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Available Knowledge on Protein sequence-structure

80.000



Sequence-structure gap

Despite the efforts from structural genomic projects the number of new
structures per year has decreased

NEW sequencing techniques are becoming 
routinely available to scientists.....

Many genomes have been completely sequenced
During the last 250 years, 1.2 million eukaryotic species have been identified 
and taxonomically classified. 

Number of species estimated to exist on Earth: bacterial and archaea species, 
from 100,000 to 10 million; eukaryotic species, approximately 8.7 million.
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Function is attributed to very few atoms absolutely 
conserved during the evolutionary process



The Centrality of a 3D Structure
biological 

multimeric state

mutants (SNPs) and
conservation

ligands and
functional sites

surface properties:
electrostatics, clefts, patches

interaction sites,
catalytic sites

structural/functional
motifs

crystal packing:
putative interaction sites

evolutionary
relationships



Why Does It Make Sense To Align Sequences ?

Same
Sequence

Same 
Function

Same 
3D Fold

Same 
Origin



• The biochemical function (activity) of a protein is defined by its interactions with other 
molecules. 

• The biological function is in large part a consequence of these interactions.

• The 3D structure is more informative than sequence because interactions are 
determined by residues that are close in space but are frequently distant in sequence.

As mentioned before structure is more conserved in 
evolution than sequence.

The net result is that patterns in space are frequently 
more recognizable than patterns in sequence.

Protein Structure Prediction: sequence vs structure



Protein Structure Prediction: the gap in numbers

UniProt: repository of protein sequences (www.uniprot.org)

PDB: repository of protein structures (www.rcsb.org)

~556,000

2018

~14,000 



Single protein structures Interaction protein pair structures

Stein, A., Mosca, R. & Aloy, P. Three-dimensional modeling of protein interactions and complexes is going ‘omics. Curr. Opin. Struct. Biol. 21, 200–208 (2011).

Protein Structure Prediction: the gap in numbers



Protein Structure Prediction: Principles



Measure of structure similarity
(Root Mean Square Deviation 
or RMSD)

Protein Structure Prediction: Principles

Measure of sequence similarity
(Sequence Identity)

During evolution protein structure is more conserved than sequence



Levitt conformational preferences of aa 
in globular proteins Biochemistry (1978) 17, 427



In 1974 there were insufficient data (less than 2500 residues) to accurately 
determine the values.

The propensities were recalculated several times as more data became available,
In 1998 using a dataset of over 33,000 residues leading to some notable 
differences in the two sets of propensities.

By 2004 the proteins structure datasets were large enough to derive residue 
propensities at different positions within alpha-helices.

One of the most accurate determinations of beta-turns residue propensities was 
by the group of Janet Thornton in 1999 based on almost 4000 beta-turns.



Conformational propensities



Conformational propensities

strong formers, formers, indifferent, breakers, strong breakers

alpha-helix 
propensities

beta-sheet 
propensities



Ramachandran Plot

Projection of a torus onto a plane.
Note the clustering of low-energy states of single residues.



Conformational propensities



A/L     R/K     N/M     D/F     C/P     Q/S     E/T     G/W     H/Y     I/V
-0.04   -0.30    0.25    0.27    0.57   -0.02   -0.33    1.24   -0.11   -0.26
-0.38   -0.18   -0.09   -0.01      0.    0.15    0.39    0.21    0.05   -0.06

Alpha-helix propensity derived from designed sequences

http://www.genome.jp/aaindex/

A/L     R/K     N/M     D/F     C/P     Q/S     E/T     G/W     H/Y     I/V
-0.12    0.34    1.05    1.12   -0.63    1.67    0.91    0.76    1.34   -0.77
0.15    0.29   -0.71   -0.67      0.    1.45   -0.70   -0.14   -0.49   -0.70

Beta-sheet propensity derived from designed sequences

Secondary Structure Propensities
(Koehl-Levitt, 1999)



