Advanced Workshop on Earthquake Fault Mechanics: Theory, Simulation and Observations ICTP, Trieste, Sept 2-14 2019

Lecture 1: introduction

Jean Paul Ampuero (IRD/UCA Geoazur)

About us

French National Research Institute for Sustainable Development

Universiteit Utrecht

Overview of my research

Fault damage zones and heterogeneity have first-order effects on earthquake rupture

High-frequency rupture imaging contributes to rapid hazard mapping

Why earthquake research?

Mitigate earthquake hazard

Understand the physical process

Earthquakes: a global hazard

GLOBAL SEISMIC HAZARD MAP

- Lima, Peru: vulnerable mega-city where a mega-earthquake can happen anytime soon
- An opportunity to oberve and understand subduction earthquake processes with high resolution

Empirical ground motion prediction

Basic steps in seismic hazard assessment:

- **Step 1:** estimate the probability of occurrence of an earthquake of a given magnitude
- **Step 2:** estimate the amplitude of the resulting ground motions

In engineering practice, step 2 is based on **empirical** attenuation relations: regressions between ground motion parameters (peak ground acceleration PGA, velocity PGV, etc) and source/site parameters (magnitude, source distance, soil class, etc) derived from recorded seismograms.

Complementary **physics-based approach**:

simulation of earthquake source and wave propagation

Earthquake predictability 2014 Iquique earthquake + foreshock sequence

2014 Iquique foreshock sequence

Rate-and-state models of slow slip and foreshock swarms

Do small and large earthquakes start the same?

Important question for Earthquake Early Warning and earthquake physics

Meier et al., Science 357, 1277-1281 (2017)

The hidden simplicity of subduction megathrust earthquakes

M.-A. Meier,* J. P. Ampuero, T. H. Heaton

Ye et al (JGR 2016) Source time functions of 116 M7+ subduction earthquakes, derived from teleseismic data with a unified method

