Quantum information with trapped ions

- Trapped ions as qubits for quantum computing and simulation
- Qubit architectures for scalable entanglement

Quantum thermodynamics with ions

- Quantum thermodynamics introduction
- Heat transport, Fluctuation theorems,
- Phase transitions, Heat engines
- Outlook

Hartmut Häffner

Kihwan Kim

量子信息中心

Center for Ouantum Information

Dzmitry Matsukevich

Centre for Quantum Technologies

Overview

New machines

Energy transport

Hartmut Häffner

Transport of radial phonons via a linear ion crystal

Energy propagation Propagation of quantum correlations

Vibrationally assisted energy transport

Explores high dimensional Hilbert space Transport involving nonlinear interactions Understanding transport principles in light harvesting

The ion crystal

Ca⁺

Qubits

Local motion

Coulomb interaction

- Excite first ion on sideband, generates spin-motion entanglement
- Motion propagates throught the crystal
- Wait-time
- Analyse if motion returned back
- Contrast of Ramsey reveals delocalization of motional excitation

Result:

Ramm et al., NJP 16 063062 (2014) Abdelrahman et al., Nat. Comm. 8 15712 (2017)

Light harvesting complex

Ishizaki, Flemming, PNAS 106 17255 (2009)

Light harvesting complex - model

Light harvesting complex - model

Inhomogenity inhibits the energy transfer

Light harvesting complex - model

Environment helps fulfilling resonance condition

Vibrationally assisted energy transport

Full Hamiltonian

Even for small phonon excitation and few ions becomes high dimensional Hilbert space

$$H_{\text{eff}}/\hbar = \sum_{i,j} \frac{J_{ij}}{2} \left(\sigma_i^+ \sigma_j^- + \sigma_i^- \sigma_j^+ \right)$$
$$+ \sum_{i,j} \frac{K_{ij}}{2} \sigma_i^z \left(a_i + a_i^\dagger \right)$$
$$+ \sum_i \frac{\Delta_i}{2} \sigma_i^z + \sum_i \nu_i a_i^\dagger a_i$$

Minimal system – two ions

Measurement sequence

Result

Gorman *et al*., PRX**8**, 011038 (2018)

Result

Gorman *et al*., PRX**8**, 011038 (2018)

Result Temperature reduced from <n>=5 to <n>=0.5

Related work with SC: Potočnik *et al.*, Nat. Comm **9**, 904 (2018)

Gorman *et al*., PRX**8**, 011038 (2018)

Quantum thermodynamics with ions

- Quantum thermodynamics introduction
- Heat transport
- Phase transitions
- Fluctuation theorem
- Single ion refrigerator
- Heat engines
- Outlook

Structural phase transition & defect formation

Germany before phase transition

Germany after the structural phase transition

1D, 2D, 3D ion crystals

- Depends on $\alpha = (\omega_{ax}/\omega_{rad})^2$
- Depends on the number of ions a_{crit} = cN^β

Wineland et al., J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998)

Enzer et al., PRL85, 2466 (2000)

- Generate a planar Zig-Zag when $v_{ax} < v_{rad}^y < < v_{rad}^x$
- Tune radial frequencies in y and x direction

2D

Structural phase transition in ion crystal

U_{Coulomb}

$$H = \sum_{i,\mu} \left(\frac{p_{i\mu}^2}{2m} + \frac{1}{2} m \omega_{\mu}^2 r_{i\mu}^2 \right) + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{4\pi\varepsilon_0} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$

U_{pot,harm.}

$$H \approx H_0 = \hbar \omega_z \sum_n \sqrt{\gamma_n^x} a_n^{\dagger} a_n + \sqrt{\gamma_n^y} b_n^{\dagger} b_n + \sqrt{\lambda_n^z} c_n^{\dagger} c_n$$

Phase transition @ CP:

