

3D rupture effects (seismogenic depth)

Huihui Weng Jean-Paul Ampuero

ICTP, Trieste, Italy, 2-14 Sep.

Rupture speeds in 2D

Modes II (strike slip)

Stable speeds in 2D

Finite seismogenic width

Weng and Ampuero, 2019

Fault and Rock Mechanics (FARM)

Elongated earthquake ruptures

Ishii et al 2005

Elongated earthquake ruptures

Rupture unzipping the lower edge of the seismogenic zone (simulation by Junle Jiang)

overview

- Equation of motion for mode III in 3D
- Equation of motion for mode II in 3D
 - -- Subshear
 - -- Supershear
- Ruptures of mixture of modes II and III

overview

- Equation of motion for mode III in 3D
- Equation of motion for mode II in 3D
 - -- Subshear
 - -- Supershear
- Ruptures of mixture of modes II and III

Warm-ups

Kinematics

Dynamics

Slip inversion method

Imaged by back-projection

- How to explain observed source kinematics?
- What is the intrinsic earthquake physics?
- How to link kinematics and dynamics of earthquakes?

Fracture mechanics:

-- connection between kinematics and dynamics

- Energy balance between energy release rate and fracture energy
- Rupture speed as a function of distance

Kostrov, Freund, Andrews (60-70s)

Kostrov, Freund, Andrews (60-70s)

- Classical LEFM is not "inertial" $G_c = G(v_r, L, \Delta \tau)$
- Speed is independent of acceleration

Crack in bounded media

Release elastic energy is linearly proportional to width of strip

>
$$G_c = G_0 \left(1 - \frac{\dot{v}_r b}{v_s^2} \frac{1}{(1 - (v_r/v_s)^2)^2} \right)$$
 LEFM
 $G_c = G(v_r, L, \Delta \tau)$

Strip experiments

Inertial equation of motion

$$G_{c} = G_{0} \left(1 - \frac{\dot{v}_{r}b}{v_{s}^{2}} \frac{1}{(1 - (v_{r}/v_{s})^{2})^{2}} \right)$$
$$(1 - G_{c}/G_{0}) = \frac{W}{v_{s}^{2}A\alpha_{s}^{P}} \cdot \dot{v}_{r}$$

Inertial equation of motion

$$G_{c} = G_{0} \left(1 - \frac{\dot{v}_{r}b}{v_{s}^{2}} \frac{1}{(1 - (v_{r}/v_{s})^{2})^{2}} \right)$$

$$(1 - G_{c}/G_{0}) = \frac{W}{v_{s}^{2}A\alpha_{s}^{P}} \cdot \dot{v}_{r}$$
Force? Apparent mess? Acceleration
$$\mathbf{F} = \mathbf{ma}$$

Key points

1 Classical LEFM links kinematics and dynamics of 2D infinite media, which is not "inertial"

$$G_c = G(v_r, L, \Delta \tau)$$

2 The crack-tip-equation-of-motion for 2D strip media is "inertial"

$$G_c = G_0 \left(1 - \frac{\dot{v}_r b}{v_s^2} \frac{1}{(1 - (v_r / v_s)^2)^2} \right)$$

Which may control ruptures on 3D bounded fault? 1 or 2 ?

The dynamics of elongated ruptures: -- Rupture acceleration (how rupture begins?) -- Rupture deceleration (how rupture stops?)

Ingredients

- Anti-plane fault embed in 3D full-space
- Uniform elastic properties
- Uniform fault parameters
- Uniform seismogenic width
- Steady-state speed

 $\sigma_{ij,j} = \rho \ddot{u}_i$ (3 equations)

$$\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} - k_3^2 u = \frac{1}{v_s^2} \frac{\partial^2 u}{\partial t^2}$$

- ✓ Energy release rate G is a constant independent of rupture s peed and distance, i.e., $G = G_0$
- $\checkmark G_c = G_0 \rightarrow$ propagate at any speed

$$G_{0} = \frac{\Delta \tau^{2} W}{\pi \mu} \qquad \qquad G_{c} \neq G_{0}?$$

Energy balance at rupture tip

Intuitive physical process

- $G_0 = G_c \rightarrow$ ruptures propagate steadily
- $G_0 > G_c \rightarrow$ ruptures accelerate \uparrow
- $G_0 < G_c \rightarrow$ ruptures decelerate \downarrow

Validation from numerical simulations

- $G_0 > G_c \rightarrow$ ruptures accelerate \uparrow
- G_c/G_0 plays an important role in controlling rupture speed

Energy ratio decreases

- $G_0 > G_c \rightarrow$ ruptures accelerate \uparrow
- G_c/G₀ plays an important role in controlling rupture speed

$$G_c = G_0 \left(1 - \frac{\dot{v}_r W}{v_s^2} \frac{1}{A \alpha_s^P} \right)$$
$$\alpha_s = \sqrt{1 - (v_r/v_s)^2}$$

Energy ratio decreases

- $G_0 > G_c \rightarrow$ ruptures accelerate \uparrow
- G_c/G_0 plays an important role in controlling rupture speed

$$1.0$$

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

$$\frac{\dot{v}_r W}{v_s^2 (1 - G_c/G_0)} = A \alpha_s^P$$
$$\alpha_s = \sqrt{1 - (v_r/v_s)^2}$$

Energy ratio decreases

- $G_0 > G_c \rightarrow$ ruptures accelerate \uparrow
- G_c/G_0 plays an important role in controlling rupture speed

Rupture deceleration

- $G_0 < G_c \rightarrow$ ruptures decelerate \downarrow
- Starting speed also plays a role
- Larger rupture speed lead to longer distance

