Advanced Workshop on Earthquake Fault Mechanics: Theory, Simulation and Observations ICTP, Trieste, Sept 2-14 2019

Lecture 5: 3D rupture effects Jean Paul Ampuero (IRD/UCA Geoazur)

Pulses on faults with finite seismogenic depth

Arrest of long ruptures

Weng and Ampuero (2019)

What limits the thickness of damage zones?

Ampuero and Mao (2017), Upper Limit on Damage Zone Thickness Controlled by Seismogenic Depth

Inner damage zone thickness depends on seismogenic width

Fracture mechanics theory

Stress near crack tip: $\tau \approx \frac{K}{\sqrt{r}} + \tau_0$

where K is the stress intensity factor, $K \sim \sqrt{l} \Delta \tau$

 $\Delta \tau$ is stress drop and l the shortest rupture size:

l = R (radius) for circular ruptures,

l = W (width) for elongated ruptures ($W \ll L$)

Damage zone size: distance at which $\tau = \tau_s$ (stress=yield strength)

$$r_c \sim \left(\frac{\Delta \tau}{\tau_s - \tau_0}\right)^2 l < \sim 0.01 W$$
Relative stress drop

Seismogenic zone depth control on the likelihood of fault stepover jump

Examples of rupture complexity in large strike slip earth quakes

Sieh et. al 1993

Stepover jumps in past earthquakes

(Wesnousky 2006)

Critical stepover distance ≈ 5 km

Observations

(Wesnousky 2006)

Shaw and Dieterich (2009)

Critical stepover distance from static stress analysis

$$\sigma_{ij} = \frac{K_{II}}{\sqrt{2\pi r}} \Sigma_{ij}(\theta) + \sigma_0 + O(\sqrt{r})$$

$$K_{II} \propto \sqrt{W} \cdot \Delta \sigma$$
$$H_c \propto W \left(\frac{\Delta \sigma}{\sigma_{yield} - \sigma_0}\right)^2$$

Critical stepover distance proportional to seismogenic depth

Bai and Ampuero (2017)

Bai and Ampuero (2017)

Relative stress ratio:

$$S = (\tau_s - \tau_0)/(\tau_0 - \tau_d)$$

= (strength excess) / (stress drop)

High S = low initial stress

Bai and Ampuero (2017)

Bai and Ampuero (2017)

$$H_c/W = 0.3/S^2$$

 $S = (\tau_s - \tau_0)/(\tau_0 - \tau_d)$

Dilatational stepovers

Bai and Ampuero (2017)

Compressional stepovers

Summary

Effects of seismogenic width W:

- Pulse-like rupture
- Changes the energy balance: limits the energy flux, introduces rupture inertia
 → implications on rupture arrest size
- Limits the thickness of damage zones
- Limits the stepover distance that ruptures can jump
- Allows for rupture at "unstable" and "forbidden" speeds