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Prethermalization & thermalization (theory)

Heavy-ion collisions
J. Berges, Sz. Borsányi, and C. Wetterich, PRL 93, 142002 (2004).

Sudden turn on of interactions in the Hubbard model
M. Moeckel and S. Kehrein, PRL 100, 175702 (2008).
M. Eckstein, M. Kollar, and P. Werner, PRL 103, 056403 (2009). =⇒
M. Kollar, F. A. Wolf, and M. Eckstein, PRB 84, 054304 (2011).

Quenches in weakly interacting spinless fermions models (EOM)
Essler, Kehrein, Manmana, and Robinson, PRB 89, 165104 (2014).
Bertini, Essler, Groha, and Robinson,
PRL 115, 180601 (2015); PRB 94, 245117 (2016). =⇒
Rates ∝ U2

Quenches in weakly interacting models (time-dependent GGEs)
M. Stark and M. Kollar, arXiv:1308.1610.
D’Alessio, Kafri, Polkovnikov, and MR, Adv. Phys. 65, 239 (2016).
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Prethermalization – Quantum Newton’s Cradle (Rb)

2D optical lattices

T. Kinoshita, T. Wenger, and D. S. Weiss,
Nature 440, 900 (2006).

γ =
mg1D

~2ρ

g1D: Interaction strength
ρ: One-dimensional density

If γ � 1 the system is in the strongly
correlated Tonks-Girardeau regime

If γ � 1 the system is in the weakly
interacting regime

Atom chips (Schmiedmayer’s group)

M. Gring et al., Science 337, 1318 (2012).
T. Langen et al., Science 348, 207 (2015).
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Prethermalization & thermalization (QNC Dysprosium)

DT =
√∑

k [n(k)− nG(k)]2

Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, MR, S. Gopalakrishnan, and B. L. Lev,
Phys. Rev. X 8, 021030 (2018).
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Prethermalization & thermalization (QNC Dysprosium)
Approach to thermal predictions:
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General setup and specific model Hamiltonian

We have in mind Hamiltonians of the form: Ĥ = Ĥ0 + gÛ with g � 1

- Ĥ0 (integrable or not) has at least one conserved quantity Q̂, [Ĥ0, Q̂] = 0

- [Û , Q̂] 6= 0⇒ [Ĥ, Q̂] 6= 0

Numerical experiments: Quenches in 1D lattices with hard-core bosons

Ĥ0 =
∑
i

[
−t
(
b̂†i b̂i+1 + H.c.

)
+ V

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)
−t′

(
b̂†i b̂i+2 + H.c.

)
+ V ′

(
n̂i −

1

2

)(
n̂i+2 −

1

2

)]
Conserved quantity: N̂ =

∑
i n̂i, [Ĥ0, N̂ ] = 0

Two perturbations: gαÛα, α = 1, 2, with [Ûα, N̂ ] 6= 0

g1Û1 = g1
∑
i

[
b̂i +

1

2

(
b̂ib̂i+1−b̂

†
i b̂i+1

)
+ H.c.

]
,

g2Û2 = g2
∑
i

(
b̂i +

1

2
b̂ib̂i+1 + H.c.

)
.
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Ĥ0 =
∑
i

[
−t
(
b̂†i b̂i+1 + H.c.

)
+ V

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)
−t′

(
b̂†i b̂i+2 + H.c.

)
+ V ′

(
n̂i −

1

2

)(
n̂i+2 −

1

2

)]
Conserved quantity: N̂ =

∑
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Numerical linked cluster expansions (NLCEs)
Linked-cluster theorem: Extensive observables O per site O in a lattice

O =
∑
c

L(c)×WO(c),

where L(c) is the multiplicity of cluster c (ways per site in which it can be
embedded on the lattice),

and WO(c) is the weight of O in cluster c

WO(c) = O(c)−
∑
s⊂c

WO(s), where O(c) = Tr
{
Ô ρ̂c

}
.

High-temperature expansions (HTEs):
ρ̂GC
c = 1

ZGC
c

exp−β(Ĥc−µN̂c), expand O(c) in powers of β

Numerical linked cluster expansions (NLCEs):
Compute O(c) exactly using full exact diagonalization
MR, T. Bryant, and R. R. P. Singh, PRL 97, 187202 (2006).