The Anfinsen experiment

A reasonable objection can be raised to the above result by suggesting that perhaps RNaseA was not
completely unfolded in 8 M urea.
To address this class of objections, RNAseA was first reduced and denatured as above.
But in the second phase, the enzyme was first oxidized to form S-S bonds, and then the urea was removed, i.e.
the order of steps in the second phase of the experiment was reversed.
The resulting activity was only about 1-2% of the untreated enzyme.
Sequence analysis showed a random assortment of S-S

Anfinsen "Thermodynamic Hypothesis” states that the native conformation of a
protein is adopted spontaneously.
In other words, there is sufficient information contained in the protein sequence to
guarantee correct folding from any of a large number of unfolded states.



Protein Structure Prediction
• In theory, a protein structure can be solved 

computationally

• A protein folds into a 3D structure to minimizes 
its free potential energy

• The problem can be formulated as a search problem 
for minimum energy

• the search space is enormous
• the number of local minima increases exponentially

Computationally it is an exceedingly difficult problem



Levinthal paradox

In 1969 Cyrus Levinthal noted that, because of the very large number of degrees of
freedom in an unfolded polypeptide chain, the molecule has an astronomical
number of possible conformations.

The estimate 3300 or 10143 appears in the original article. If the protein is to attain its
corrected folded configuration by sequentially sampling all the possible
conformations, it would require a time longer than the age of universe to arrive at its
correct native conformation.

Levinthal himself was aware that proteins fold spontaneously and on short
timescales, and that a random conformational search is therefore impossible.

Christian B. Anfinsen's 1971 Nobel Prize lecture revisits some of the same themes.

From Wikipedia



Protein folded states: ʻexploredʼ as 
contained in the   PDB structures

• But how does a protein fold?

• According to Anfinsen and Levinthal a protein 
cannot visit all the possible f and  Ψ values before 
finding the native structure





It is likely that folding mechanisms vary significantly according to protein size, stability and structure. 
The nucleation-condensation model has been supported by experimental evidence from several 
small proteins including chymotrysin inhibitor-II and barstar.
Bychkova and Ptitsyn have studied more than 20 proteins and found that nearly all adopted a molten 
globule state under mild denaturing conditions.
This points to the hydrophobic collapse model, a model favoured by many for the case of larger 
proteins.



But what if …
we explore the ʻknowledgeʼ of 
the structurally determined 
protein folded states: the 
ʻexploredʼ ones, contained in the  
PDB structures



How Can We Compare Sequences ?
The Twilight Zone

Length

%Sequence Identity

100

Same 3D Fold

Twilight Zone

Similar Sequence
Similar Structure

30%

Different Sequence
Structure ????

30



G F A L T R E G Y P H Q D E
G – – L S G E – P P F Q G A

How is sequence identity defined?

It is the fraction of identical amino acids correctly aligned

14 residues 5 of which identical in the aligned positions:
5/14 x100 = 35% identity

Some Basic Principles: Sequence identity



Structure Prediction: state of the art
Ab initio folding (force-field and simulation based)
1998 Duan and Kollman :36 residues, 1000 ns, 256 processors, 2 months

Recently examples of folding small proteins via computer simulations has been achieved  V. PANDE  (see 
movie)

Ab initio folding (knowledge-based scoring functions)
Rosetta (BAKER)
I-Tasser (ZHANG)

Deep Learning methods (from 2018)

Template-based (or knowledge-based) methods
• Homology modeling: sequence-sequence alignment, works if 

sequence identity > 30%
• Threading

• Protein threading: sequence-structure alignment, can go beyond the 
25% limit



Comparative modeling overview

Why build comparative models?
Many more sequences available than structures (millions vs. tens of 
thousands)
Many applications (e.g. determination of function) rely on structural 
information
Structure is often more conserved than sequencesince evolution tends to 
preserve function, 



Comparative modeling overview

How does it work?
Extract information from known structures (one or more templates), and use 
to build the structure for the ‘target’ sequence
Should also consider information from other sources: physical force fields, 
statistics (e.g. PDB mining)

Classes of methods for comparative modeling
Assembly of rigid bodies (core, loops, sidechains)
Segment matching
Satisfaction of spatial restraints



Comparative modeling by satisfaction of 
spatial restraints - MODELLER

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993.
J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994.
A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.



