Advanced Workshop on Earthquake Fault Mechanics: Theory, Simulation and Observations ICTP, Trieste, Sept 11 2019

Lecture 3:Beyond Rupture Imaging: Early Warning, GMPE, and off-shore seismicity detections

Lingsen Meng

UCLA Department of Earth, Planetary, and Space Sciences

Outlines

- Motivation: growing seismic hazard
- Array processing at regional and local scale
- Earthquake Early warning
- Tsunami Early warning
- Improving Ground motion prediction equation
- Detection of off-shore seismicity

The Growing Earthquake Threat

21st century started with an increase in the rate of earthquake fatalities...

2004: 228,000 Sumatra-Andaman

2010: 223,000 Haiti

2005:

86,000

Kashmir

2008:

88,000

Wenchuan

Earthquake Early Warning

Today: ShakeMap in 8-10 minutes

Current realtime earthquake information

- location
- magnitude
- ground shaking distribution

seconds to tens of seconds before shaking

- people move to safe zone (under table)
- slow and stop trains (MRT)
- isolate hazards (equipment, chemicals)

Earthquake Early Warning

EEW Performance of the Tohoku Earthquake

Need to know the **finite dimension** in real time !

Real time finite fault models

33°30' : 39 s = 100 s = 200 s = 8.15 M = 8.64 M = 8.86 ₀= 467 km _₁₀= 366 km L10= 390 km 33°00' 38 37 1m → data 32°30' km 100

M9 Tohoku-Oki Earthquake

Colombelli et al., 2013

M7.2 El-Mayor Cucapah Earthquake

M 7.8 ShakeOut Scenario

Grapenthin et al., 2014

FinDer: Bose et al., 2012

Real-time Capability

Latest large earthquake (BP using Hi-net, Japan data)

UT time: 2015-07-22 22:00:35

Mag: 4.7

Depth: 10.00 km

Lon: 94.89 Lat: 30.33

1.6 min Data

Figure 1-1 Top: Timings and amplitudes for the stack with the maximum correlation at each time step (2 s) and the cumulative stacked amplitudes (energy). Bottom: Normalized values of the maximum amplitudes in ech time window.

Figure 1-2 Station corrections for the data recorded at Hi-net. Left and middle: From top to bottom show shifted times (station corrections) and cross correlation coefficients of the low frequency waveforms (band-pass filtered between 0.05 and 0.5 Hz), shifted times and cross correlation coefficients of the high frequency waveforms (band-pass filtered between 0.5 and 2.0 Hz). Red star shows the location of the reference station. Right: Aligned waveforms filtered in the low (top) and high (bottom) frequency bands, sorted by epicenter distance.

Figure 1-3 Top: Aligned waveforms sorted by epicenter distance. P onset is from time 0. Red lines show arrivals of P, PcP, and PP phases. Bottom: Carton that shows the rupture propagation. Here the amplitude of the points is normalized at each time window. Warm color indicates larger stacked amplitude.

Real-time back-projection system developed by Dun Wang at ERI

Local Arrays for Earthquake Early Warning

A Network of Small-scale Array Along Active Faults

2004 Parkfield Earthquake

Modified from Fletcher et al, 2006

Real-Time Implementation

Average Correlation Coefficient

- Determine rupture length in strike-slip fault system
- Back-azimuth projected on the fault trace
- Correlation Stacking technique
- Rupture length equals to the distance between boundary seismic radiators
- Location with respect to the hypocenter indicate the directivity

2010 El Mayor-Cupacah Earthquake

Frequency-Dependent Source Radiation

- Low-frequency (LF) energy emanates from the shallower portion of the megathrusts.
- High-frequency (HF) energy often radiates from the deeper portion of the megathrust.

Strong Motion Generation and HF

Radiation

Spatially Correlated

• SMGA

Strong Motion Generation Area (Kurahashi and Irikura 2011)

• HFR

High-frequency Radiator

Finite Fault model (Wei at.el. 2012)

Strong motion of the Tohokupearthquake only

Ground Motion Intensity Underestimation

PSA(g)

High-Frequency Distance Metrics

R_{hf}: high-frequency distance metic

• shortest distance from site to high-frequency zone

(Feng and Meng, 2018)

More Accurate Ground-motion Predictions

Future Large Megathrust Earthquake

Los Angeles Area

Tsunami Induced by Large Megathrust earthquakes

- 1. Interseismic elastic deformation
- 2. Earthquake and elastic rebound of over-riding plate
- 3. Tsunami wave formation and propagation

http://www.tectonics.caltech.edu/

Giant Tsunami-genic Earthquakes in the World

Satake, 2014

March 11th, 2011

Magnitude 9 Tohoku-oki, Japan earthquake and tsunami

... Aftermath of a big tsunami!

2011 M9.0 Tohoku Earthqauke

2011 Tohoku Tsunami simulation

Tide gage data

Challenges in Tsunami Warning

- Typical tsunami warning system is based on direct tsunami waveform measurements.
- Good for Far-field (across ocean), but too slow for near-field.
- Teleseismic inversion is faster but uncertain.
- Near-field seismic recordings suffer a well-known saturation problem.
- W-phase get robust moment but does not provide finite source effect.
- Real time GPS requires post-processing to remove the contamination due to the atmospheric effects.

Seismic Antenna for Tsunami Warning

- Conducting long-period (10 s 50 s) BPs with local stations.
- Constructing simplified source model: estimating rupture area and calculate slip based on W-phase inversion.
- Predicting amplitude and arrival time of tsunami wave.

A Multi-Array Tracking Approach

- Source slowness are determined at each strong-motion cluster .
- Smoothing of the back-azimuth due to uncertainty and angular spreading.
- Source location by intersecting the back-azimuths.

Automatic Determination of When Earthquakes Stop

2003 M8.3 Tokachi Earthquake

2011 M9.0 Tohoku Earthquake

The seismic radiators are cut off when their locations are too scattered

Slip Estimation

- BP-estimated rupture region represents the area of large slip instead of the entire source zone.
- We establish an empirical relations between the degree of slip concentration versus normalized source area.

2003 M8.3 Tokachi Earthquake

2011 M9.0 Tohoku Earthquake

Xie and Meng, Submitted to GRL.

2014 M8.2 Iquique Earthquake

An and Meng., 2016

2014 M8.3 Illapel Earthquake

An and Meng., 2016

Predictions Vs Observations

Earthquake Source Imaging By Back-projection of Array Data

2011 Tohoku-Oki earthquake (Meng et al, 2011)

Off-shore Seismicity Detection

- Sea floor geodesy instruments are expensive with sparse distribution.
- Resolution of off-shore slip is not well constrained by the inland GPS.
- Slow slip often accompanied by small earthquakes. Study small off-shore earthquakes would help us have a better understanding of slow slips.

Combing Back-Projection and Matched-Filter

with continuous seismic recordings

Kiser and Ishii, 2013

139 140 141 142 143 144

139 140 141 142 143 144

Case study: Detecting One-year Aftershocks of the Tohoku Earthquake

Detection Threshold Selection

New BP Templates

BP finds 100% more M>4.5 events offshore.

Matched-filter with New BP Templates

Earthquake Density Distribution

Comparison with Finite Fault Models

b Value Distribution

Repeating Earthquakes

