NEARLY DE SITTER GRAVITY

arXiv:1905.03780 (Cotler, KJ, Maloney) see also arXiv:1904.01911 (Maldacena, Turiaci, Yang)

Non-Perturbative Methods in Quantum Field Theory ICTP Trieste, 3 September 2019

 \mathcal{I}^+

DE SITTER HOLOGRAPHY?

By now we have a fairly good understanding of AdS holography: defined by a dual CFT.

What about de Sitter?

"dS/CFT": a non-unitary CFT dual to an inflating patch.

 \mathscr{I}^+

But basic observables of dS are transition amplitudes between infinite past and future ("metaobservables"). Is there a dual "CFT" which computes them?

DE SITTER HOLOGRAPHY?

But basic observables of dS are transition amplitudes between infinite past and future ("metaobservables"). Is there a dual "CFT" which computes them?

$$= \langle g^+ | \mathcal{U} | g^- \rangle = \int [d\xi^+] [d\xi^-] e^{-S_{\rm CFT}[\xi^+,\xi^-]}$$

Immediate problem:

There are nonzero correlations between \mathscr{I}^+ and \mathscr{I}^- without local interactions which couple the boundaries.

JACKIW-TEITELBOIM GRAVITY

Enter "JT" gravity, a toy model for 2d quantum gravity.

AdS version: [KJ] [Maldacena, Stanford, Yang] [Engelsöy, Mertens, Verlinde]

$$S_{\rm JT} = -S_0 \chi - \frac{1}{16\pi G} \int d^2 x \sqrt{g} \,\varphi \left(R + \frac{2}{L^2}\right)$$
"Dilaton"

Usual Euler term familiar from worldsheet string theory.

No bulk dof; however there is a boundary reparameterization mode. Loops can sometimes be summed to all orders in G. [Stanford, Witten]

JACKIW-TEITELBOIM GRAVITY

$$S_{\rm JT} = S_0 \chi + \frac{1}{16\pi G} \int d^2 x \sqrt{-g} \varphi \left(R - \frac{2}{L^2} \right)$$

There is also a version with positive cosmological constant.

"Nearly dS₂" solutions:
$$\begin{cases} ds^2 = -dt^2 + \cosh^2\left(\frac{t}{L}\right) dx^2 \\ \varphi = \frac{\sinh t}{\ell} \end{cases}$$

Gives us a theoretical laboratory to study dS quantum gravity.

GOAL: QUANTUM COSMOLOGY DONE RIGHT

Consider the "disk" partition function: $Z_{\text{HH}} \approx \langle \beta | \mathcal{U} | \emptyset \rangle$

Boundary conditions:

Smoothly caps off in the past Near \mathscr{I}^+ we have a cutoff slice ε ,

$$\begin{cases} dS^2 \approx \frac{dx^2}{\varepsilon^2}, & x \sim x + \beta, \\ \varphi \approx \frac{1}{J\varepsilon}, \end{cases}$$

Consider the "disk" partition function: $Z_{\rm HH} \approx \langle \beta | \mathcal{U} | \emptyset \rangle$

 \mathcal{I}^+

Consider the "disk" partition function: $Z_{\rm HH} \approx \langle \beta | \mathcal{U} | \emptyset \rangle$ \mathcal{I}^+ Classical solution is complex: $\begin{cases} ds^2 = -dt^2 + \cosh^2 t \, d\theta^2 \, , \\ \varphi = \frac{2\pi}{\beta J} \sinh t \, , \end{cases}$ t = 0t $= -i\tau$ $-\frac{i\pi}{2}$

Consider the "disk" partition function: $Z_{\text{HH}} \approx \langle \beta | \mathcal{U} | \emptyset \rangle$ \mathcal{J}^+ $S_{\text{JT}} = -iS_0 + \frac{1}{8\pi G} \int d\theta \sqrt{h} \, \varphi(K-1)$ t = 0

Consider the "disk" partition function: $Z_{\text{HH}} \approx \langle \beta | \mathcal{U} | \emptyset \rangle$

t = 0

 $C(\mathbf{0})$

 \mathcal{I}^+

$$Z_{\rm HH} = e^{S_0} \int [Df] e^{iS[f]}$$
$$S[f] = \frac{1}{4G\beta J} \int_0^{2\pi} d\theta \left(\{f(\theta), \theta\} + \frac{1}{2}f'(\theta)^2 \right)$$

 $\{f(\theta), \theta\} = \frac{f'''(\theta)}{f'(\theta)} - \frac{3}{2} \left(\frac{f''(\theta)}{f'(\theta)}\right)^2 = \text{Schwarzian derivative}$

n.b.
$$\tan\left(\frac{f}{2}\right) \sim \frac{a \tan\left(\frac{f}{2}\right) + b}{c \tan\left(\frac{f}{2}\right) + d}, \quad ad - bc = 1 \quad \Rightarrow \quad f \in \text{Diff}(\mathbb{S}^1)/PSL(2;\mathbb{R})$$

Consider the "disk" partition function: $Z_{\text{HH}} \approx \langle \beta | \mathcal{U} | \emptyset \rangle$

Not clear how to normalize $|\beta\rangle$ or $|O\rangle$, but we do see relative suppression to nucleate at large β , i.e. large universes.

