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Lecture 1: earthquake dynamics
from the standpoint of fracture mechanics

(LEFM = linear elastic fracture mechanics)

Asymptotic crack tip fields

Stress intensity factor K

Energy flux to the crack tip G

Fracture energy G,

— Crack tip equation of motion

Implications

Radiated energy
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Real faults are thick ...

Nojima Fault Preservation Museum

Nojima Fault, Japan
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Real faults are thick ...

Country
rock

|Idealized earthquake
model on a thin fault

Punchbowl fault, CA
(Chester and Chester, 1998)




Singularities close to a crack tip




03 Computer earthquake

Velocity (only ¥4 -space is shown)

Laboratory earthquake
Stress imaged by photoelasticity 0?

* Model: crack in an ideally elastic body = velocity and stress are infinite near the crack tips
* Physical model: inelastic processes occur in a process zone

* LEFM assumption: small scale yielding = the process zone is much smaller than crack and body dimensions
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Circular hole

https://www.fracturemechanics.org



https://www.fracturemechanics.org/

Elliptical hole
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https://www.fracturemechanics.org



https://www.fracturemechanics.org/
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https://www.fracturemechanics.org/

Static equilibrium in a linear elastic solid

C ra C kS with a slit and boundary conditions:

o(x) = o, for |x| >a and
o o(x) = 0 for |x| < a.

A 4 A

- 20 —>
: ‘ : Stress singularity at

c(p) ’ I the crack tips
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Asymptotic stress field near crack tips
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Stress singularity at the crack tips. o K,
o = + O(Vr)
Asymptotic form: 2rr
where ris the distance to a crack tip,
K is the stress intensity factor K [ = Ao/ a / 2

and Ao the stress drop (here, o, - 0)

In reality, stresses are finite: singularity accommodated by inelastic deformation.
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Historical comments

Stress concentration

K
g ~ —

VT

Energy release rate
G x K?

Mode II

Fracture mechanics

Arrest criterion based on static stress intensity factor K:
* Rupture grows dynamically if K>Kc
* Rupture stops if K=Kc

K can be computed for arbitrary rupture size

and arbitrary spatial distribution of stress drop




Fracture modes

Mode | Mode Il

Mode IlI

* Mode | = opening cracks

- engineering, dykes

* Modes Il and Il = shear cracks

- earthquakes

* Mode Il =in-plane, P-SV waves, rupture
propagation // slip
For strike-slip faults:

* 2D: map view of depth averaged
quantities

* Mode lll = anti-plane, SH waves, rupture
propagation _L slip
For strike-slip faults:

* 2D: vertical cross-section assuming
invariance along strike
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Fracture

Mode |

m O d eS * Mode | = opening cracks

- engineering, dykes

Mode Il Mode llI
* Modes Il and Il = shear cracks

- earthquakes

* Mode Il =in-plane, P-SV waves, rupture
propagation // slip
For strike-slip faults:

Distance down dip {km)

* 3D: horizontally propagating rupture
fronts —

* Mode lll = anti-plane, SH waves, rupture
propagation _L slip
For strike-slip faults:
* 3D: vertically propagating fronts 1

0

Distance alon¥ strike (km)

|
o=(p, @) = (Kyjcos @ + Ky sin
-(p,¢) = (Kycos¢ msing) TN
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Stress singularity at the rupture front

* r = distance to the crack tip

» K = stress intensity factor, depends on :

rupture mode

crack and body geometry (size and shape)
remotely applied stress (tectonic load)
rupture velocity

J. P. Ampuero - Earthquake dynamics
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Static stress intensity factor K

* Example #1: constant stress drop At in crack of half-size a

Ky = Aor/a/2

J. P. Ampuero - Earthquake dynamics
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Static stress intensity factor K

* Example #2: non uniform stress drop in semi-infinite crack

0 x
Ku(X, 0) = \@[ | Aa(j)dg'

~

J. P. Ampuero - Earthquake dynamics
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Dynamic stress intensity factor

In general, K depends on
* rupture velocity v
* stress drop At
e cracksize a

In many useful cases it can be factored as

Ku(t) = V1 —v/B Ky

where K* (Ao, a) is the static K value that would appear
immediately after rupture arrest

and (8 is S-wave speed

J. P. Ampuero - Earthquake dynamics
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Energy flux to the crack tip G

During rupture growth, energy flows into the crack tip.

