# **Practice**:

# dynamic rupture in 2D and 2.5D

Huihui Weng Jean-Paul Ampuero

ICTP, Trieste, Italy, 2-14 Sep.

# Goals

• Learn to simulate dynamic rupture model

• Explore the effects of fault heterogeneities on dynamic ruptures

• Discussion: seismology problems

# 2D and 2.5D numerical codes

#### Download from GitHub



Jean Paul Ampuero jpampuero

California Institute of Technology
 Pasadena, CA, USA
 Sign in to view email

http://www.seismolab.caltech.edu/a...

| Overview | Repositories 4 |
|----------|----------------|
|----------|----------------|

4 Projects 0

Stars 1

Followers 15 Following 0

#### **Popular repositories**

#### sem2dpack

SEM2DPACK - A spectral element method for 2D wave propagation and fracture dynamics, with emphasis on computational seismology and earthquake source dynamics.

🔵 Fortran 🔺 4 🛛 😵 3

#### specfem3d

Forked from geodynamics/specfem3d

SPECFEM3D\_Cartesian simulates acoustic (fluid), elastic (solid), coupled acoustic/elastic, poroelastic or seismic wave propagation in any type of conforming mesh of hexahedra (structured or not). I...

Fortran 💡 1

#### semlab

Spectral Element Method for wave propagation and rupture dynamics in Matlab.

🛑 MATLAB 🛧 3 🛛 😵 1

#### jpampuero.github.io

J. P. Ampuero - Seismology and Earthquake Dynamics

HTML

# 2D and 2.5D numerical codes

#### Download from GitHub



The tutorial script will be uploaded to GitHub soon.

MATLAB code semlab

Fortran code sem2dpack ----- installation is simple ----- simulation is fast

# Model parameters



Second stopping phase

# Model parameters



Second stopping phase

## Model parameters



$$\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} - k_3^2 u = \frac{1}{v_s^2} \frac{\partial^2 u}{\partial t^2}$$

# Tutorial of semlab

# Tutorial of sem2dpack

# How to run semlab?

cp -r /home/nfs3/seismology\_lectures/hweng.

ls ./hweng

cd ./hweng/semlab-master/SEMLABmatlab &open this file from matlab:

sem2d\_eq\_dyn\_tutorial.m

# Parameter setup in semlab

| ISH           | VIEW                                         |                               |                                        |                          |
|---------------|----------------------------------------------|-------------------------------|----------------------------------------|--------------------------|
| 0 0<br>الراين | Dun Ser                                      | ation 💦                       |                                        |                          |
| reakpointe    |                                              | Pup and                       |                                        |                          |
|               | <ul> <li>Advance</li> <li>Advance</li> </ul> | Time                          |                                        |                          |
| REAKPOINTS    | RUN                                          |                               |                                        |                          |
| es è semiat   | master > SEMLAB >                            |                               |                                        |                          |
| Editor        | /u/maana/uaar/wang/Mang/ICT                  | D laaturaa/aamlah maa         | tor/CEMIAD/com2d.og.dup.tutoriol.m     |                          |
| Editor -      | /u/moana/user/weng/weng/iCT                  | P_lectures/semiab-mas         | ter/SEMLAB/semzo_eq_oyn_tutonal.m      |                          |
| 37            |                                              |                               |                                        |                          |
| 38            | % Parameters setup                           |                               |                                        |                          |
| 39            | %                                            |                               |                                        |                          |
| 40            | ····                                         |                               |                                        |                          |
| 41            | X-100e2                                      | arameters of the<br>% Hori    | square box domain and mesh : coord     |                          |
| 43 -          | LX=100e3/3                                   | % Vert                        | ical length of the box domain          |                          |
|               | LZ=inf;                                      | % Thic                        | kness of the seismogenic region (appro | ximately accounted for). |
| 45            |                                              | % Turn                        | ed off if LZ=inf.                      |                          |
| 46            | %NELX = 150; NELY = 5                        | 50; P = 8;% Numb              | er of elements; polynomial degree      |                          |
| 47 -          | NELX = 300; NELY = 10                        | 00; P = 4;% Numb              | er of elements; polynomial degree      |                          |
| 48 -          | $SYM_X = 1;$                                 | % I† S                        | YM_X=1, enforce symmetry with respect  | to x=0                   |
| 49            | 0/****                                       | % (the                        | lett boundary becomes a tree surtace)  |                          |
| 51            | /0                                           |                               |                                        |                          |
| 52            | %**** Set here the pa                        | arameters of the              | material and simulated dumping factor  | . ****                   |
| 53 -          | RH0 = 2670.;                                 | % The                         | density (g/m^3)                        |                          |
| 54 -          | ∨S = 3464.;                                  | % The                         | S wave speed (m/s)                     |                          |
| 55 -          | ETA = 0.2;                                   | % Kelv                        | in-Voigt viscosity term = ETA*dt*K*v   |                          |
| 56            | ~****                                        | % Arti                        | ficial viscosity to dump the high-freq | uency numerical noise    |
| 57            | 76                                           |                               |                                        |                          |
| 59            | %**** Set here the pa                        | arameters of the              | time solver : ****                     |                          |
| 60 -          | NT = 2500;                                   | % Numb                        | er of timesteps                        |                          |
| 61 -          | CFL = 0.6;                                   | % Stab                        | ility number = CFL_1D / sqrt(2)        |                          |
| 62            |                                              | % Rati                        | o of simulation time step to min(Delta | x)/vs.                   |
| 63            | %******                                      |                               |                                        |                          |
| 64            | **** Sot boro the pr                         | promotoro of the              | foult , ****                           |                          |
| 66 -          | Normal stress = 12                           | 20e6' % Faul                  | t pormal stress                        |                          |
| 67 -          | Shear stress = 76                            | De6: % Shea                   | r stress                               |                          |
| 68 -          | Static_friction = 0.                         | .677; % Stat                  | ic friction coefficient                |                          |
| 69 -          | Dynamic_friction = 0.                        | .525; % Dyna                  | mic friction coefficient               |                          |
| 70 -          | dc = 0.                                      | .4, % Slip                    | -weakening distance                    |                          |
| 71 -          | Fault_length = 25                            | 5e3; % Simu                   | lated fault length                     |                          |
| 72 -          | Nuc_iength = 1.                              | .5e3; % NUCL<br>1.6e6; % Tojt | ial chear stress in pucleation zone    |                          |
| 74            | %*******<br>%****                            | 1.000, % INIL                 | Tar Shear Stress in Nucleation 2006    |                          |
| 75            |                                              |                               |                                        |                          |
| 76            | %**** Set here receiv                        | ver locations :               | ****                                   |                          |
| 77 -          | Sta_x = [-16e3:2400:3                        | 32e3]'; % х со                | ord of receivers                       |                          |
| 78 -          | Sta_y = 7.5e3;                               | %усо                          | ord of receivers                       |                          |
| /9 -          | 0010T = 100;<br>%******                      | % ste                         | ps for output snapshots                |                          |
| 81            | /0                                           |                               |                                        |                          |
| 82            | %**** Set here proper                        | rties of heteroa              | eneity: ****                           |                          |
| 00-           | Het_type = 'uniform'                         | ; % Opti                      | ons are: uniform, trapezoid, random, b | ox, EQ, and steps        |
|               |                                              | % The                         | default ontion is uniform              |                          |
| 84            |                                              | 20 1110                       | deradic operation is uniform.          |                          |

## Add a heterogeneity

```
%**** Set here properties of heterogeneity:
Het type = 'uniform'
                    ; % options are: uniform, box, trapezoid, random, EQ, and steps
                        % The default option is uniform.
                   ; % The options are: stress and dc. If Het_type='EQ',
Het para = 'stress'
                        % this option shall be stress.
Het loc = 20e3
                      ; % The beginning location of heterogeneity (m)
Het len = 10e3
                       ; % The length of heterogeneity (m)
Het_val = 50e6
                        % The value of heterogeneity. The unit is Pa for stress and m for dc.
%Het_val = [70e6, 50e6]
                        % For trapezoid, the format is [val1,val2]
                        % For random, this value indicates pertubation range
                        % For EQ, this value indicates the stress drop of the previous event.
%Het_val = [60e6,75e6,53e6]
                        % For steps, the format is [val1, val2, ...]
0/******
```

## Add a heterogeneity



## Model name meaning



uniform, box, random ...