NLCEs for quantum quenches:
Diagonal ensemble: ρ̂DE

c ≡ limτ ′→∞
1
τ ′

∫ τ ′
0
dτ ρ̂c(τ) =

∑
αW

c
α |αc〉〈αc|

MR, PRL 112, 170601 (2014).
Quantum dynamics: ρ̂c(τ)
K. Mallayya and MR, PRL 120, 070603 (2018).
(2D) White et al., arXiv:1710.07696; Guardado-Sanchez et al., PRX 8, 021069 (2018).
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‘Mori-Zwanzig’ approach

Analytical results obtained within ‘Mori-Zwanzig’ approach (describe
systems with slow variables (e0, q) that can be separated from fast ones)
- Liouville superoperator L = −i[Ĥ, ·],

split L = L0 + L1 where L0 = −i[Ĥ0, ·] and L1 = −ig[V̂ , ·]
- Projection P: ρ̂→ ρ̂e0,q
- Rewrite P-projected Liouville equation ∂τP ρ̂(τ) = PLρ̂(τ)

to make meaningful approximations

A similar formulation was used for open quantum systems in:
- Z. Lenarčič, F. Lange, and A. Rosch, “Perturbative approach to weakly

driven many-particle systems in the presence of approximate conserva-
tion laws”, PRB 97, 024302 (2018).

- F. Lange, Z. Lenarčič, and A. Rosch, “Time-dependent generalized
Gibbs ensembles in open quantum systems”, PRB 97, 165138 (2018).
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Assumptions and analytical results

Let τ∗ be the (generalized) thermalization time of the unperturbed
dynamics, namely, at times τ & τ∗ observables are described by the
thermal density matrix ρ̂e0,q, with (e0, q) = (〈ĥ0〉ρ̂I , 〈q̂〉ρ̂I ), or by a GGE.

Our main assumption is a weak coupling condition: Fast equilibration of
the unperturbed (Ĥ0) dynamics

gτ∗ � 1

Prethermalization under perturbed (Ĥ) dynamics
- For τ � 1/g dynamics are expected to be well described by Ĥ0

so, from gτ∗ � 1 above, one expects fast equilibration to ρ̂e0,q

Main results, thermalization under perturbed (Ĥ) dynamics
- For τ � τ∗ observables are well described by intermediate

equilibrium states of Ĥ0, Tr[ρ̂(τ)Ô] ≈ 〈Ô〉e0,q(τ), where
∂τq(τ) = d[e0, q(τ)] and d[e0, q(τ)] is given by Fermi’s golden
rule. Corrections from 〈Ô〉e0,q(τ) are generally described by
first order perturbation theory.
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Our main assumption is a weak coupling condition: Fast equilibration of
the unperturbed (Ĥ0) dynamics

gτ∗ � 1

Prethermalization under perturbed (Ĥ) dynamics
- For τ � 1/g dynamics are expected to be well described by Ĥ0

so, from gτ∗ � 1 above, one expects fast equilibration to ρ̂e0,q

Main results, thermalization under perturbed (Ĥ) dynamics
- For τ � τ∗ observables are well described by intermediate

equilibrium states of Ĥ0, Tr[ρ̂(τ)Ô] ≈ 〈Ô〉e0,q(τ), where
∂τq(τ) = d[e0, q(τ)] and d[e0, q(τ)] is given by Fermi’s golden
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Dynamics of the particle filling (slow variable)

Quenches: βI = 0.1, µI = 2, tI = 0.5, VI = 1.5, t′ = V ′ = 0.7, g1 = 0
=⇒ t = V = 1.0, t′ = V ′ = 0.7, g1 ∈ [0.03, 0.12]
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Dynamics of n.n. one-body K̂ =
∑

i(b̂
†
i b̂i+1 + b̂†i+1b̂i)

One-body nearest-neighbor correlations have dynamics even when gα = 0
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Dynamics of n.n. one-body K̂ =
∑

i(b̂
†
i b̂i+1 + b̂†i+1b̂i)

Correction as τ →∞ vs gα
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The first order correction is:

igα

∫ ∞
0

dsTr
([
Ûα(−s), K̂

]
ρ̂0(τ)