\re energy

AU
Potential
eTIergy F« Radiated energy
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Energy flux to the crack tip G

The energy flux to the tip, or energy
release rate G, is related to K by:

G — Kii _\/1—7\'//)’(K;'“)2
2/lm L +v/B 2u

J. P. Ampuero - Earthquake dynamics
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Fracture energy G,
and the crack tip equation of motion

* The energy flux G to the crack tip is dissipated in the process zone by
“microscopic” inelastic processes: frictional weakening, plasticity, damage, etc

* These dissipative processes may be lumped into a single mesoscopic
parameter: the fracture energy G, (energy loss per unit of crack advance)

e Griffith rupture criterion:
 If the crackis atrest, G < G,
* If the crack is propagating, G = G,
(energy balance at the crack tip)



Fracture energy G,
and the crack tip equation of motion

Griffith rupture criterion = energy balance at the crack tip during rupture growth

- crack tip equation of motion:

G _ /l —v/B (Kin)’ G. = G(a,a, At)
c—\ l +v/f 2u -
1-5 2
AT
G, ~ ) g na 20 = g(@)Gy(a)
_I__
J P

Given At and G, solving this ordinary differential equation

gives the rupture history a(t) and a(t)
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Graphical solution of equation of motion ...




Implication #1: nucleation size

Rupture only if G=Gc¢
At the onset of rupture (critical equilibrium, v=0):

G, =Gy(a,At)=ma At?/2u
- earthquake initiation requires a minimum crack size (nucleation size)
a.=2u G, / TAt?
(u=30 GPa, At=5 MPa)
Estimates for large earthquakes G.=10°J/m? - as=1km
... 50 how can M<4 earthquakes nucleate ?!

Laboratory estimates: G.=103J/m? 2> a=1m (M -2)

-> G, scaling problem

J. P. Ampuero - Earthquake dynamics
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Implication #2: limiting rupture velocity

Crack tip equation of motion:

= g(a)Gy(a)

If AT and G, are constant, the rupture velocity remains sub-shear

but approaches very quickly 3

However, in natural and laboratory ruptures the usual rangeisa < 0.7(5 !



Implication #3: rupture arrest

Rupture stops if
1

=la

G.> G ~ ma At? /2

1

=ls

The earthquake may stop due to two effects:
* Low stress regions (negative stress drop)
- G(a,At) decreases

* Increasing fracture energy :
* abrupt arrest in barriers (regions of high G,)
* smooth arrest due to scale-dependent G,



Rupture arrest in dynamic earthquake models

Rupture front plots

Rupture nucleated at a highly stressed patch (rupture time contours)

(area Anuc, background stress )

To Small Anuc and 7
- Stopping ruptures

Large Anuc and 7, ol / .'
- Runaway ruptures

Will it stop?

How does final rupture size depend 0
on nucleation size and overstress?



Rupture arrest predicted by fracture mechanics theory

Fracture mechanics

Static stress concentration
Ky
o ~—

T

where Ko =static stress intensity factor

Static energy release rate
Go = K&/Zu

Static Griffith criterion Gy = G, can be
written as Ky, = K. = /2uG,

(Ripperger et al 2007, Galis et al 2014)

Rupture arrest criterion:
* Rupture grows dynamically if Ko>Kc
* Rupture stops if Ko=Kc

Ko depends on stress drop At
Ko can be computed for any spatial distribution of At

rdr

2 J-R At(r)

Rl_rl



Rupture arrest predicted by fracture mechanics theory

constant stress drop
no rupture

stopping rupture
runaway rupture

Rupture stops if Ko=Kc

stress drop
AT

R At(r)
R _ 2

o

rdr

static
stress intensity

factor K,
7

crack radius B \
Rupture stops Rupture runs away

(Ripperger et al 2007, Galis et al 2014, 2017)



Rupture arrest in dynamic earthquake models
is well predicted by fracture mechanics

Rupture nucleated at a highly stressed patch

Will it stop?

How does final rupture size depend
on nucleation size and overstress?

Nucleation area

16 |

12 1

Runaway

87 ruptures

0.1 0.5 1.0 15 7=
€ increasing background stress 7 €
Galis et al

ruptures /3

/Q’ Stopping .

(2014)



Rupture arrest in dynamic earthquake models
is well predicted by fracture mechanics

Runaway ruptures

=
Rupture nucleated at a highly stressed patch S
320 i i i
150 ! T R
To . ! L i_,_ ' Ts — To
51 = I.":‘- Ei.D Y=
100

50

Will it stop?

How does final rupture size depend
on nucleation size and overstress?