Consider the "disk" partition function: $Z_{\text{HH}} \approx \langle \beta | \mathcal{U} | \emptyset \rangle$

$$Z_{\rm HH} = \frac{1}{\sqrt{2\pi}(-2i\beta J)^{3/2}} e^{S_0 + \frac{\pi i}{4G\beta J}}$$
$$= Z_{\rm disc}(-i\beta J)$$

continuation of Euclidean AdS₂ result!

Consider the "disk" partition function: $Z_{\rm HH} \approx \langle \beta | \mathcal{U} | \emptyset \rangle$ \mathcal{I}^+ Classical solution is complex: $\begin{cases} ds^2 = -dt^2 + \cosh^2 t \, d\theta^2, \\ \varphi = \frac{2\pi}{\beta J} \sinh t, \end{cases}$ t = 0t $t = -i\tau$ $-\frac{i\pi}{2}$ $l\pi$

Consider the "disk" partition function: $Z_{\text{HH}} \approx \langle \beta | \mathcal{U} | \emptyset \rangle$ \mathcal{I}^+ Classical solution is complex: $\begin{cases} ds^2 = -\left(d\rho^2 + \sinh^2\rho \,d\theta^2\right), \\ \varphi = -\frac{2\pi i}{\beta J}\cosh\rho, \end{cases}$ t = 0t $t = -i\tau$ $-\frac{i\pi}{2}$ $l\pi$

Consider the "disk" partition function: $Z_{\text{HH}} \approx \langle \beta | \mathcal{U} | \emptyset \rangle$

$$\begin{cases} ds^2 = -\left(d\rho^2 + \sinh^2\rho \,d\theta^2\right) ,\\ \varphi = -\frac{2\pi i}{\beta J}\cosh\rho , \end{cases}$$

Hyperbolic disc in (-,-) signature.

Continuation from dS to EAdS [Maldacena, '10]

$GLOBAL \ NEARLY \ DS_2$

Now the annulus partition function: $Z_{\text{global}} \approx \langle \beta_+ | \mathcal{U} | \beta_- \rangle$

Classical solutions (for
$$\beta_{+} = \beta_{-} = \beta$$
):
 $ds^{2} = -dt^{2} + \alpha^{2} \cosh^{2} t \, d\Psi^{2}$,
 $\varphi = \frac{2\pi\alpha}{\beta J} \sinh t$
 $\Psi = \theta + \gamma \Theta(t)$

$GLOBAL \ NEARLY \ DS_2$

Now the annulus partition function: $Z_{\text{global}} \approx \langle \beta_+ | \mathcal{U} | \beta_- \rangle$

$$\begin{split} Z_{\text{global}} &= -\int_{0}^{\alpha} \frac{d\alpha \,\alpha}{2G} \int_{0}^{2\pi} d\gamma \int [Df_{+}] [Df_{-}] e^{iS[f_{+},f_{-}]} \\ S[f_{+},f_{-}] &= \frac{1}{4G\beta_{+}J} \int_{0}^{2\pi} d\theta \left(\{f_{+}(\theta),\theta\} + \frac{\alpha^{2}}{2} f_{+}'(\theta)^{2} \right) - (+ \rightarrow -) \\ Z_{\text{global}} &= -2\pi \int_{0}^{\infty} \frac{d\alpha \,\alpha}{2G} Z_{T}(\beta_{+}J,\alpha) Z_{T}^{*}(\beta_{-}J,\alpha) \\ Z_{T}(\beta J,\alpha) &= \frac{1}{\sqrt{2\pi} (-2i\beta J)^{1/2}} e^{\frac{\pi i\alpha^{2}}{4G\beta J}} \end{split}$$

GLOBAL NEARLY DS₂

Now the annulus partition function: $Z_{\text{global}} \approx \langle \beta_+ | \mathcal{U} | \beta_- \rangle$

$$Z_{\text{global}} = -\int_{0}^{\alpha} \frac{d\alpha \,\alpha}{2G} \int_{0}^{2\pi} d\gamma \int [Df_{+}] [Df_{-}] e^{iS[f_{+},f_{-}]}$$
$$= \frac{i}{2\pi} \frac{\sqrt{\beta_{+}\beta_{-}}}{\beta_{+} - \beta_{-}}$$

Again exact to all orders in G.