)
where

Ûα(−s) = e−isĤ0 Ûαe
isĤ0

ρ̂0(τ) is the projected ρ̂(τ)

K̂ and ρ̂0(τ) are block diagonal
in the particle number basis
b̂†i b̂i+1 =⇒ O(g1) 6= 0
lack thereof =⇒ O(g2) = 0.
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Integrable: Dynamics of the particle filling

Quenches: βI = 0.1, µI = 2, tI = 0.5, VI = 1.5, t′ = V ′ = 0, g2 = 0
=⇒ t = V = 1.0, t′ = V ′ = 0, g2 ∈ [0.03, 0.12]
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General setup and specific model Hamiltonian

We have in mind time-periodic Hamiltonians (period T = 2π/Ω) of the form:
Ĥ(τ) = Ĥ0 + g(τ)K̂, with g(τ) = g(τ + T )� 1 and g(τ) = 0

We Fourier decompose g(τ) =
∑
m>0 2gm sin(mΩτ)

Numerical experiments: Hard-core bosons in 1D lattices

Ĥ0 =
∑
i

[(
−t b̂†i b̂i+1 − t′ b̂

†
i b̂i+2 + h b̂†i

)
+ H.c.

+V

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)
+ V ′

(
n̂i −

1

2

)(
n̂i+2 −

1

2

)]
K̂ = −

∑
i

(
b̂†i b̂i+1 + H.c.

)
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Dynamics of the energy [defined using Ĥ0 = Ĥ(τ)]

Quench + drive: tI = 0.5, VI = 2.0, t′ = V ′ = 0.8, h = 1.0
=⇒ t = V = 1.0, t′ = V ′ = 0.8, h = 1.0, g(τ) = g sgn[sin(Ωτ)]

Results for βI = 0.033, µI = 0, and T = 1.0
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Results for βI = 0.033, µI = 0, and T = 1.0

Fermi’s golden rule (exact diag.):

Ė(τ) =
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Ėm(τ) , where
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Dynamics of the energy [defined using Ĥ0 = Ĥ(τ)]

Results for µI = 0, T = 1.0, and different values of βI
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Heating rates and eigenstate thermalization

Heating rates: Γm = − Ėm(τ)

E∞ − E(τ)
, where

Ėm(τ) = 2πg2
m

∑
i,f

δ(E0
f − E0

i ±mΩ) (E0
f − E0

i )P 0
i (τ) |〈E0

f |K̂|E0
i 〉|2

In quantum chaotic systems, because of eigenstate thermalization:
P 0
i (τ) = 〈E0

i |ρ̂(τ)|E0
i 〉 → exp[−β(τ)E0

i ]/Tr{exp[−β(τ)Ĥ0]},
with β(τ) obtained from the condition Tr[Ĥ0ρ̂GE(τ)] = Tr[Ĥ0ρ̂(τ)].

Eigenstate thermalization hypothesis
M. Srednicki, J. Phys. A 32, 1163 (1999); L. D’Alessio et al., Adv. Phys. 65, 239 (2016).

Oαβ = O(E)δαβ + [D(E)]−1/2fO(E,ω)Rαβ

where E ≡ (Eα + Eβ)/2, ω ≡ Eα − Eβ , D(E) is the density of states at energy E,
and Rαβ is a random number with zero mean and unit variance.

At high temperatures [β(τ)� 1], one obtains:

Γm =
2π(mΩgm)2

Tr(Ĥ2
0 )

∫ Emax−mΩ/2

Emin+mΩ/2

dE |fK(E,mΩ)|2D(E +mΩ/2)D(E −mΩ/2)

D(E)
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Heating rates and eigenstate thermalization

Results for βI = 0.033, µI = 0, and different values of g.
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In the thermodynamic limit, since E is extensive but Ω is not, one obtains:

Γ∞m=1 =
2π(Ωg1)2

Tr(Ĥ2
0 )
|fK(E∞,Ω)|2Z(β = 0)
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Summary

In isolated quantum systems (integrable or not) with weakly broken con-
servation laws equilibration occurs as a two-step process, fast prether-
malization followed by (near) exponential thermalization.

The dynamics of the slow (quasi-conserved) quantities is described by
an autonomous equation (drifts follow Fermi’s golden rule).