5 10 15
nR [ L,
Nucleation area

dimensionless rupture arrest area
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3

Fracture mechanics: Mgp,g, &< AV3/2

Galis et al (2017)

Laboratory experiments (cm-scale) (Goodfellow et al., 2015)

In situ experiments (m-to-dam-scale) (De Barros et al., 2016, Duboeuf et al., 2017)
Hydraulic fracturing (hm-to-km-scale) (Maxwell, 2013)

Scientific, fracturing, geothermal, disposal (km-scale) (Buijze et al., 2015)
Scientific, fracturing, geothermal, disposal (km-scale) (McGarr, 2014)

Hydraulic fracturing (hm-to-km-scale) (Atkinson et al., 2016) max. volume
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Laboratory quakes nucleated by a localized load
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Laboratory quakes nucleated by a localized load
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Size of laboratory quakes predicted by fracture mechanics
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Foreshock swarms lquique 2014

Time relative to the mainshock (days)
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Fault loading by deep creep

Stress
concentration




2015 Gorkha, Nepal earthquake
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Intermediate-size event unzipping part of the lower
edge of the coupled zone (Junle Jiang, Caltech)

Super-cycles: large earthquakes + smaller, deeper
earthquakes in between
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Speed of laboratory quakes
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Recurrence time scaling |

of repeating ea rthquakes Recurrence time scaling
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Repeating earthquakes

Model: a circular brittle patch (radius R) embedded in a creeping fault




Repeating earthquakes

Seismogenic
zone

Creeping
zone

—

=

Interseismic slip

—

Interseismic stress



Recurrence time scaling of repeating earthquakes

Repeating earthquake model: a circular brittle patch (radius R) embedded in
a creeping fault (steady slip rate V;;¢ep)

-

: K%  AT?R ; 0.18
From fracture mechanics, G, = — ~ T ~ M,

2U 2u
At ~ \J2uG./R
From elasticity: At ~ uD /R
Slip budget: D = Viypeep T per event
Seismic moment: M, = umwR*D

10

log(T)
%
P
\

16 18 20 22 24 26

2

ST~ (2o = ME

U Vereep

log(M,) dyne-cm




Radiated energy E,

* Radiated energy is related to the crack tip energy flux by:
E,=J(Go-Gc)da =(1-g(v)) [Goda

e Large rupture velocity = large E,

For a fast crack: G, >> G, = large E,

* A crack that stops at a size not much larger than the nucleation size a,
does not have time to accelerate = low E,

J. P. Ampuero - Earthquake dynamics
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Earthquake radiation efficiency
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High-frequency radiation

Crack tip equation of motion:

G, = g(d)GO(a)
What happens if a rupture front hits a step of Gc?

Rupture speed changes abruptly
- high-frequency radiation



High-frequency radiation
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2D dynamic ruptures with increasing level of complexity in initial stresses

Single previous rupture Multiple previous ruptures
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Interaction between the rupture front and the pre-existing stress concentrations
radiate strong w2 phases, induce multiple-front coalescences, and produce

healing fronts that encourage pulse-like rupture and heterogeneous final stresses
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Seis Pot Rate (n¥/s)

Far-field source time functions Acceleration spectra

Multi crack
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Reference rupture model with smooth arrest

Complex ruptures: enhanced high-frequency radiation



Radiation from
a fault kink

radiation energy Kink phase
density
radiation before the kink

il

s

radiation after the kink
distance along the fault !
45 4 05 0 05 1 15
z velocity [m’s)
T . |
<15 <1 05 0 05 1 1.5
Madariaga et al (2006) Z velocty [m/s]
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Summary of Lecture 1

The Fracture Mechanics approach is macroscopic :

* the size of the process zone is assumed much smaller than any other
dimension of the problem

* the details of the inelastic processes near the rupture front are
ignored, their overall effect is accounted for by the fracture energy

G, = energy dissipated per unit of crack advance A

* the rupture criterion is based on an energy balance, governed by
the singular behavior of the idealized elastic model near the crack
front

- a crack tip equation of motion relates earthquake propagation Crack tip equation of motion:

parameters (size a and rupture velocity v) to physical parameters
and initial conditions (G, and stress drop Ar)

ma At? /2

J. P. Ampuero - Earthquake dynamics



Rupture styles: cracks and pulses

- Slip rate snapshots N0

poc 200
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° » [ L0 0 o ey Lo _ L% X0
Along strike
Crack : slip continues Pulse : slip heals soon
behind the rupture front, behind the rupture front,
long rise time short rise time

In this lecture we focused on cracks.
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Pulses on faults with finite seismogenic depth
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