Periodic driving of e/3 and e/5 Anyons in the FQHE Regime

D. Christian Glattli

Motivation

PERIODIC DRIVING of a mesoscopic conductor

- Brings new information on electron time-scales: quantum inductance ~ $(h/e^2)\tau$, quantum capacitance ~ $(e^2/h)\tau$, charge relaxation (or Büttiker's) resistance $h/2e^2$
- Can provide interesting comparison between quantum systems and cycle-operated thermodynamic engines ٠
- be simply described by the photo-absorption (i.e., For voltage pulses on a contact V(t)=V_{dc} +V_{ac}(t): $p_l = \frac{1}{T} \int_0^T dt \ e^{-i\phi(t)} \ e^{il2\pi vt}$ Energy Can be simply described by the photo-absorption (I>0) or emission (I<0) Floquet probability $P_1 = |p_1|^2$ ٠ (D) $\rightarrow \varepsilon + 2hv$ eV_{dc}= hv E_{F} $O^{P.A.}(V_{dc}) = P_0 O_{DC}(V_{dc}) + P_1 O_{DC}(V_{dc} + hv/q) + P_{-1} O_{DC}(V_{dc} - hv/q) +$ $\varepsilon - 2hv$ $+ P_2 O_{DC} (V_{dc} + 2hv/q) + \dots$ $\Delta I(t)$ V(t) O: current, heat, current noise, heat noise,
- An interesting regime is when the A.C. voltage amplitude is small, typically $eV_{ac} \sim hv \rightarrow dv$ single-electron transport

Current

$$I(t) = v_F \left| \psi(t) \right|^2$$

Heat current

$$I^{Q}(t) = v_{F} \hbar \operatorname{Im}\left[\frac{d\psi(t)^{*}}{dt}\psi(t)\right]$$

M. Moskalets, G. Haack - physica status solidi (b), (2017) M.F. Ludovico, J. S. Lim, M. Moskalets, L. Arrachea, D. Sanchez (2014)

coherent single electron sources

- simple: voltage pulse on a contact
- Lorentzian pulses create **minimal excitation states** (levitons)
- time resolved (no quantum jitter)
- long lifetime
- Minimal heat production: Dashti, Misiorny, Kheradsoud, Samuelsson, and Splettstoesser, PRB 100, 035405 (2019)

) Levitov, Lee,Lesovik, J. Math. Phys.(1996) Keeling, Klich and Levitov PRL 97, 116403 (2006)

Periodic single electron sources

Periodic electron injection is well described by Photo-Assisted process

NEW Quantum physics with on-demand electrons

(many particle HOM experiments open a new field of quantum investigations)

NEW Quantum physics with on-demand electrons

Wigner Function of (periodic) levitons

This TALK:

- First step to realize a single anyon source
- Shows that FQHE abelian anyons with charge e*=e/3 and e/5 can be manipulated with microwave by well-defined Photon-Assisted processes.
- Validates the possibility to realize on-demand single anyon sources for time domain anyon braiding.
- Based on Photon-Assisted Shot Noise (PASN) measurements
- Photon-Assisted process revealed by the anyonic Josephson relation $e^*V/h=f$ (X. G. Wen (1991))

Anyons

$$\left|\psi(a,b)\right\rangle = e^{i\theta_{s}}\left|\psi(b,a)\right\rangle$$

(Leynaas+Mirrheim 1977, Wilczek 1982)

expected for Fractional Quantum Hall effect (FQHE) quasiparticles (Arovas, Schrieffer, Wilczek 1984)

<u>Example</u>: for filling factor v = 1/3 (= 1 electron/3 quantum states)

a quasi-hole particle has a charge $e^{*}=-e/3$ (Laughlin 1983)

$$\Psi^{2-holes}(z_a, z_b) = \exp\left(i\frac{\pi}{3}\right)\Psi^{2-holes}(z_b, z_a)$$
Berry phase