Pragmatic Definition of Homology:

The probability of two sequences to share more than 30%
sequence identity by CHANCE is so low, one can safely
assume that they share a common ancestor.

Some Basic Principles: Homology



1. Align sequence with structures

First, must determine the template structures
Simplistically, try to align the target sequence against every known structure’s sequence
In practice, this is too slow, so heuristics are used (e.g. BLAST)
Profile or HMM searches are generally more sensitive in difficult cases (e.g. Modeller’s 
profile.build method, or PSI-BLAST)
Could also use threading or other web servers

Alignment to templates generally uses global dynamic programming
Sequence-sequence: relies purely on a matrix of observed residue-residue mutation 
probabilities (‘align’)
Sequence-structure: gap insertion is penalized within secondary structure (helices etc.) 
(‘align2d’)
Other features and/or user-defined (‘salign’) or use an external program



2. Extract spatial restraints

Spatial restraints incorporate homology information, statistical 
preferences, and physical knowledge

Template Cα- Cα internal distances
Backbone dihedrals (φ/ψ)
Sidechain dihedrals given
residue type of both target
and template
Force field stereochemistry
(bond, angle, dihedral)
Statistical potentials
Other experimental constraints
etc.



No

Target – Template
Alignment

MSVIPKRLYGNCEQTSEEAIRIEDSPIV---TADLVCLKIDEIPERLVGE
ASILPKRLFGNCEQTSDEGLKIERTPLVPHISAQNVCLKIDDVPERLIPE

Model Building

START
ASILPKRLFGNCEQTSDEGLK
IERTPLVPHISAQNVCLKIDDV
PERLIPERASFQWMNDK

TARGET

Template Search

TEMPLATE

OK?

Model Evaluation

END

Yes
A. Šali, Curr. Opin. Biotech. 6, 437, 1995.
R. Sánchez & A. Šali, Curr. Opin. Str. Biol. 7, 206, 1997.
M. Marti et al. Ann. Rev. Biophys. Biomolec. Struct., 29, 291, 2000. 

Comparative Modelling

(Adapted from slides in https://salilab.org/modeller/london.zip) 



3. Satisfy spatial restraints

All information is combined into a single objective function
Restraints and statistics are converted to an “energy” by taking the negative log
Force field (CHARMM 22) simply added in

Function is optimized by conjugate gradients and simulated annealing 
molecular dynamics, starting from the target sequence threaded onto 
template structure(s)
Multiple models are generally recommended; ‘best’ model or cluster or 
models chosen by simply taking the lowest objective function score, or 
using a model assessment method such as Modeller’s own DOPE or GA341, 
fit to EM density, or external programs such as PROSA or DFIRE



Comparative Modelling: Template Search
The UniProt database 



Comparative Modelling: Template Search
The UniProt database 



No

Target – Template
Alignment

Model Building

START

Template Search

OK?

Model Evaluation

END

Yes

Comparative Modelling

Step 0 (retrieve the sequence)



Comparative Modelling: Template Search
The FASTA format



No

Target – Template
Alignment

Model Building

START

Template Search

OK?

