
Part 3:
Best Practices, Pitfalls & Tricks

xkcd



An Inconvenient Truth

• Deep neural networks comprise millions of parameters: we don’t know 
what these parameters mean

• Most of the time, we don’t know what a NN learns

• NN are not suitable to gain “understanding”

Neural networks are black boxes: treat them as such!



An Inconvenient Truth: Example

Audi (82%) BMW (91%) Ferrari (79%)



An Inconvenient Truth: Example

Ferrari (79%)Ferrari (95%)



An Inconvenient Truth: Example

• Training data selection is critical

• The NN “learns” your interpretation based on the training data, 
including observational/operator bias (NN are not unbiased!)

• If all Ferraris in the training data are red, and all other cars are not red, 
then all red objects must be Ferraris!



An Inconvenient Truth

• Machine Learning is mostly based on trial-and-error

• There is no recipe for good performance, only guidelines

• But: more theory is (slowly) being developed



Pitfalls

1. Bias and class imbalance in training set

2. Overfitting

3. Extrapolation beyond training data range

4. Improper weight initialisation 

5. Excessive learning rates



Pitfalls: Class Imbalance

Valentine & Trampert (2012)

Earthquake detection:

1.Noise

2.Earthquake



Pitfalls: Class Imbalance

Valentine & Trampert (2012)

Prediction: noise

Prediction: noise

Prediction: noise

Prediction: noise

Prediction: noise

Prediction: noise

99.9% accuracy!



Pitfalls: Overfitting

Pressure

D
ep

th

Pressure

D
ep

th

Good generalisation Overfitting



Pitfalls: Extrapolation

• Most NN architectures have a 
monotonic response

• Beyond the data range the 
network confidence increases, 
whereas it should decrease!

• Example: predicting large 
earthquakes based on small ones



Pitfalls: Extrapolation (Adversarials)

https://openai.com/blog/adversarial-example-research/



Pitfalls: Extrapolation (Adversarials)



Pitfalls: Initialisation 

• Weights are initialised by sampling from a random distribution

• If variance of every layer output < 1: vanishing gradients

• If variance of every layer output > 1: exploding gradients

• Solution: sample from random distribution with variance inversely 
proportional to layer input. This depends on the activation function!

oReLU: “He Normal initialisation” (He et al., 2015)

o Sigmoid/tanh: “Xavier/Glorot initialisation” (Glorot & Bengio, 2010)



Pitfalls: Learning Rates 

Parameter value

Lo
ss

Low learning rate

Parameter value
Lo

ss

High learning rate



Guidelines

1. Data representation and network architecture are most important

2. Bigger networks require more data = manual labour

3. Training data should be balanced, test data should be representative 
for real-world application

4. Training a NN is like turning a key in a lock: it only works if all 
components fall into place



Best Practices (1/2)

1. Start with a small network architecture

2. Before anything else, verify that training/test data is correct!

3. Try overfitting your data. If that doesn’t work, something is 
fundamentally wrong (e.g. initialisation)

4. Scale/shift the input data to have zero mean and a variance of 
around 1 (see basic MNIST tutorial)

5. Monitor train/test loss: if training loss decreases but test loss 
increases, the network is overfitting



Best Practices (2/2)

6. Monitor training process using TensorBoard. Make quantitative 
comparison between different “experiments” (architectures, 
hyperparameters, etc.)

7. Use Adam’s optimiser, ReLU activation (arguable)

8. Experiment with regularisation: batch normalisation, layer 
normalisation, dropout, noise layers (not covered today)

9. Be patient: if the network/dataset is large, training can take days on 
a decent GPU



Resources

• YouTube

o Lectures by Ian Goodfellow, Andrew Ng 

oConference talks: e.g. NeurIPS (previously NIPS)

• Udacity course (free): “Intro to TensorFlow for Deep Learning”

• Competitions: Kaggle.com, DrivenData.org



Time to get really dirty…