Anyons

To date: no convincing experimental observation of anyons

BRAIDING

Our approach: Hong Ou Mandel Braiding Interference

Hong, Ou, & Mandel (1987)

Hong Ou Mandel Braiding Interference

$$P(1,2) = (1 - g_2(\tau) \cos\theta_S)/2$$

Hong Ou Mandel Braiding Interference

OUTLINE

- EDGE STATE and DC SHOT NOISE in FQHE
- PHOTON-ASSISTED TRANSPORT
 - Photon-assisted processes
 - A JOSEPHSON Relation for Photon Assisted Shot Noise (PASN)
- Experimental Results
 - e*=e/3
 - e*=e/5
- CONCLUSION and PERSPECTIVES

QHE and EDGE STATES

Integer Quantum Hall Effect (IQHE)

 $R_{hall} = (h/e^2)1/v \quad v = 1, 2, 3, ...$

$$R_{Hall} = \frac{B}{e n_s} = \frac{h}{e^2} \frac{1}{(\nu = k)}$$

QHE and EDGE STATES

cyclotron motion drift \rightarrow chiral 1D EDGE CHANNELS

 $R_{hall} = (h/e^2)1/v \quad v=1,2,3,...$

Fractional Quantum Hall Effect (FQHE)

Tunneling through a v=2/5 Jain FQHE state

J. K. Jain Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199-202 (1989)

OUTLINE

- EDGE STATE and DC SHOT NOISE in FQHE
- PHOTON-ASSISTED TRANSPORT
 - Photon-assisted processes
 - A JOSEPHSON Relation for Photon Assisted Shot Noise (PASN)
- Experimental Results
 - e*=e/3
 - e*=e/5
- CONCLUSION and PERSPECTIVES

DC SHOT NOISE (weak coupling)

Photon-Assisted Shot Noise (PASN)

 P_l : probability to absorb (emit) l > 0 (<0) Photons

Photon-Assisted Shot Noise (PASN)

 $V(t)=V_{dc} + V_{ac}\cos(2\pi f t)$ P_l : probability to absorb (emit) l > 0 (<0) Photons

Experimental Set-up and samples

Samples: $n_s = 1.07 \ 10^{11} \ cm^{-2} \ \mu = 3 \ 10^6 \ cm^2 V^{-1} s^{-1}$ (from I. Farrer, D. Ritchie, Cambridge UK)

Experimental Set-up and samples

Helium-free Cryoconcept® crysostat

14 Tesla Dry Magnet**13mK** base temperature

DC Shot noise for the 1/3-FQHE state

Photon-Assisted Shot Noise for the 1/3-FQHE state

Photon-Assisted Shot Noise for the 1/3-FQHE state

Photon-Assisted Shot Noise for the 1/3-FQHE state

f=22GHz

Killing the non photon-assisted part !

Excess PASN:

$$\Delta S_{I} = S_{I}^{PASN}(V_{dc}) - P_{0} S_{I}^{DC}(V_{dc})$$

= $P_{1} \left[S_{I}^{DC}(V_{dc} - hf / e^{*}) + S_{I}^{DC}(V_{dc} + hf / e^{*}) \right]$

Finding a flat variation for the low $|V_{dc}|$ range provides a determination of P_0

Killing the non photon-assisted part !

Excess PASN:

$$\Delta S_{I} = S_{I}^{PASN}(V_{dc}) - P_{0} S_{I}^{DC}(V_{dc})$$

= $P_{1} \left[S_{I}^{DC}(V_{dc} - hf / e^{*}) + S_{I}^{DC}(V_{dc} + hf / e^{*}) \right]$

Finding a flat variation for the low $|V_{dc}|$ range provides a determination of $|p_0|^2$

as: $P_0 + 2 P_1 \approx 1$, this gives P_1

Killing the non photon-assisted part !

