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Classical Hamiltonian Dynamics in a moving frame 

Lab frame: need to deal with a 
time dependent potential (hard) 

Easier way: go to the moving frame (Galilean transformation):  

Rotating frame 

Moving frame in general: time-dependent canonical transformation 



Gauge potentials as generators of canonical transformations. 

Moving Hamiltonian 

Translations 

Equations of motion in a moving frame 



Quantum Systems 

Need to solve a time dependent Schrodinger equation (hard) 

Do a time-dependent unitary transformation (= basis rotation) 

Plug in to the Schrodinger equation 



Special frame: the one which diagonalizes H 

All dynamics: transitions, dissipation, inertia, Lorentz-Coriolis 
forces is encoded in the adiabatic gauge potential.  
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Recover a standard transformation to the rotating frame. Can 
recover leading non-adiabatic effects from ordinary (adiabatic) 
perturbation theory. 



Adiabatic transformations in quantum systems 

is the gauge potential - generator of adiabatic rotations, also connection 

Combine: 

A generalization of the Wilson-Wegner flow equation 

Classical limit Generator of canonical transformations 
“diagonalizing”=preserving trajectories 
of a classical Hamiltonian 



Hellmann-Feynman theorem (first order perturbation theory) 

Gauge potentials define adiabatic evolution of eigenstates 

Adiabatic gauge potential has a problem of small denominators. 

Chaotic systems  
– ETH (RMT) 
In chaotic systems the gauge potential does not exists as a smooth 
differentiable operator. Classical chaotic systems: C. Jarzynski (1995). 
Corollary: existence of the gauge potential implies integrability. 

Three equivalent definitions; set  



Existence of the gauge potential (i.e. the problem of existence of adiabatic 
limit) is equivalent to absence of (exponential) operator growth (e.g. V. 
Khemani, A. Vishwanath, D. A. Huse). 
 
Equivalently locality of adiabatic transformations is tied to the locality of 
the perturbation         in the rotating frame (interaction picture). 



One slide detour: gauge potentials and quantum (information) geometry. 

Berry curvature. Defines the effective magnetic field 

Hall response, topological invariants, Coriolis forces, Lorentz forces,… 

Metric tensor. Defines the Riemannian 
metric structure, the fidelity susceptibility, 
the quantum Fisher information.  



Counter-diabatic driiving. 
(M. Demirplak, S. A. Rice (2003), M. Berry (2009), S. Deffner, A. Del Campo, C. Jarzynski,.. 
(2010+), vast literature in NMR, fast-forward technique,…). 

Moving frame Hamiltonian 

Idea: introduce counter-diabatic (CD) term 
Suppress transitions, fast adiabatic 
state preparation, suppress dissipation.  

No CD term CD term 
A waiter implementing a CD driving protocol to avoid food spillage  



Rotate around x-axis to eliminate y-field  

Landau Zener Problem (= rotating magnetic field) 

Can redefine time to remove overall prefactor 



Can generate many FF protocols (glassy landscape) 

5 10 15 20 t′

-10

-5

5

10
hx(t')

1 2 3 4 5 6 t′

-10

-5

5

10
hx(t')

0.5 1.0 1.5 t′

-10

-5

5

10
hx(t')

Approach QSL for any trial protocol 



Floquet Realization of the FF protocol 

Can engineer y-field, by shaking x 
and z fields  

In the leading order of thee inverse frequency expansion 

Can use the Floquet engineering to recreate the CD 
Hamiltonian without introducing new controls.   



Performance of different protocols 

Noise dependence 

Floquet protocol offers stability 
with respect to noise. 

NV center realization 

(E. Boyers, …, A. Sushkov,  
PRA 2019) 



Need to solve 

Finding Gauge potentials 

Finding the gauge potential is equivalent to the minimization problem  

Can develop a variational procedure for finding gauge potentials (D. Sels, 
A.P., PNAS 2016). 

Can use this result to devise a variational procedure to find an 
approximate (local) gauge potential.  



Result of the minimization: solution of the Laplace equation 

Example: quantum jumper of fighting the Anderson 
Orthogonality Catastrophy (semi-open system)  

Fermi Sea 

Exact gauge potential will contain arbitrary range hoping terms 
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Like with a waiter: doable but difficult. Can map to FF protocol using the 
Peierls transformation.  