location

value

# Result presentation (figure1)



# Result presentation (figure2)



# Result presentation (figure3)



# Result presentation (figure3)



# Result presentation (figure4)



# Result presentation (figure4)



# STF and its spectrum (final)

|                                    |                                                                       |                                                                        |                                                                                                | MA                                                  | TLAB R2018a - academic use                                                                                                                                              |                     |
|------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| VI                                 | EW                                                                    |                                                                        |                                                                                                |                                                     |                                                                                                                                                                         |                     |
|                                    | >                                                                     | 2                                                                      | Nun Section                                                                                    | 0                                                   |                                                                                                                                                                         |                     |
| ts H                               | ₹<br>T                                                                | Advance                                                                | Advance                                                                                        | Run and<br>Time                                     |                                                                                                                                                                         |                     |
| 'S                                 |                                                                       |                                                                        | RUN                                                                                            |                                                     |                                                                                                                                                                         |                     |
| mlab-ma                            | aster                                                                 | SEMLA                                                                  | .B ▶                                                                                           |                                                     |                                                                                                                                                                         |                     |
| itor - /u/                         | /moana                                                                | a/user/we                                                              | ng/Weng/ICTP_le                                                                                | ctures/ser                                          | nlab-master/SEMLAB/Compare_spectrum.m                                                                                                                                   |                     |
| em2d_eo                            | q_dyn_                                                                | tutorial.n                                                             | n 🗶 Compare                                                                                    | e_spectrum                                          | n.m × +                                                                                                                                                                 | 1                   |
| %с.                                | lear                                                                  | all                                                                    |                                                                                                |                                                     |                                                                                                                                                                         |                     |
| Co                                 | mpare                                                                 | e_all_r                                                                | results = tr                                                                                   | ue; %                                               | true if you want to compare all the results                                                                                                                             | in ./output         |
| % .<br>Coi                         | if Co<br>mpare                                                        | ompare_<br>ed_list                                                     | all_results<br>= [""<br>%<br>%<br>%                                                            | = fals<br>model_n<br>model_n<br>Note: t<br>and .    | e, list the models you want to compare<br>ame",<br>ame",<br>ame"];<br>he output files are named by<br>/output/{model_name}-STF.dat<br>/output/{model_name}-spectrum.dat |                     |
| %-<br>Wo<br>da<br>if<br>el:<br>en: | rk_d:<br>ta_d:<br>(Comµ<br>fi.<br>se<br>fi.<br>for<br>fi.<br>en0<br>d | ir = er<br>ir = [V<br>bare_a]<br>les<br>les = [<br>r i=1:]<br>les<br>d | rase(which('<br>Vork_dir '/o<br>ll_results)<br>= dir(full<br>[];<br>length(Compa<br>= [files d | Compare<br>utput/'<br>file(da<br>red_lis<br>ir(full | _spectrum.m'),'Compare_spectrum.m');<br>];<br>ta_dir,'*-spectrum.dat'));<br>t)<br>file(data_dir,'/',strcat(Compared_list(i),'-                                          | -spectrum.dat')))]; |
| mo<br>if<br>□ fo<br>□ fi.<br>□ en  | del_n<br>(mode<br>dis<br>d<br>r k :<br>les(l<br>d                     | num = ]<br>el_num=<br>sp('The<br>= 1:moc<br><).name                    | length(files<br>==0)<br>ere is no re<br>del_num<br>e = erase(fi                                | );<br>sult in<br>les(k).                            | the ./output folder!')<br>name,'-spectrum.dat');                                                                                                                        |                     |

# STF and spectra



# Add a heterogeneity

| %**** Set here properties of heterogeneity: ****                                                           |                    |
|------------------------------------------------------------------------------------------------------------|--------------------|
| Het_type = 'uniform' ; % options are: uniform, box, trapezoid, random,<br>% The default option is uniform. | EQ, and steps      |
| Het_para = 'stress' ; % The options are: stress and dc. If Het_type='EQ'<br>% this option shall be stress. | 1                  |
| Het_loc = 20e3 ; % The beginning location of heterogeneity (m)                                             |                    |
| Het_len = 10e3 ; % The length of heterogeneity (m)                                                         |                    |
| Het_val = 50e6 ;                                                                                           |                    |
| % The value of heterogeneity. The unit is Pa for str                                                       | ess and m for dc.  |
| %Het_val = [70e6, 50e6] ;                                                                                  |                    |
| % For trapezoid, the format is [val1,val2]                                                                 |                    |
| % For random, this value indicates pertubation ra                                                          | ange               |
| % For EQ, this value indicates the stress drop of th                                                       | ne previous event. |
| %Het_val = [60e6,75e6,53e6] ;                                                                              |                    |
| % For steps, the format is [val1, val2,]                                                                   |                    |
| %*****                                                                                                     |                    |
|                                                                                                            |                    |

# STF comparison



## Models to test

#### Model 1



abrupt stop

#### Apple to apple



#### > model 1 vs. model 2



#### > model 1 vs. model 3



#### ➢ 2D vs. 2.5D





## Models to test





#### > model 1 vs. model 4



#### > model 1 vs. model 5



# **Tutorial of SEMLAB**

# Tutorial of sem2dpack

# Installation of sem2dpack

| 2 🗶                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------|
| File Edit View Bookmarks Settings Help                                                                                             |
| INSTALL INSTRUCTIONS                                                                                                               |
| 1. Uncompress and expand the SEM2DPACK package:<br>tar xvfz sem2dpack.tgz<br>2. Go to the source directory:                        |
| cd SEM2DPACK/SRC<br>3. Edit the Makefile according to your FORTRAN 90 compiler.<br>4. Compile:<br>make                             |
| 5. Go to the SEM2DPACK/PRE directory, edit the Makefile, then compile.                                                             |
| On normal compilation you end up with executable files,<br>among which sem2dsolve, in your /home/myhome/bin/.                      |
| If you encounter problems with some (convenient but non essential) FORTRAN 95<br>features of the code please contact me.<br>~<br>~ |