Excess PASN:

$$\Delta S_{I} = S_{I}^{PASN}(V_{dc}) - P_{0} S_{I}^{DC}(V_{dc})$$

= $P_{1} \left[S_{I}^{DC}(V_{dc} - hf / e^{*}) + S_{I}^{DC}(V_{dc} + hf / e^{*}) \right]$

Finding a flat variation for the low $|V_{dc}|$ range provides a determination of $|p_0|^2$

as: $P_0 + 2 P_1 \approx 1$, this gives P_1

---comparison using f_{Josephson}=e*V_{dc}/h with e*=e/3

New Measurement of e* for the 1/3-FQHE State

MEASURING e* from Excess PASN:

 $\Delta S_{I} = S_{I}^{PASN} (V_{dc}) - P_{0} S_{I}^{DC} (V_{dc})$ = $P_{1} \left[S_{I}^{DC} (V_{dc} - hf / e^{*}) + S_{I}^{DC} (V_{dc} + hf / e^{*}) \right]$ M. Kapfer et al. SCIENCE, Vol. 363 pp. 846-849 (2019)

threshold voltage : $V_J = hf/e^*$ scales with frequency!

Best fit of data with e* free parameter

DC Shot noise for the 2/5-FQHE state

$$S_{I}^{DC} = 2e * I_{B} \left[\operatorname{coth} \left(\frac{e * V_{dc}}{2k_{B}T} \right) - \frac{2k_{B}T}{e * V_{dc}} \right] \propto - \langle \Delta I_{B} \Delta I_{t} \rangle$$

e*= e/5 !

confirms Weizmann results (Reznikov 1999) on 2/5

New Measurement of e* for the 2/5-FQHE State

MEASURING e* from Excess PASN:

$$\Delta S_{I} = S_{I}^{PASN}(V_{dc}) - P_{0} S_{I}^{DC}(V_{dc})$$

= $P_{1} \left[S_{I}^{DC}(V_{dc} - hf / e^{*}) + S_{I}^{DC}(V_{dc} + hf / e^{*}) \right]$

threshold voltage : $V_J = hf/e^*$ scales with frequency!

Best fit of data with e* free parameter

M. Kapfer et al. SCIENCE, Vol. 363 pp. 846-849 (2019)

CONCLUSION

- WE HAVE SHOWN the MICROWAVE CONTROL of ANYONS is possible
- NEXT STEP : sine-wave to Lorentzian pulses.
- → TIME RESOLVED STOCHASTIC SOURCE OF ANYONS

See: theory prediction for photo-assisted current noise at v=1/3 J. Rech, D. Ferraro, T. Jonckheere, L. Vannucci, M. Sassetti, and T. Martin, . Phys. Rev. Lett. 118, 076801 (2017)

Also heat noise at at v=1/3

L. Vanucci; F. Ronetti, J. Rech, D. Ferraro, T. Jonckheere, T. Martin, M. Sassetti, PRB 95, 245415 (2017)

PERSPECTIVE : ANYON BRAIDING INTERFERENCE

 $-\langle \Delta I_u \Delta I_d \rangle \propto 1 + g_2(\tau) \cos(\theta_{stat.})$

A DC version can be find in: ``*Current Correlations from a Mesoscopic* Anyon Collider " B. Rosenow, I. P. Levkivskyi, B. I. Halperin, (2016)

CONCLUSION-2

SHOT NOISE combined with Microwave **PHOTONS**

ightarrow 2 ways to determine carrier charge

e/3 and e/5: M. Kapfer et al. SCIENCE, Vol. 363 pp. 846-849 (2019) e/3 finite frequency noise, R. Bisognin et al. Nature Communications (2019)

ACKNOWLEDGEMENTS

X. Waintal

H. Saleur

I Safi

Th. Martin, J. Rech, T. Jonkheere

M. Freedman

All members of Nanoelectronics Group at Saclay

ANR FullyQuantum AAP CE30 UltraFastNano FET Open H2020.