2010_Guinea	1996_Samar	2007_SantaCruz	1991_Sulawasi	2009_NewZeaband
M6.9, 27 km	M7.1, 28 km	M7.2, 10 km	M7.5, 29 km	M7.8, 18 km
2008_Honshu	1992_Mindanao	2014_Guerrero	2004_indonesia	2010_NSumatra
M6.9, 23 km	M7.1, 39 km	M7.2, 23 km	M7.5, 13 km	M7.8, 29 km
1903_NZ	2014_Papua	1994_Kurll	1991_Kuril	2010_Montawal
M6.0, 25 km	M7.1, 46 km	M7.2, 36 km	M7.6, 23 km	M7.8, 12 km
1998_Indonesia	1996_Maxico	2010_NSumatra	2002_Papua	1996_Aleuttan
M6.9, 36 km	M7.1, 18 km	M7.2, 37 km	M7.6, 19 km	M7.9, 22 km
1990_Vanuatu	2004_NZ	2003_Loyalty	2001_Peru	M7.9, 34 km
M7.0, 25 km	M7.1, 36 km	M7.3, 20 km	MD.6, 25 km	
1993_Mindanao	2012_Chile	2010_Vanuatu	2000_Vanuatu	1995_Kurli
M7.0, 52 km	M7.1, 33 km	M7.3, 31 km	W7.6, 35 km	M7.9, 26 km
1997_Kermadad	1995_Kermadec	1990_CostaRica	1990_5ulawed	2015_Nepal
M7.0, 32 km	M7.1, 45 km	M7.3, 17 km	M7.6, 22 km	M7.9, 10 km
2003_Houshu	2007_Vanuatu	2008_Simeulus	1992_Nkaragua	2013_SantaCruz
M7.0, 16 km	M7.1, 34 km	M7.3, 29 km	407_6, 12 km	M7.9, 17 km
2013_Alaska	2011_Vanuatu	2008_Loyalty	2012_CostaRka	2007_Paru
M7.0, 30 km	M7.1, 29 km	M7.3, 30 km	M7.6, 22 km	M8.0, 29 km
1996_Sulawesi	2011_Chile	2001_Indonesia	2014_Nchile	1995_Mexico
M7.0, 30 km	M7.1, 24 km	M7.3, 22 km	M7.7, 32 km	M8.0, 16 km
2004_Hokkaldo	1998_Ecuador	2011_Honshu	2000_Papua	1995_Chile
M7.0, 42 km	M7.1, 26 km	M7.3, 18 km	M7.7, 14 km	MB.0, 37 km
1998_Papua	1996_Kurl	2012_ElSalvador	1995_Paru	2007_Solomon
M7.0, 15 km	M7.1, 36 km	M7.3, 10 km	M7.7, 34 km	M8.1, 15 km
1999_Papua	1992_California	1905_Maxico	2006 Yizva	2014_Nchie
M7.0, 45 km	M7.2,8 km	M7.3, 20 km	Nd. 7, 12 km	M8.1, 28 km
1993_Kamchatka	2007_Akautian	2008_Sulawesi	1995_Solomon	2003_Holdaido
M7.0, 46 km	M7.2, 31 km	M7.3, 31 km	M7.7, 45 km	M8.2, 29 km
1997_Sulawesi	2003_NZ	2009_Papua	1996_Sulawesi	1996_Indonesia
M7.0, 26 km	M7.2, 27 km	M7.4, 19 km	M7.7, 20 km	M8.2, 15 km
2003_Alaska	1996_Papua	2012_Gratemala	2007_Chika	2015_Chile
M7.0, 29 km	M7.2, 53 km	M7.4, 19 km	M7.7, 37 km	M8.2, 20 km
1998_Chile	2005_Honshu	2002_Mindanao	1994_Horshu	2006_Kurli
M7.0, 43 km	M7.2, 43 km	M7.5, 28 km	M7.7, 28 km	M8.3, 15 km
2008_Kermadac	2002_Vanuatu	2007_Molucca	1992_indonesia	2001_Paru
M7.0, 42 km	M7.2, 38 km	M7.5, 19 km	M7.7, 17 km	M8.4, 18 km
1999_Papua	2008_Ment awak	2012_Maxico	2003_Aleutian	2007_Sumatra
M7.0, 48 km	M7.2, 26 km	M7.5, 20 km	M7.7, 25 km	M8.5, 31 km
2001_Molucca	1991_Colombia	2003_Maxico	1997_Kamchatka	2005_Sumatra
	M7.2, 21 km	M7.5, 26 km	M7.8, 43 km	
1995_Samar	1992_Guinea	2015_Papua	1994, Java	2010_Chile
M7.0, 26 km		MZ.5, 39 km	M7.8, 15 km	
2013_Peru	1993_Maxico	2014_Papua	2016_Ecuador	2011_Tohoku
M7.0, 40 km	M7.2, 29 km	M7.5, 45 km	M7.8, 24 km	M07.16 km
2011_Vanuatu	1996_Alautian	2015_Papua	2000 Papua	0 30 60 90 120 150
M7.0, 30 km	M7.2, 30 km	MZ,5, 29 km	M7.8, 16 km	
2007_Montawa	2015_Nepal M72,14 km	1926_Panu M7.5,14.km	2012_HaldoGwall M7.8, 9 km	n lime (s)
0 20 4	0 0 20 4	0 0 20 40 60 80	0 30 60 90 120 1	0

Median STFs have linear onset,

same for all magnitudes Mw>7.2

Meier, Ampuero and Heaton (2017)

On average (median), all STFs can be scaled to a very simple, quasi-triangular shape

Meier, Ampuero and Heaton (2017)

Pulses?

Dynamic gravity changes induced by earthquakes

Harms et al (2015)

Good agreement between observed and modeled signals

Strong sensitivity to earthquake magnitude

Vallée et al., Science, 2017

Induced/triggered earthquakes

Enhanced geothermal systems

What controls the maximum earthquake magnitude that can be induced by fluid injection?

Magnitude limited by injected fluid volume?

A rupture triggered by injection can propagate beyond the pressurized zone if the fault has enough pre-stress.

SCIENCE ADVANCES | RESEARCH ARTICLE

GEOPHYSICS

Induced seismicity provides insight into why earthquake ruptures stop

Martin Galis,¹*[†] Jean Paul Ampuero,² P. Martin Mai,¹ Frédéric Cappa^{3,4}

Fracture mechanics: $M_{0max} \propto \Delta V^{3/2}$

Galis et al (2017)

What is enabling progress in earthquake research?

What is enabling progress in earthquake research?