Model Evaluation

END

Yes

Comparative Modelling

Step 1



Task:
• Query: new sequence (300 aa)
• Database (searching space): very many 

sequences
• Goal: find sequences related to query

We want:
• fast tool
• primarily a filter: most sequences will be 

unrelated to the query 
• fine-tune the alignment later

Comparative Modelling: Template Search



BLAST

BLAST is a program designed for rapidly comparing your
sequence with every sequence in a database and report
the most similar sequences

Basic Local Alignment Search Tool

Comparative Modelling: Template Search

A good general reference is in wikipedia
http://en.wikipedia.org/wiki/BLAST

http://en.wikipedia.org/wiki/BLAST


Comparative Modelling: Template Search
BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) 



Comparative Modelling: Template Search
Understanding the BLAST output

Graphic Display

Hit List

Alignments



To assess whether a given alignment constitutes evidence for homology, it helps to know
how strong an alignment can be expected from chance alone.

In this context, "chance" can mean the comparison of (i) real but non-homologous
sequences; (ii) real sequences that are shuffled to preserve compositional properties; or
(iii) sequences that are generated randomly based upon a DNA or protein sequence model.

(http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html)

Useful rules of thumb:

The E-value indicates the probability of encountering a false positive (expected by chance)
in the sequence hit list. Therefore if one expects many hits from the database (e.g. 100) the
E-values should be low enough to exclude the chance of non related hit.

E-values between 10-4 and 10-6 should be sufficient to exclude this chance.

If one expects few hits from the database (e.g. 1 to 10) the E-values should be high enough
to allow distant sequences to be included in the hit list.

E-values between 10-1 and 10-4 should be high enough for this purpose.

Comparative Modelling: Template Search

BLAST Scoring (E-value)

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html


Comparative Modelling: Template Search
Understanding the BLAST output

Hit List



No

Target – Template
Alignment

Model Building

START

Template Search

OK?

Model Evaluation

END

Yes

Comparative Modelling

Step 2



Multiple Sequence Alignment

A widely used software for sequence alignments is
T-Coffee http://tcoffee.vital-it.ch/apps/tcoffee/do:regular

Comparative Modelling: Template Alignment

http://tcoffee.vital-it.ch/apps/tcoffee/do:regular


No

Target – Template
Alignment

Model Building

START

Template Search

OK?

Model Evaluation

END

Yes

Comparative Modelling

Step 3



Comparative Modeling by Satisfaction of Spatial Restraints 
MODELLER MODBASE Swissmodel

3D  GKITFYERGFQGHCYESDC-NLQP…
SE  GKITFYERG---RCYESDCPNLQP…

1. Extract spatial restraints

2. Satisfy spatial restraints

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993.
J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994.
A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

http://www.salilab.org/modeller

Comparative Modelling: Model Building

(Adapted from slides in https://salilab.org/modeller/london.zip) 



Loop modeling

Often, there are parts of the sequence which have no detectable 
templates (usually loops)
“Mini folding problem” – these loops must be sampled to get 
improved conformations
Database searches only complete for 4-6 residue loops
Modeller uses conformational search with a custom energy function 
optimized for loop modeling (statistical potential derived from PDB)

Fiser/Melo protocol (‘loopmodel’)
Newer DOPE + GB/SA protocol (‘dope_loopmodel’)



Accuracy of loop models as a function of 
amount of optimization



Fraction of loops modeled with medium 
accuracy (<2Å)



No

Target – Template
Alignment

Model Building

START

Template Search

OK?

Model Evaluation

END

Yes

Comparative Modelling

Step 4



Comparative Modelling



Typical errors in comparative models

Distortion/shifts in 
aligned regions

Region without a 
template Sidechain packing

Incorrect template

MODEL
X-RAY
TEMPLATE

Misalignment

Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29, 291-325, 2000.



Model Accuracy as a Function of
Target-Template Sequence Identity

Sánchez, R., Šali, A. Proc Natl Acad Sci U S A. 95 pp13597-602. (1998). 



Model accuracy

Marti-Renom et al. Annu.Rev.Biophys.Biomol.Struct. 29, 291-325, 2000.