Perform a phase (Peierls) transformation:  

Small velocity: potential renormalization (slowing particles in front) 

Large velocity: need to locally renormalize hopping = local time 
rescaling or the local refraction index (creating a kind of black hole) 
 
Can use Floquet engineering to design complex hopping 

The imaginary CD protocol is only sensitive to velocity. Real FF protocol 
also knows about acceleration   



Snapshots of an effective potential and tunneling in FF protocol 
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VeffPotential profiles: 

Tunneling profile 
(less sensitive to time).  
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Numerics: half filling, 512 sites  

6

the evolution) [24, 25] showing that such estimates can
be completely overcome by the CD driving. Notice that
while the imaginary CD protocol (solid purple line) keeps
instantaneous fidelity high at all times, for the real pro-
tocol, exactly like in the waiter case, he instantaneous
fidelity at intermediate times drops to a very small value.
High fidelity is only recovered at the end of the protocol,
where the velocity �̇ becomes close to zero.

Fighting dissipation: moving an obstacle. As a final
non interacting example let us discuss moving the Eckart
potential:

Vj(�) =
V0

cosh2(j � �)/⇠
,

where the center of the potential � moves from the ini-
tial value �0 = �100 to the final value �f = 100 again
according to the protocol (14) with V0 = 2, ⇠ = 8 at half
filling and the total system size L = 1024. In the case
of the weak potential the second term in Eq. (10) can
be neglected and we find a very simple analytic solution
for the imaginary hopping amplitude ↵j ⇡ �Vj/(3J). In-
terestingly enough this solution gives very good results
even away from the perturbatuve regime, presumably be-
cause the CD drive has the strongest e↵ect in the regions
with small potential Vj where the electron density is not
suppressed. The rest of the analysis is identical to the
previous example. In Fig. 4 we show electron density as
a function of time. The right panel shows the instan-
taneous ground state density, which simply tracks the
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Figure 3. Inserting local potential. The probability to
be in the adiabatic ground state when inserting a scattering
potential quickly decays to a small value for the naive protocol
(dashed red line). By counter diabatic driving with a local
complex gauge, the state stays much closer to the ground
state and a final fidelity of about 1/2 is reached (full purple
line). A gauge equivalent real Hamiltonian, with renormalized
hopping and potential, results in the same final fidelty but is
almost orthogonal to the ground state at intermediate times
(full blue line).

position of the potential. The second panel shows the
density of the naive protocol. We can clearly see the ex-
cess density in front of the potential and the depleted
density region behind the potential as expected. For the
parameters shown the final fidelity of the naive protocol
is PGS(T ) ⇡ 5·10�128. The right panel shows the fermion
density for the CD protocol given by (11). This protocol
visibly shows much fewer excitations and consequently
much smaller energy dissipation and much higher fidelity
PGS(T ) ⇡ 4·10�5 (gaining over 120 orders in magnitude).
As in the previous example achieving so high fidelity is
simply unthinkable for such large system sizes and such
fast rates. In the supplementary information we simi-
larly analyze excess energy (heating) generated during
naive and CD protocols and show that CD protocols also
strongly suppress dissipation in the system.

One-dimensional spin chain

In the previous examples we focused on free-particle
systems. We argued that because we break translational
symmetry the problems of adiabatic manipulations in
those systems are far from trivial. Let us briefly demon-
strate here that the ideas developed in this work apply
equally well to the interacting systems. Specifically we
will consider a transverse field Ising spin chain in the
presence of the longitudinal field, which is one of the
simplest non-integrable models with very rich phase di-
agram (see e.g. Refs. [26, 27]). The Hamiltonian of this
system reads

H0 = �J
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j
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x
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where �
z
j and �

x
j are the Pauli matrices. We allow all

couplings to depend on some tuning parameter �, which
in turn depends on time. It is easy to show (see the
supplementary information) that the simplest gauge po-
tential, which has to be pure imaginary, is the magnetic
field along the y-direction:

A⇤
� = ↵

X

j

�
y
j , (17)
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1
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hxh
0
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0
x

h2
z + h2

x + 2J2
,

where prime stands for derivative with respect to �. For
J = 0 this gauge potential is exact as it is simply a gen-
erator of spin-rotations in x�z plane. However for finite
J this potential is only approximate. Analogous to the
free fermion problem, one can always remove the mag-
netic field in the y-direction by doing a virtual rotation
around the z-axis, resulting in a Hamiltonian that’s of

Create a very efficient quantum jumper.  
Beat Anderson Orthogonality Catastrophe.  