Rupture deceleration

- $G_0 < G_c \rightarrow$ ruptures decelerate \downarrow
- Starting speed also plays a role
- Larger rupture speed lead to longer distance

$$\frac{\dot{v}_r W}{v_s^2 (1 - G_c/G_0)} = A \alpha_s^P$$
$$\alpha_s = \sqrt{1 - (v_r/v_s)^2}$$

Rupture deceleration

- $G_0 < G_c \rightarrow$ ruptures decelerate \downarrow
- Starting speed also plays a role
- Larger rupture speed lead to longer distance

$$\frac{\dot{v}_r W}{v_s^2 (1 - G_c / G_0)} = 1.2\pi \alpha_s^{2.6}$$
$$\alpha_s = \sqrt{1 - (v_r / v_s)^2}$$

Validation from 3D simulations

"Inertial" rupture

- Rupture evolution predicted by rupture-tip-equation-of-motion
- Rupture is also "inertial"

Elongated ruptures in the lab

1 Closed-form energy release rate on 3D bounded fault is a constant:

$$G_0 = \frac{\Delta \tau^2 W}{\pi \mu}$$

2 Ruptures on 3D bounded fault are controlled by the theoretical equation for very long ruptures:

$$G_c = G_0 \left(1 - \frac{\dot{\nu}_r W}{\nu_s^2} \frac{1}{A \alpha_s^P} \right)$$

$$\alpha_s = \sqrt{1 - (v_r/v_s)^2}$$

Implications:

- -- Rupture potential and final earthquake size
- -- Super-cycle

Rupture potential

$$\frac{\dot{v}_r W}{v_s^2 (1 - G_c/G_0)} = A\alpha_s^P$$

$$\downarrow$$

$$v_r dv_r$$

$$v_s^2 \alpha_s^P = A(1 - G_c/G_0) dx/W$$

Rupture potential

$$\frac{\dot{v}_r W}{v_s^2 (1 - G_c/G_0)} = A \alpha_s^P$$

$$\frac{\sqrt{v_r} dv_r}{v_s^2 \alpha_s^P} = A(1 - G_c/G_0) dx/W$$
"Kinetic" energy?
$$\oint \text{ "Potential" energy?}$$

$$\frac{1}{P-2} (\alpha_s^{2-P} - 1)|_{v_{r1}}^{v_{r2}} = \int_{L_1}^{L_2} A(1 - G_c/G_0) dx/W$$

Rupture potential

$$\frac{\dot{v}_r W}{v_s^2 (1 - G_c/G_0)} = A\alpha_s^P$$

$$\frac{\sqrt{v_r} dv_r}{v_s^2 \alpha_s^P} = A(1 - G_c/G_0) dx/W$$
Write the energy of the energy

Determine earthquake size

www.thinglink.com

Weng and Ampuero, JGR, in revision

Determine earthquake size

www.thinglink.com

Determine earthquake size

www.thinglink.com

Super earthquake cycles?

- Fault segmentation \geq
- Maximum magnitude? \geq

Super cycles

Stressing rate:

$$\dot{\tau}(L) = \gamma_l \exp(-L/W) + \gamma_l$$

Assumption:

$$G_c/G_0 = B\Delta\tau^{n-2}$$

overview

- Equation of motion for mode III in 3D
- Equation of motion for mode II in 3D
 - -- Subshear
 - -- Supershear
- Ruptures of mixture of modes II and III

In-plane sub-shear

Analytic result (similar as mode III):

$$G_0 = \lambda \frac{\Delta \tau^2 W}{\mu}$$

$$\frac{\dot{v}_r W}{v_s^2 (1 - G_c/G_0)} = A \alpha_R^P$$

$$\alpha_R = \sqrt{1 - (v_r/v_R)^2}$$

Weng and Ampuero, In prep.

In-plane sub-shear

Analytic result (similar as mode III):

1.0

0.8-

0.6-

0.4

0.2-

0.0

0

 $V_{\rm r}/V_{\rm s}$

Rayleigh speed

5

$$G_0 = \lambda \frac{\Delta \tau^2 W}{\mu}$$

 G_c/G_0

0.99 0.98 0.97

0.96 0.95 0.94

15

10

L/W

0.2

0.4

0 0.0

20

Weng and Ampuero, In prep.

1.0

0.8

0.6

 $v_{\rm r}/v_{\rm s}$

overview

- Equation of motion for mode III in 3D
- Equation of motion for mode II in 3D
 - -- Subshear
 - -- Supershear
- Ruptures of mixture of modes II and III

Dynamics of supershear ruptures

- Steady-state supershear
- G_c/G₀ controls supershear speed
- Critical value of G_c/G₀ for supershear

3D numerical simulations

Weng and Ampuero, In manuscript.

Dynamics of supershear ruptures

3D numerical simulations

Weng and Ampuero, In manuscript.

overview

- Equation of motion for mode III
- Equation of motion for mode II
 - -- Subshear
 - -- Supershear
- Ruptures of mixture of modes II and III

2018 Mw7.5 Palu earthquake

Bao et al, 2019

Slow supershear (sub-Eshelby)

Slow supershear (sub-Eshelby)

Non-pure strike slip

- How to explain the observed slow supershear earthquakes?
- What is the effects of rake angle (mixture of modes II and III) on dynamic ruptures?

Mixture of modes II and III

Slow supershear (sub-Eshelby)

Geometrical effects?

Geometrical effects?

Geometrical effects?

Insight for seismology

Summary

Summary