The Josephson Frequency of fractionally charge anyons **M. Kapfer**, P. Roulleau, I. Farrer, D. A. Ritchie, and D. C. Glattli, **SCIENCE**, Vol. 363 pp. 846-849 (2019)

Levitons : J. Dubois et al**, Nature** 502, 659 (2013) T. Jullien et al**., Nature** 514, 603 (2014) OPEN POSITION for 18-24 months Post-doct.

CONCLUSION

- WE HAVE SHOWN the MICROWAVE CONTROL of ANYONS is possible
- NEXT STEP : sine-wave to Lorentzian pulses.
- → TIME RESOLVED STOCHASTIC SOURCE OF ANYONS

Why only charge e levitons in FQHE.

1e⁻ 1e⁻ ...

$$\Delta \phi = \frac{1}{\hbar} \int e^* V(t) dt = 2\pi$$
$$I(t) = e^* \frac{e}{h} V(t)$$

$$\int I(t)dt = e$$

See: also: Jérome Rech's Talk, Wednesday Session 3-C, and J. Rech, D. Ferraro, T. Jonckheere, L. Vannucci, M. Sassetti, and T. Martin, . Phys. Rev. Lett. 118, 076801 (2017)

DC SHOT NOISE: Integer QHE

(X.G. Wen 1995, C. Kane + M. Fisher 1994; Fendley, Ludwig + Saleur (1995))

A Josephson relation for fractionally charged anyons

M. Kapfer¹, P. Roulleau¹, M. Santin¹, I. Farrer², D. A. Ritchie³, D. C. Glattli^{1*}

¹Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris Saclay, CEA Saclay, 91191 Gif sur Yvette cedex, France. ²Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK. ³Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 OHE, UK. *Corresponding author. E-mail: christian.glattli@cea.fr D. C. GLATTLI CEA Saclay

A Josephson relation for fractionally charged anyons

M. Kapfer¹, P. Roulleau¹, M. Santin¹, I. Farrer², D. A. Ritchie³, D. C. Glattli¹

¹Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris Saclay, CEA Saclay, 91191 Gif sur Yvette cedex, France. ²Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3 JD, UK. ³Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK. *Corresponding author. E-mail: christian.glattli@cea.fr

A Josephson relation for fractionally charged anyons

M. Kapfer¹, P. Roulleau¹, M. Santin¹, I. Farrer², D. A. Ritchie³, D. C. Glattli¹

¹Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris Saclay, CEA Saclay, 91191 Gif sur Yvette cedex, France. ²Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3 JD, UK. ³Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK. *Corresponding author. E-mail: christian.glattli@cea.fr

A Josephson relation for fractionally charged anyons

M. Kapfer¹, P. Roulleau¹, M. Santin¹, I. Farrer², D. A. Ritchie³, D. C. Glattli¹

¹Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris Saclay, CEA Saclay, 91191 Gif sur Yvette cedex, France. ²Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3 JD, UK. ³Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK. *Corresponding author. E-mail: christian.glattli@cea.fr

A Josephson relation for fractionally charged anyons

M. Kapfer¹, P. Roulleau¹, M. Santin¹, I. Farrer², D. A. Ritchie³, D. C. Glattli¹

¹Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris Saclay, CEA Saclay, 91191 Gif sur Yvette cedex, France. ²Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S13JD, UK. ³Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 OHE, UK. *Corresponding author. E-mail: christian.glattli@cea.fr

A Josephson relation for fractionally charged anyons

M. Kapfer¹, P. Roulleau¹, M. Santin¹, I. Farrer², D. A. Ritchie³, D. C. Glattli¹

¹Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris Saclay, CEA Saclay, 91191 Gif sur Yvette cedex, France. ²Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3 JD, UK. ³Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 OHE, UK. *Corresponding author. E-mail: christian.glattli@cea.fr