# How to run sem2dpack?

cd ./sem2dpack-25D/EXAMPLES/2.5D\_inplane

open this file by vim or other method: vi Par.inp

# Parameter setup in sem2dpack

| File Edit View Bookmarks Settings Help                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| # Some general parameters<br>&GENERAL iexec=1, ngll=5, fmax=3.d0 , W=10d3, ndof=2 ,<br>title = '2.5D elastic in-plane model', verbose='1111' , ItInfo = 400/                                                                                                                                  |
| # Build the mesh                                                                                                                                                                                                                                                                              |
| # Material parameters<br>SMATERIAL tag=1, kind='ELAST' /<br>SMAT_ELASTIC rho=2705.d0, cp=5770.d0, cs=3330.d0 /                                                                                                                                                                                |
| # Boundary conditions<br>&BC_DEF tag = 1, kind = 'DYNFLT' /<br>&BC_DYNFLT friction='SWF', 'TWF', Tn=-50d6,Tt=30.5d6 /<br>&BC_DYNFLT_SWF Dc=0.4d0, MuS=0.63d0, MuD=0.54d0 /<br>&BC_DYNFLT_SWF Dc=0.4d0, MuS=0.63d0, MuD=0.54d0, Mu0=0.63d0,<br>X=0.d0, Z=0.d0, V=0.333d3, L=0.1665d3, T=60d0 / |
| &BC_DEF tag = 2 , kind = 'ABSORB' /<br>&BC_DEF tag = 3 , kind = 'ABSORB' /<br>&BC_DEF tag = 4 , kind = 'DIRNEU' /<br>&BC_DIRNEU h='N', v='D' /                                                                                                                                                |
| # Time scheme settings                                                                                                                                                                                                                                                                        |
| # Receivers                                                                                                                                                                                                                                                                                   |
| #Plots settings<br>&SNAP_DEF itd=100, fields ='DVS',bin=T,ps=F /<br>&SNAP_PS vectors=F, interpol=T, DisplayPts=6, ScaleField=0d0 /                                                                                                                                                            |

# Parameter setup in sem2dpack

| File Edit View Bookmarks Settings Help                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| # Some general parameters                                                                                                                                                                                                                                                                     |
| # Build the mesh                                                                                                                                                                                                                                                                              |
| # Material parameters<br>SMATERIAL tag=1, kind='ELAST' /<br>SMAT_ELASTIC rho=2705.d0, cp=5770.d0, cs=3330.d0 /                                                                                                                                                                                |
| # Boundary conditions<br>&BC_DEF tag = 1, kind = 'DYNFLT' /<br>&BC_DYNFLT friction='SWF', 'TWF', Tn=-50d&,Tt=30.5d6 /<br>&BC_DYNFLT_SWF Dc=0.4d0, MuS=0.63d0, MuD=0.54d0 /<br>&BC_DYNFLT_SWF Dc=0.4d0, MuS=0.63d0, MuD=0.54d0, Mu0=0.63d0,<br>X=0.d0, Z=0.d0, V=0.333d3, L=0.1665d3, T=60d0 / |
| &BC_DEF tag = 2 , kind = 'ABSORB' /<br>&BC_DEF tag = 3 , kind = 'ABSORB' /<br>&BC_DEF tag = 4 , kind = 'DIRNEU' /<br>&BC_DIRNEU h='N', v='D' /                                                                                                                                                |
| # Time scheme settingsSTIME kind='leapfrog', TotalTime=30 /                                                                                                                                                                                                                                   |
| # Receivers                                                                                                                                                                                                                                                                                   |
| # Plots settings<br>&SNAP_DEF itd=100, fields ='DVS',bin=T,ps=F /<br>&SNAP_PS vectors=F, interpol=T, DisplayPts=6, ScaleField=0d0 /                                                                                                                                                           |

### How to present results?

cd \${work\_dir}/sem2dpack-25D/POST open the script by MATLAB: create\_movie.m

run it by MATLAB



Find seismic phases, such as P wave front, S wave, Rayleigh wave, etc.

What parameters may control the formation of supershear rupture?





<u>File Edit View Insert Tools Desktop Window Help</u>



 $\vee$   $\diamond$   $\otimes$ 