- One mode frequency $\rightarrow 0$
- Large non-harmonic contributions

 $\mathsf{E}_{\mathsf{kin}}$

- coupled Eigen-functions
- Eigen-vectors reorder to generate new structures

Universal principles of defect formation

Kibble (1976)

- symmetry breaking at a second order phase transitions such that topological defects form
- may explain formation of cosmic strings or domain walls

Zurek (1985)

- Sudden quench though the critical point leads to defect formation
- experiments in solid state phys. may test theory of universal scaling

Morigi, Retzger, Plenio (2010)

 Proposal for KZ study in trapped ions crystals

Kibble, Journal of Physics A 9, 1387 (1976) Kibble, Physics Reports 67, 183 (1980)

Zurek, Nature 317, 505 (1985), DelCampo, Zurek arXiv:1310.1600, Nikoghosyan, Nigmatullin, Plenio, arXiv:1311.1543

Structural configuration change in ion crystals

Zigzag

Zagzig

Structural configuration change in ion crystals

Universal principles of defect formation

- System response time, thus information transfer, slows down
- At some moment, the system becomes non-adiabatic and freezes
- Relaxation time diverges / increases

Molecular dynamics simulations

Experimental setup and parameters

Trap with 11 segments

Controlled by FPGA and arbitray waveform gen.

 $\omega/2\pi = 1.4$ MHz (rad.), rad. anisotropy tuned to 100 +3..5% $\omega/2\pi = 160 - 250$ kHz (ax.)

Laser cooling / CCD observation

Molecular dynamics simulations

Experimental test of the β =8/3 power law scaling

Experimental test of the β =8/3 power law scaling

Table 1. Experimental results on the topological defect formation in ion Coulomb crystals.^{13–15} Data was fitted to a power-law in the quench rate τ_Q of the form $n \propto \tau_Q^{-\alpha}$.

Group	Number of ions	Kink number	Fitted exponent α
Mainz University ¹⁴	16	$\{0,1\}$	2.68 ± 0.06
PTB^{15}	29 ± 2	$\{0,1\}$	2.7 ± 0.3
Simon Fraser University ¹³	42 ± 1	$\{0,1\}$	2.1 - 3.1
0.05 Offset kink formation		Ulm et al, Na	at. Com. 4, 2290 (201:
J. Mod. Phys. A 29, 30018 (2014)	Pyka et al, N Ejtemaee, P	lat. Com. 4, 2291 (20 RA 87, 051401 (2013)	
	10 10 25		
4 5 6 7	8 9 10 (dω _{ax} /dt) _{cp} (10 ⁷ /s	20 5 ²)	30

Experimental testing of fluctuation theorem at the quantum limit

Jarzynski, PRL 78, 2690 (1997) Crooks, PRE 60, 2721 (1999)

> Liphardt, et al., Sci. 296 (2002) 1832

Huber et al., PRL **101**, 070403 (2008)

- Work distribution measured with RNA
- Proposal for a test of Jarzynski equ. with a single ion
- Experimental realization work distribution measued

An et al., Nat. Phys.11, 193 (2015)

Kihwan Kim

Single molecule streching

Liphardt, et al., Sci. 296 (2002) 1832

Single molecule streching

Attach RNA to glass bead of laser tweezer unfold/refold single RNA molecule

Crooks fluctuation theorem:

$$\frac{P(-W)}{P(+W)} = \exp^{-W/k_B T}$$

Verify Crooks fluctuation theorem experimentally

Crooks, Phys. Rev. E 60(1999) 2721 Liphardt, et al., Sci. 296 (2002) 1832

quantum Jarzynski equality

 $\Delta F = -k_B T \ln \langle e^{-W/k_B T} \rangle$

 $\langle e^{-W/k_BT} \rangle = \int dW e^{-W/k_BT} P(W)$

Jarzynski, Phys. Rev. Lett. 78 (1997) 2690

free energy difference

average exponented work

Non-equilibrium phonon States in a Paul trap

quantum work probabilty

Proposed exp. Scheme:

- Start with thermal state n=0... ~ 10
- 2) Determine E⁰
- 3) Act (non-adiabatically)

on trap potential

4) Determine E^t

Non-equilibrium phonon states

Work probability distribution

$$P(W) = \sum_{m,n} \delta[W - (E_m^{\tau} - E_n^{0})] P_{m,n}^{\tau} P_n^{0}$$

Provide Work – Displacement Operation

σ_x Dependent Displacement Operation

P. C. Haljan et al., Phys. Rev. Lett. 94, 153602 (2005).

P. J. Lee et al., Journal of Optics B 7, S371 (2005).

$$H_{bsb} = \frac{\eta\Omega}{2} \left(a^{\Box}\sigma^{+} + a\sigma^{-} \right)$$
$$H_{rsb} = \frac{\eta\Omega}{2} \left(a^{\Box}\sigma^{-} + a\sigma^{+} \right)$$

$$H_{bsb} + H_{rsb} = \frac{\eta \Omega}{2} (a^{\Box} + a) \sigma_x$$

Pure Displacement Operation

Final State Measurements – Fitting Methods

Final State Measurements – Intermediate Work

Final State Measurements – Intermediate Work

Proposals for engines

Maser Scovil et al, PRL 2, 262 (1959)

Three Level System Geva et al., J Chem Phys (1996)

Quantum Thermodynamics

Gemmer et al, Springer, Lect Notes 784 (2009),

opto-Mechanical

(2014)

Zhang et al., PRL 112, 150602

Quantum dot Esposito et al., PRE 81, 041106 (2010)

Heat engines

- single-ion **Otto heat** engine classical operation
- **autonomous** heat engine study phase stability
- absorption refrigerator
- **spin-driven** heat engine in the quantum regime quantum motion
- *future*: multi-ion crystal **quantum heat** engine

Classical heat engines

heat

RESERVOIR

hot

PISTON

SYSTEM

Heat

Engine

mechanical

work

heat

James Watt (1783): $\eta \cong 5 - 7\%$ Modern power plats: $\eta \cong 30\%$

RESERVOIR

cold

James Watt

Sadi Carnot

$$\eta = \frac{\text{Work produced}}{\text{Heat absorbed}} = \frac{W}{Q_H} \le 1 - \frac{T_C}{T_H} = 1 - \frac{\beta_H}{\beta_C}$$

Single ion heat engine

J. Roßnagel, et al. "A single-atom heat engine", Sci. 352, 325 (2016)

selected as one of the top ten breakthroughs in physics in the year 2016 by IOP Physics World

The working principle – single ion HE

To reach reach large axial amplitudes of movement

- strong radial confinement
- weak axial confinement

Setting the reservoir temperature by radial excitation and cooling

Stroboscopic motion measurements

Princeton Instruments ICCD:

- 8 ns gate time
- 10 MHz frame reate

Working principle and results

 $P = 3.4 \times 10^{-22} \text{ J/s}$

 $\eta = 0.28\%$

J. Roßnagel, et al. "A single-atom heat engine", Sci. 352, 325 (2016)

Heat engine efficiency

Stability of autonomous machine

Selected for a Viewpoint in Physics PHYSICAL REVIEW X 7, 031022 (2017)

Autonomous Quantum Clocks: Does Thermodynamics Limit Our Ability to Measure Time?

Paul Erker, 12 Mark T. Mitchison, 34 Ralph Silva, 5 Mischa P. Woods, 67 Nicolas Brunner, 5 and Marcus Huber8

Prediction:

Accuracy of ticking increases with heat consumption and with entropy production

Our system – the phonon laser

- Blue- and red-detuned beams near dipole transition can lead to autonomous harmonic motion
- Damping and excitation balance during each motional cycle
- Beams are in resonance with trapped ion at separate times: 2ω periodicity in photon emission rates

First demonstration by Udem group MPQ Munich: K. Vahala et al., Nat. Phys. **5**, 682 (2009)

Stable operating point

Phase stability

Recoils occur at velocity return points: Inherent phase stability!