MEDIUM ACCURACY LOW ACCURACYHIGH ACCURACY

NM23
Seq id  77%

CRABP
Seq id  41%

EDN
Seq id  33%

X-RAY / MODEL

Scope for improvement:
Sidechains

Cα equiv 147/148
RMSD 0.41Å

Sidechains
Core backbone
Loops

Cα equiv 122/137
RMSD 1.34Å

Sidechains
Core backbone, Loops
Alignment, 
Fold assignment

Cα equiv 90/134
RMSD 1.17Å



Applications of protein structure models

D. Baker & A. Sali. 
Science 294, 93, 2001.



Ramachandran plot 

• B. Beta strand
• A. Right handed helix
• L. Left handed helix
• Color coding

• White. Disallowed 
• Red. Most favorable
• Yellow. Allowed region

• Glycine triangles 

A

L

B

Comparative Modelling: Model Evaluation



Letʼs find the wrong structure!

• 1RIP Ribosomal protein 1PLC Electron transport protein  

Comparative Modelling: Model Evaluation



Procheck: Ramachandran Plots



Procheck: Bond Lenghts

1plc



1plc



Let’s find the wrong structure!

Comparative Modelling: Model Evaluation



Comparative Modelling: Model Evaluation



How do we display a structure?
Calmodulin



The DSSP program defines 7 secondary structure states

H : alpha helix 
B : residue in isolated beta-bridge 
E : extended strand, participates in beta ladder 
G : 3-helix (3/10 helix) 
I : 5 helix (pi helix) 
T : hydrogen bonded turn 
S : bend 

Kabsch & Sander, Dictionary of protein secondary structure: pattern recognition 
of hydrogen-bonded and geometrical features.
Biopolymers, 22(12), 2577-2637 (1983).  http:/swift.cmbi.ru.nl/gv/dssp/
http://www.cmbi.ru.nl/hsspsoap/

The secondary structure assignment with DSSP over a database of structures  
can be used as ‘standard of truth’ for secondary structure prediction methods.

Secondary Structure Assignment
(given a 3D structure, assign secondary structural elements)

web-server

http://swift.cmbi.ru.nl/gv/dssp/
http://swift.cmbi.ru.nl/gv/dssp/


The secondary structure assignment with DSSP over a database of structures 
can be used as ‘standard of truth’ for secondary structure prediction methods.

Secondary Structure Assignment of a PDB file

71



What is a Hydrogen Bond?

A hydrogen bond is formed when a proton (H) covalently attached to one
electronegative donor atom (D) is shared with another electronegative acceptor
atom (A).

One of the widely used schemes was proposed by Morokuma (1977) in which ab-
initio calculations describe the interaction energy of a hydrogen bond in terms of
electrostatic, charge transfer, polarization, exchange repulsion and coupling.

DSSP uses mainly hydrogen bond assessments to 
discriminate secondary structure elements



DSSP: H-bond energy cutoff 

Kabsch W, Sander C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, 
Biopolymers (1983) 22:2577-637.

http://www.ncbi.nlm.nih.gov/pubmed?term=Kabsch%20W%5bAuthor%5d&cauthor=true&cauthor_uid=6667333
http://www.ncbi.nlm.nih.gov/pubmed?term=Sander%20C%5bAuthor%5d&cauthor=true&cauthor_uid=6667333
http://www.ncbi.nlm.nih.gov/pubmed?term=Kabsch%20Sander%20dictionary


DSSP: H-bond energy cutoff 



Model accuracy
If we know the answer

Fraction correct = Nc/N
Nc = number correct (dij<4Å)

dij

Blue model 
Yellow structure



Databases of multiple alignments ----> Domains
Very early in the days of protein sequence analysis, it was observed that some
protein sequences contained long segments that were very similar to other
proteins, while the rest of the sequence in that protein had no detectable similarity.
Today, we take more or less for granted that proteins are composed of domains,
segments of sequence which have been joined together by genetic events during
evolution so that the new protein has a function that is based on the activities of the
domains it contains.