New data and new sensors

J:\GIS-data\All_states\Special_maps\Install_Year\Install_plan_2011 12/13/2011

Dense seismic networks in land and off-shore

Ultra-dense Nodal arrays

Figure 8. Event Location by Long Beach Network. The red stars are events located by the LB Network during the first week in May, 2011 (5% of the data). The blue stars are from the SCSN catalog for the first 6 months of 2011. The green dots are the SCSN stations.

We cannot drill down to the seismogenic zone, but a large and coherent array can focus imaging on a deep fault patch (patch size \approx wavelength <1km for f>5Hz)

Inbal et al (2015)

Localized seismic deformation in the upper mantle revealed by dense seismic arrays

Deep micro-earthquakes beneath Long Beach

Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables

A. Sladen et al.

EarthArXiv pre-print doi:10.31223/osf.io/ekrfy

Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables

A. Sladen et al.

MEDUSA – Monitoring Earthquakes with DistribUted Seafloor Arrays

Proposal concept:

- Develop the first ocean-bottom observatory of earthquake processes based on Distributed Acoustic Sensing on fiber optic cables
- 2. Decipher the physics of the initiation and rupture of subduction mega-earthquakes
- 3. Create an earthquake early warning system for the coastal mega-city of Lima

What is enabling progress in earthquake research?

Increasing computing capabilities

High Performance Computing

Parallel computing

Graphical Processor Units

Scientific software ecosystem

.6km		
50 km		Every 10th Timesten
0 2.5 5.0	10.0 m/s	Litery Iter Thiestep
0 215 510	2010 11/5	

+ experimental rock mechanics (lab & field scales)

+ theoretical advances

Surprising earthquakes are opportunities

High resolution rupture imaging enabled by large and dense seismic arrays

(Meng, Inbal and Ampuero, 2011)

 \rightarrow Rapid imaging of high-frequency wave sources

Tohoku: high-frequency radiation deeper than low-freq slip

Brownish symbols: 1Hz radiators extracted from backprojection movies

Colored contours: static slip from GPS & tsunami data

Spatial complementarity of high- and low-frequency slip: HF radiation is deeper than static slip

HF radiation occurs even where the rupture is slow

2015 Mw7.8 Nepal earthquake

Avouac et al (2015), Ampuero et al (2016)

Integration with dynamic rupture modeling

Percy Galvez Earthquake Dynamic rupture simulation of The 2011 Tohoku earthquake.

The April 11 2012 M8.6 Indian Ocean earthquake

- A record-breaking event: Largest strike-slip earthquake ever recorded
- Tectonic setting: a nascent plate boundary
- A complex and unexpected rupture process revealed by teleseismic back-projection source imaging
- Implications for earthquake physics

Earthquake in a Maze: Compressional Rupture Branching During the 2012 *M*_w 8.6 Sumatra Earthquake

L. Meng,* J.-P. Ampuero, J. Stock, Z. Duputel, Y. Luo, V. C. Tsai 10 AUGUST 2012 VOL 337 **SCIENCE** www.sciencemag.org

Tectonic setting

Compressional rupture branching

Fault in compression (clamped)

Compressional rupture branching

Compressional rupture branching

Earthquake in a maze Complicated and unexpected rupture path challenges our classical view of fault friction

Conjugate orthogonal faults

2019 Ridgecrest earthquake sequence on orthogonal faults

Caltech / NASA JPL

Supershear – 2018 Palu, Indonesia earthquake

Bao et al (2018)

Multitaper-MUSIC teleseismic back-projection with aftershock-based slowness calibration

Rupture speed = 4.1 km/s from the outset!

Slower than Eshelby's speed (unstable in homogeneous media): Evidence for rupture inside a damaged zone

Slow slip and tremor migration patterns

Non-volcanic tremor migration patterns in Cascadia, USA

Days

10

Tremor migrates slowly along strike (📈 ~10 km/day) tracking the front of the slow slip event

7 km/day

Houston et al (2010)

Advanced Workshop on Earthquake Fault Mechanics: Theory, Simulation and Observations

Goals:

- Training on earthquake modeling and observations is often dissociated, PhD students often focused on one or the other
- Gain advanced knowledge for earthquake research that integrates the three perspectives: theoretical, computational and observational
- Lectures and practical training
- Emphasis on dynamic time scales and seismology