Can interpret as propagator for the universe.

GLOBAL NEARLY DS₂

Now the annulus partition function: $Z_{\text{global}} \approx \langle \beta_+ | \mathcal{U} | \beta_- \rangle$

$$Z_{\text{global}} = \frac{i}{2\pi} \frac{\sqrt{\beta_+ \beta_-}}{\beta_+ - \beta_-}$$
$$= Z_{0,2}(\beta_1 J \to -i\beta_+ J, \beta_2 J \to i\beta_- J)$$

Continuation of annulus Z of EAdS₂ [Saad, Shenker, Stanford]

$GLOBAL \ NEARLY \ DS_2$

TOPOLOGICAL GAUGE THEORY

Another way of thinking about it:

JT gravity in dS is equivalent to a $PSL(2; \mathbb{R})$ BF theory. So is JT in Euclidean AdS!

For the annulus partition function of BF one integrates over Wilson loops around the circle.

Integral over α = integral over elliptic monodromies of $PSL(2; \mathbb{R})$.

HIGHER TOPOLOGIES

This viewpoint is ideally situated to tackle more complicated topologies, and so the genus expansion of JT dS gravity.

There are no non-singular Lorentzian R=2 geometries beyond the annulus. However we can *define* the gravity on more complicated topologies by integrating over smooth, flat gauge configurations. After some work (assuming a conjecture [Do '11]), the genus expansion coefficients are the continuation from those recently obtained for Euclidean AdS.

MATRIX INTEGRAL INTERPRETATION

Let us return to the question of de Sitter holography.

What dual structure can compute the various amplitudes?

[Saad, Shenker, Stanford] recently showed that the genus expansion of EAdS JT gravity coincides with the genus expansion of an appropriate double scaled one Hermitian-matrix integral

$$Z_{\rm MM} = \int dH \, \exp\left(-L {\rm tr}(V(H))\right)$$

(whose leading density of states coincides with that of the Schwarzian theory).

MATRIX INTEGRAL INTERPRETATION

Our result implies that the genus expansion of JT dS gravity is encoded in the *same* ensemble.

An example of the dictionary:

$$\left\langle \operatorname{tr}\left(e^{i\beta_{1}^{+}H}\right)\operatorname{tr}\left(e^{i\beta_{2}^{+}H}\right)\operatorname{tr}\left(e^{-i\beta^{-}H}\right)\right\rangle_{\operatorname{con}}$$

BECAUSE THERE ARE RESURGICISTS HERE

The genus expansion is asymptotic, breaking down when

$$g = \beta JG \sim \exp\left(\frac{2S_0}{3}\right) \,.$$

The non-perturbative completion is non-unique.

A basic example of a non-perturbative effect is that the exact density of states is non-perturbatively small below the cut.

UNITARITY?

Is time evolution in this toy model unitary? [Cotler, KJ, unpublished]

UNITARITY?

Is time evolution in this toy model unitary? [Cotler, KJ, unpublished]

Naively no:

The dominant process is the creation/annihilation of baby universes, e.g.

(enhanced by ~ e^{2S_0} relative to annulus)

UNITARITY?

Then $\langle \beta_1 | \mathcal{U}^{\dagger} \mathcal{U} | \beta_2 \rangle \approx \langle \beta_1 | \mathcal{U}^{\dagger} | \emptyset \rangle \langle \emptyset | \mathcal{U} | \beta_2 \rangle$ is completely uncorrelated between β_1 and β_2 .

However:

Need to account for normalization of $|O\rangle$! Depends on $Z_{\rm sphere} \sim e^{2S_0}$.

If we can discard $|\emptyset\rangle^*$, then the "propagator" we found from annulus is consistent with approximate unitary evolution at large e^{S_0} , with a measure on $|\beta\rangle$ of the form $\frac{d\beta}{\beta}$.

*I know of no principled reason to do this.

 $Z_{\text{global}} = \frac{i}{2\pi} \frac{\sqrt{\beta_+ \beta_-}}{\beta_+ - \beta_-}$

CONCLUSIONS

- 1. JT gravity as a toy model for quantum cosmology.
- 2. Partition functions related by continuation from Euclidean AdS JT gravity.
- 3. By virtue of [Saad, Shenker, Stanford], genus expansion of dS JT coincides with that of a double-scaled matrix integral.
- 4. Approximate bulk unitarity..? [WIP]

THANK YOU!