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A micro-scale perspective on a km-scale problem

Microphysically based modelling of friction and earthquakes
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COEFFICIENT OF STATIC FRICTION

Dieterich (1972)
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Time-Dependent Friction and the Mechanics of Stick-Slip

By James H. DiETERICH?)

stress was then rapidly increased to the critical level required to produce slip. The
results satisfy the empirical law:

fo= o + Alog (Bt + 1) @)

where ¢ is the time of contact, and 4, B and y, are constants. Note that relationship

are then replaced with new and consequently weaker points. This model then implies
a velocity-dependence of friction since the effective lifetime, 7, of a point of contact
is inversely proportional to slip velocity, V:

d. yh

77 G)

T =

Hence, if ¢, the time of stationary contact in equation (2) is replaced with 7, the
average lifetime of a population of contacts at a steady velocity:

Bd, |
or

Byh
‘u=u0+AIog(—;—+l) (7



Rate & State Friction

Scholz (2002)
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steady-state friction [-]
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steady-state friction [-]
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Quick summary

* Modelling and analysis relies on rate-and-state friction
e RSF is empirical formulation => problem for extrapolation

* We need models based on physical principles



Coming up...

1. Lab observations of fault friction, micro-scale processes
2. Basic concepts behind microphysical models

3. Applications in seismic cycle modelling



Part 1:
[.ab observations



Velocity-step tests
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Velocity-step tests
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Velocity-step tests

Chester (1994)
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Microstructures
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Microstructures
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Recap Part 1

* \Velocity dependence of friction is not a constant
* Several deformation regimes
* Microstructural changes between deformation regimes

e At least 2 micro-scale processes



Part 2:
Microphysical models



Basic ingredients

1. Pressure solution =>
2. Granular flow =>
3. Mlicrostructure =>
4. Boundary conditions =>

Time-dependent compaction
Slip-dependent dilatation

Porosity

Constant ay,, Vi,
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Model equations

Pressure solution:

yps = Z1f (9) éps = Zaf (¢)

Main ODE
Granular flow:
d
_T — k(le — h[)./ps + ygr]) s 9 e 7[1 — p* tany] — o[u* + tany]
dt Yor = Vor €XP dlo + Ttan Y]
ng égr = —tant/))'/g,,



Steady-state behaviour
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Transient behaviour
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Recap Part 2

* Quantified micro-scale processes
* Incorporated constitutive relations into spring-block model
 Steady-state and transient frictional behaviour = OK

* Microphysical model explains lab results



Part 3:

Seismic cycle modelling
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Skipping 6 orders

github.com/ydluo/qdyn
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Earthquakes!

—— Interseismic (5 yr) —— Subseismic (0.1 day) === Coseismic (2.0 sec)
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Chen, Ampuero,
(2018, Tectonophysics)
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Back to safety...
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Matrix: “fast” pressure solution

Asperities: “slow” pressure solution




Earthquakes!
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Earthquakes! .
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Why anomalous earthquakese

Stable creep l Unstable slip
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Why anomalous earthquakese
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Why anomalous earthquakese
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Recap Part 3

* Interplay between pressure solution and granular flow gives
earthquakes

* Variations in pressure solution kinetics leads to complex slip behaviour

* Massive instability facilitated by flow-to-friction transition



Perspectives

1.  Microphysically-based (numerical) modelling offers new avenues for
studying earthquake and slow slip mechanics

2. Incorporating micro-scale processes and physical principles facilitates
collaboration between experimental- and field geologists, and modellers

3. Far future: earthquake hazard assessment and forecasting based on
physical/chemical considerations