FF 

CD 

Simple 



Go back to the operator expansion picture 

Baker Campbell Housdorff formula: 

Even order commutators define the generalized forces Mλ, odd order commutators 
define the gauge potential. Final ansatz (related ideas M. Hastings 2010) 

Very few variational parameters. This ansatz reproduces exact gauge potential in 
all solvable cases. Can be used both to prepare the states and study geometry. 
Regularizes the locator expansion. 



Exact gauge potential Variational gauge potential  

We are finding best polynomial expansion of the function 1/x. The 
expansion is almost insensitive to the actual matrix elements 

High frequencies – 
small matrix element, 
small frequency –
expansion order. 
 
Do not really need the 
variational principle. 



Can work in TD limit. 
 
Pretty fast convergence, at 
least initially. 
 
Easy way to find slowest 
operators adiabatically 
connected to the 
magnetization.  



Two general approaches to realize CD driving in the original control space  

1. Fast forward driving. Find unitary R 

belongs to the control space 

If rotations are local then 
evolutions follows eigenstates of 
a local (rotated) Hamiltonian. 

No known general method of constructing R. Most 
implementations rely on the optimal control. 



2. Floquet engineering. 

Exploit the fact that Magnus expansion of the Floquet 
Hamiltonian is very similar to the gauge potential expansion.  

Floquet construction is not unique. Here is one possibility 

High frequency limit (like a Kapitza pendulum) 



A	two	qubit	gate	
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A two Qubit gate 
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Dissipation by a magnetic tweezer  



CD driving of open systems: engineering fast dissipative thermalization  

Drive an oscillator through a resonance with an 
optical phonon bath. Slow limit – isothermal 
process.  



Open systems: adiabatic process for the system + bath = 
isothermal process for the system 

The bath Hamiltonian does not 
depend on λ, therefore 

The condition for adiabaticity assuming 
the system and the bath are decoupled at 
the protocol boundaries 

Energy conservation (first law) 

Combine and find: 

Adiabatic work =minimal work, i.e. the free energy change.   



Simpler two oscillator problem.  

Very easy to find the gauge potential and the CD protocol 

Requires coupling to the bath momentum. Singular near the resonance in 
the weak coupling limit. 

The problem simplifies under the rotating wave - phonon number conserving - 
approximation (RWA) 

Equivalent to the LZ (spin ½) problem if interpret aS and aB as Schwinger 
bosons. Can easily design FF protocol. 



Beyond RWA: hard problem. Do a series of canonical (unitary) 
transformations eliminating unwanted couplings one by one. 
Similar to a Rubik’s cube problem; no unique solution, but finding 
a solution still hard.  

are complicated local functionals of    

Use the Floquet engineering (shaking of C’) to get the desired K’(t) 
 
Slightly different constraints: can not modulate bath degrees of freedom. 



Different constraints: can not access bath. Can develop Floquet 
fast-forward protocol with some efforts   

CD protocol only works when  
The Markovian (Lindblad) 
 approach is not applicable. 
 
It relies on coherence of the 
bath during the heat 
exchange. 

Performance of the isothermal cooling 



Can design fast (Quantum) heat engines operating near the Carnot efficiency 



Power and efficiency of the Otto engine 

Ideal power and 
efficiency 



Summary 
•  Close connections between adiabatic transformations and quantum 

information geometry, Schrieffer-Wolff transformations, slow operators, 
chaos and integrability and many more. 

 

•  Can use Floquet engineering to design efficient CD protocols for high 
fidelity state preparation and suppressing dissipation in generic many-
body systems. 

•  Can use this construction in open systems to extract heat, perform a 
minimal work if protocol times are faster than bath relaxation times, i.e. 
beyond Lindblad/Markov approximations. 