Refrigerator

Dzmitry Matsukevich

Refrigerator: cools cold bath by work

Absorption Refrigerator: Driven by heat instead of work

via **trilinear** Hamiltonian $\hat{H} = \hbar \xi (\hat{a}_h^{\dagger} \hat{a}_w \hat{a}_c + \hat{a}_h \hat{a}_w^{\dagger} \hat{a}_c^{\dagger})$ Dzmitry **Matsukevich** HOT $\omega_h = \omega_w + \omega_c$ $\omega_h = \sqrt{29/5}\omega_z$ COLD WORK $\omega_w = \sqrt{\omega_z^2 - \omega_x^2}$ $\omega_{w} = \sqrt{\omega_{x}^{2} - 12\omega_{z}^{2}/5}$

Refrigerator with trapped ions

Harmonic oscillators interacting

Maslennikov et al. Nat. Comm. 10, 202 (2019)

Equilibrium

Fridge operation

The higher the work mode phonon number, the colder the cold mode

Maslennikov et al. Nat. Comm. 10, 202 (2019)

Spin driven heat engine in the quantum limit

"A spin heat engine coupled to a harmonicoscillator flywheel", Phys. Rev. Lett. 2019 in press, arXiv:1808.02390

Heat-Engine Operation in the Quantum Regime

Generic heat engine	Implementation with a trapped ⁴⁰ Ca ⁺ ion
Working medium	Spin of the valence electron: $ \uparrow\rangle$, $ \downarrow\rangle$
Thermal baths	Controlling the spin by optical pumping
Gearing mechanism	Spin-dependent optical dipole force
Storage for delivered work	Axial oscillation: $ 0\rangle$, $ 1\rangle$, $ 2\rangle$,

Spins Thermodynamics

Controlling the Spins Thermodynamics

Function	Cooling	Heating
Polarisation	circular	linear
Duration	180 ns	130 ns
Excitation (p_{\uparrow})	0.13	0.30
Temperature	0.4 mK	0.7 mK
Period (= axial oscillation)		740 ns

Heat-Engine Operation

Lindenfels et al., PRL (2019), arXiv 1808.02390

Schmiegelow et al., PRL 116, 033002 (2016)

Single-ion operation

Single-ion operation and analysis

- Red SB excitation: all motiotal state, except |n=0> transferred to ↑
- Measurement of Q-function:

$$\mathcal{Q}(\alpha, \alpha^*) = \frac{1}{\pi} \langle 0 | \hat{D}^{\dagger}(\alpha) \hat{\rho} \hat{D}(\alpha) | 0 \rangle$$

Lv, et al, Phys. Rev. A 95, 043813 (2017)

Measured Qfunction

- starting from |n=0>
- Q-funct. modelled as dispaced (β) squeezed (ζ) thermal (\bar{n}) distribution

Analysis of the heat engine function

- Reconstruct a density matrix from experimentally determined set {β,ζ,n}
- Determine work E
- Determine HE-ergotropy W

$$\mathcal{W} = \hbar \omega_t |\beta|^2 + \hbar \omega_t \sinh^2(|\zeta|)(2\bar{n}+1)$$
$$E = \mathcal{W} + \hbar \omega_t \bar{n}.$$

- Determine relative energy fluctuations ∆E/E
- Thermal and spin-projection noise contributions

Lindenfels et al., PRL (2019), arXiv 1808.02390

experimental / theory heat engine collaboration

David von Lindenfels*

Wagner

Christian Schmiegelow (Buenos Aires)

Ulrich Poschinger

FSK

Mark Mitchison

John Goold

Trinity College Dublin Coláiste na Tríopóide, Baile Átha Cliath The University of Dublin

Future plans

Realize and analyze engine with full quantum control over working fluid and reservoirs

Goals:

- Investigate the role of multi-particle quantum entanglement in heat engines
- Study close connection between quantum error correction, quantum computing and heat engines