The deviation of observables in the instantaneous state from the predic-
tion of the unperturbed equilibrium ensemble is generally described by
first order perturbation theory.

Periodically driven systems can be used to experimentally probe the
fO(E,ω) function in the ETH.
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Sarang Gopalakrishnan (CUNY)

Ben Lev & group (Stanford)

Krishna Mallayya (PSU)

Support

Marcos Rigol (Penn State) Prethermalization in quantum systems August 29, 2019 38 / 42



Summary

In isolated quantum systems (integrable or not) with weakly broken con-
servation laws equilibration occurs as a two-step process, fast prether-
malization followed by (near) exponential thermalization.

The dynamics of the slow (quasi-conserved) quantities is described by
an autonomous equation (drifts follow Fermi’s golden rule).

The deviation of observables in the instantaneous state from the predic-
tion of the unperturbed equilibrium ensemble is generally described by
first order perturbation theory.

Periodically driven systems can be used to experimentally probe the
fO(E,ω) function in the ETH.

Collaborators
Wojciech De Roeck (KULeuven)

Sarang Gopalakrishnan (CUNY)

Ben Lev & group (Stanford)

Krishna Mallayya (PSU)

Support

Marcos Rigol (Penn State) Prethermalization in quantum systems August 29, 2019 38 / 42



Summary

In isolated quantum systems (integrable or not) with weakly broken con-
servation laws equilibration occurs as a two-step process, fast prether-
malization followed by (near) exponential thermalization.

The dynamics of the slow (quasi-conserved) quantities is described by
an autonomous equation (drifts follow Fermi’s golden rule).

The deviation of observables in the instantaneous state from the predic-
tion of the unperturbed equilibrium ensemble is generally described by
first order perturbation theory.

Periodically driven systems can be used to experimentally probe the
fO(E,ω) function in the ETH.

Collaborators
Wojciech De Roeck (KULeuven)

Sarang Gopalakrishnan (CUNY)

Ben Lev & group (Stanford)

Krishna Mallayya (PSU)

Support

Marcos Rigol (Penn State) Prethermalization in quantum systems August 29, 2019 38 / 42



Summary

In isolated quantum systems (integrable or not) with weakly broken con-
servation laws equilibration occurs as a two-step process, fast prether-
malization followed by (near) exponential thermalization.

The dynamics of the slow (quasi-conserved) quantities is described by
an autonomous equation (drifts follow Fermi’s golden rule).

The deviation of observables in the instantaneous state from the predic-
tion of the unperturbed equilibrium ensemble is generally described by
first order perturbation theory.

Periodically driven systems can be used to experimentally probe the
fO(E,ω) function in the ETH.

Collaborators
Wojciech De Roeck (KULeuven)

Sarang Gopalakrishnan (CUNY)

Ben Lev & group (Stanford)

Krishna Mallayya (PSU)

Support

Marcos Rigol (Penn State) Prethermalization in quantum systems August 29, 2019 38 / 42



Summary

In isolated quantum systems (integrable or not) with weakly broken con-
servation laws equilibration occurs as a two-step process, fast prether-
malization followed by (near) exponential thermalization.

The dynamics of the slow (quasi-conserved) quantities is described by
an autonomous equation (drifts follow Fermi’s golden rule).

The deviation of observables in the instantaneous state from the predic-
tion of the unperturbed equilibrium ensemble is generally described by
first order perturbation theory.

Periodically driven systems can be used to experimentally probe the
fO(E,ω) function in the ETH.

Collaborators
Wojciech De Roeck (KULeuven)

Sarang Gopalakrishnan (CUNY)

Ben Lev & group (Stanford)

Krishna Mallayya (PSU)

Support

Marcos Rigol (Penn State) Prethermalization in quantum systems August 29, 2019 38 / 42



QC: Dynamics of the momentum distribution function
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QC: Dynamics of the momentum distribution function
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Integrable: Heating rates and fO(E,ω)

Results for βI = 0.033, µI = 0, and different values of g.
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In the thermodynamic limit, since E is extensive but Ω is not, one obtains:

Γ∞m=1 =
2π(Ωg1)2

Tr(Ĥ2
0 )
|fK(E∞,Ω)|2Z(β = 0)
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