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Rewrite it in terms of complex amplitudes a1, a⇤1, a2, a
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Show that within thee rotating frame approximation (RWA) this Hamiltonian reads
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Show that unlike the original Hamiltonian the Hamiltonian in the rotating frame has

two conservation laws: energy and the number of phonons: n = a⇤1a1 + a⇤2a2 and

thus can not lead to the chaotic motion. In the exercise below we will see that this

conservation law persist in the higher (in fact in all) orders of the high frequency

expansion. Repeat this exercise for the quantum Hamiltonian, pay attention to the

ordering of operators.

2. Consider a system of weakly coupled weakly nonlinear harmonic oscillators on a square

lattice of arbitrary dimension such that:

H =

X

j

p2
j

2m
+

m!2x2
j

2
+

✏x4
j

4
+

m!2

2

X

hiji

(xi � xj)
2, (3)

where hiji stands for the nearest neighbors,  is the coupling between the oscillators

and ✏ is nonlinearity. Both  and ✏ are assumed to be small.

Show that in the rotating wave approximation with respect to the bare frequency !

the Hamiltonian becomes

Hrot =

X

j

!(1 + ⇣)|aj|2 +
3✏

8m2!2
|aj|4 � 

!

2

X

hiji

(a⇤
i
aj + a⇤

j
ai), (4)



2

where ⇣ is the coordination number (e.g. for a two-dimensional square lattice ⇣ = 4).

Show that this Hamiltonian in turn leads to the following (discrete) Gross-Pitaevski

equations of motion:
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where Oj stands for the set of ⇣ nearest neighbor sites of the site j. These Gross-

Pitaveski equations, for example, describe weakly interacting superfluid gases in optical

lattices.

Show that sending the discretization step to zero, which is equivalent to considering

smooth spatial modulations of the bosonic variables and replacing aj ! a(~x) leads to

the continuous Gross-Pitaveski equations:
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where  e↵ectively sets the (inverse) of the particle’s mass and the nonlinearity ✏ > 0 is

equivalent to the repulsive density-density interaction coupling between the particles.

3. Consider the following Hamiltonian describing a one-dimensional nonlinear oscillator:
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Show that in the rotating frame it reads
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Using the Magnus and Van Vleck expansions find the leading order correction beyond

RWA to the Hamiltonian and to the Kick operator.

The same correction can be found using the method introduced by P. Kapitza based

on separating fast and slow variables. Namely in the equations of motion for ã and ã⇤

assume that the solution can be written in the form

ã(t) = ã0(t) + ✏(b1(t)e
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where ã0(t), b1(t), b2(t) and b3(t) are slowly (on the scale of 1/!) varying fields. Plug

this expansion into the eqations of motion and separately equate oscillating and non-

oscillating parts to the leading order in ✏. From equating oscillating parts you should
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Plug this solution to the non-oscillating part of the equation for ã0 and collect terms

up to the order ✏2. You should obtain
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dã0
dt

⇡ 3✏

4m2!2
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Show that in turn this equation can be interpreted as a Hamiltonian equation of motion
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Compare your e↵ective Hamiltonian with the one obtained by Magnus and Van Vleck

expansions.

4. Show that the terms appearing in the van Vleck expansion of the Floquet Hamiltonian:
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is explicitly invariant under the choice of the beginning of the period t0 both in the

lab and in the rotating frames. For the rotating frame transformation assume that

� = ⌦ + ✏, where ✏ is a small detuning. Hint first argue that shifting the period

t0 ! t0 + �t0 is equivalent to shifting phases in the Fourier components Ĥl of the

driven Hamiltonian. Then show what the van Vleck expansion is invariant under such

phase shifts.

5. The Hamiltonian describing the Quantum Kapitza pendulum reads
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By shifting the momentum ( a standard transformation in electromagnetism) this

Hamiltonian can be rewritten as
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Rewrite this Hamiltonian in the rotating frame set by the unitary

Ur(t) = e
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Show that the Hamiltonian in the rotating frame becomes.
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where {·, ·}+ denotes the anti-commutator.

From this expression find the infinite frequency Floquet Hamiltonian
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which is the celebrated result by P. Kapitza and find the leading 1/⌦ correction using

both Magnus and van Vleck expansions. Find the leading correction to the Kick

operators.


