEM (BS) and doctoral programs

Sample Projects & Abstract Titles Submitted to AGU

- Analysis of Positive Ionospheric Storm Disturbances
- Characterizing Interplanetary Structures of Long- Lasting Ionospheric Storm Events
- Dst Profile Investigation with Gamma Distribution and Diffusion-Like Distribution
- Modeling the Impacts of Geomagnetic Disturbances on the New York State Power Transmission System
- Is the Solar Magnetic Field Getting Weaker?
- An Investigation of Interplanetary Structures for Solar Cycles 23 and 24 and their Space Weather Consequences.
- Quantifying Temporal and Spatial Characteristics of Pulsating Aurora.
- Study of Geomagnetic Field Response to Solar Wind Forcing.
- Validation of the Kp Geomagnetic Index Forecast at CCMC
- The Magnetic Evolution of Coronal Hole Bright Points
- Inverse Flux versus Pressure of Muons from Cosmic Rays.
- Using Flow Charts to Visualize the Decision Process in Space Weather Forecasting
- Comparing the Characteristics of Ionosphere for Different Solar Minimum Periods

People

Students have access to a diverse group of mentors

- CUNY/QCC- Physics Department- M. Chantale Damas, Paul Marchese, Tak Cheung
- Community Coordinated Modeling Center (CCMC) based at NASA Goddard Space Fight Center—- Maria "Masha' Kuznetsova, Yihua Zheng, Chigomezyo Ngwira, Leila M. Mays, Karin Muglach, Yareiska Collado-Vega, Anna Chulaki
- CUNY/City College of New York– Electrical Engineering Department (Ahmed Mohamed, Roger Dorsinville)
- NASA Goddard Heliophysics—Robert Michell, Marilia Samara, Neeharika Thakur (also of Prince George's Community College) & Nat Gopalswamy
- CUNY/York- Physics Department: Kevin Lynch & James Popp
- University of Colorado at Boulder: Delores Knipp

Funding

Main funding Sources

- 1. National Science Foundation (NSF) Geosciences Directorate EAGER* (2015-2017)
- 2. NASA MUREP MC3I Program (2016-2019)

Other sources of Funding:

- CUNY/QCC NSF Research Experience for Undergraduates (REU) Program
- CUNY/Medgar Evers College NSF REU Program
- NASA New York Space Grant for Community College Partnership program
- The City of New York Mayor's Office--CUNY Research Scholars Program for Community College Students (CRSP)
- Department of Education MSEIP

*Early Concept Grants for Exploratory Research

Summary

- 1) Undergraduate students contribute to the fundamental understanding of space weather, a natural hazard, and it's impact on Earth's space environment, life and society;
- 2) Long-term integration of space weather into the undergraduate curricula, thus exposing students to research early in their academic careers;
- 3) Increasing students' interest in and motivation to study science, technology, engineering and mathematics (STEM), as well as preparing them for choosing a career path in space science or STEM related fields; and
- 4) Increase student persistence, transfer & graduation rates.

Acknowledgement

My students and I:

- Gratefully acknowledge support from:
 - the National Science Foundation Geosciences Directorate under NSF Award Number DES-1446704.
 - NASA MUREP Community College Curriculum Improvement (MC3I) under NASA Award Number NNX15AV96A.
 - The CUNY Research Scholars Program; QCC Physics Department & Office of Academic Affairs for travel support.
- Thank the NASA Goddard based CCMC Team & CUNY faculty for all of their support.
- Thank all data depositories: the NASA Goddard Space Flight Center Data Facility (CDAWeb), NOAA SWPC, MADRIGAL, Intermagnet, etc.
- Spaceweather.com & Spaceweatherlive.com

References

• Lopatto D, Tobias S. Science in Solution: The Impact of Undergraduate Research on Student Learning. Washington, DC: Council on Undergraduate Research; 2010.

- Nagda, B.A., Greggerman, S.R., Jonides, J., von Hippel, W., and Lerner, J.S. 1998. Undergraduate student-faculty research partnerships affect student retention. Review of Higher Education 22: 55-72.
- National Research Council, Solar and Space Physics: A Science for a Technological Society. Washington, DC: The National Academies Press, 2013.
- Thiry, H., Laursen, S. L., & Hunter, A.-B. (2011). What experiences help students become scientists? A comparative study of research and other sources of personal and professional gains for STEM undergraduates. *Journal of Higher Education* 82(4), 357-388.

COMMAN	Mass Ciecti	res and Gomp	plana Tyrper II	Madde Ditt	
Dry Castron					
1000	and the second se				

	43		
6 📊	-5		
	-	220 m	-
N 100		22°**	-

Helding

1181

Tim

The

hu lin

0

1111

1.0

-

J

Inin .

1

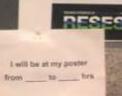
or one distribution of the local distributio

789

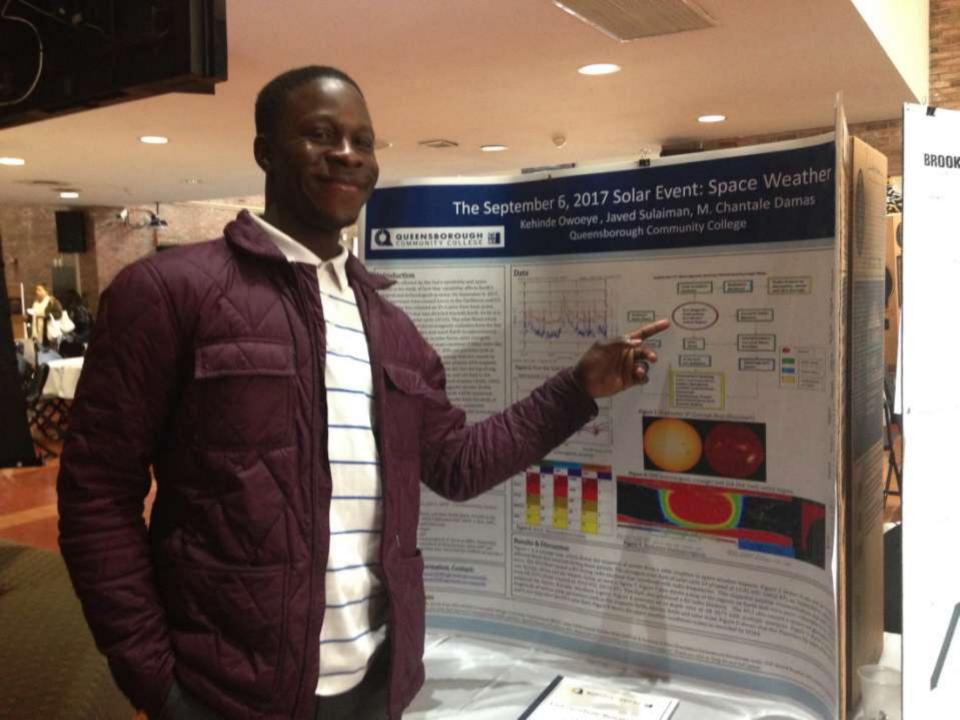
What was for some at the THC during

Contrapy Lotting

+ THO beautrantic to


Histor Separate 2724 Ge (Cent - Centron n Origination ternally central EV ent NE of Trick

Agastine 53 Thirtie


Decay of U.S. Thur Heating other for causes in a -other
 boreauxi reductor

to effective Livenus And the programmer of the 2008, and Facesta

Paper 1 According to Paper 1 According to Paper 1 According to Accord ATT: Incoming

Grazie!!

Contact: M. Chantale Damas Email: mdamas@qcc.cuny.edu