Often the domains detectable by sequence analysis correspond to structural 
domains in the 3D structure as well. There are now many well-documented cases 
where it has been shown that domains can exists perfectly well in isolation, when 
excised from the original protein. Surprisingly often, a domain can be expressed 
and folded all on its own.

There are today several databases that keep track of which domains have been 
discovered, which proteins are involved, and that store the multiple sequence 
alignments of the relevant segments of the protein sequences. We will discuss 
one such of databases, Pfam. 
Also, several of the primary sequence databases now contain information about 
the domains in the sequence entries.



The idea behind Pfam is twofold:

1. Create and maintain good-quality multiple sequence alignments of well-defined protein 
sequence domains from proteins in SWISS-PROT.

2. Use these multiple alignments for creating so-called HMMs(Hidden Markov Models)  
machine learning algorithms, that can be used in profile searches of sequence databases. 
https://en.wikipedia.org/wiki/Hidden_Markov_model

There are today several databases that keep track of which domains have been discovered, 
which proteins are involved, and that store the multiple sequence alignments of the relevant 
segments of the protein sequences. We will discuss one such of databases, Pfam. 
Also, several of the primary sequence databases now contain information about the 
domains in the sequence entries.

The multiple alignment used to define a domain (protein family) in Pfam are called the seed 
alignment. It is created by a curator, or taken from the literature. It is used to generate a 
profile HMM for identifying other sequences in the databases (SWISS-PROT and TREMBL) 
that contain the domain. The search results are inspected to decide which cutoff should be 
used for that particular Pfam entry. The search hits are then aligned automatically into a so-
called full alignment.



Pfam

http://pfam.sanger.ac.uk/

The alignments can be converted into hidden Markov models (HMM), which can be used to 
search for domains in a query protein sequence. The software HMMER (by Sean Eddy) is 
the computational foundation for Pfam. 

http://nar.oxfordjournals.org/content/early/2015/05/04/nar.gkv397.full
http://hmmer.org/

HMMER is often used together with a profile database, such as Pfam or many of the 
databases that participate in Interpro. But HMMER can also work with query sequences, not 
just profiles, just like BLAST. For example, you can search a protein query sequence against a 
database with phmmer, or do an iterative search with jackhmmer. 

The domain structure of protein sequences in SWISS-PROT and TrEMBL are available 
directly from the Pfam web sites, and it is also possible to search for domains in other 
sequences using servers at the web sites.

http://nar.oxfordjournals.org/content/early/2015/05/04/nar.gkv397.full
http://hmmer.org/
http://pfam.xfam.org/
http://www.ebi.ac.uk/interpro/


PROSITE www.expasy.ch/prosite/

PROSITE is a database of protein families and domains. It consists of biologically 
significant sites, patterns and profiles that help to reliably identify to which known 
protein family (if any) a new sequence belongs.

It was started by Amos Bairoch, is part of SWISS-PROT and is maintained in the same 
way as SWISS-PROT. The basis of it are regular expressions describing characteristic 
subsequences of specific protein families or domains. PROSITE has been extended to 
contain also some profiles, which can be described as probability patterns for specific 
protein sequence families.

The site above can be used to search by keyword or other text in the entries,
to search for a pattern in a sequence, or to search for proteins in SWISS-PROT
that match a pattern.

Prosite
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http://prosite.expasy.org/

http://prosite.expasy.org/


Domain prediction by Smart





van Gunsteren W.F. et al.  Angew. Chem. Int. Ed. 2006, 45:4064-4092

why simulations?

Anton
GPUs?



Molecular Mechanics and Force Fields
Energy landscapes of proteins

http://www.youtube.com/watch?v=YANAso8Jxrk

3D Structure Energy landscape

Molecular Mechanics Force Fields provide a ‘recipe’ 
(equations and parameters) to calculate the potential 

energy of a protein from its atomic coordinates 



Molecular Mechanics and Force Fields
MM Force Fields

stretching

bending

torsion

van der Waals (repulsive)

van der Waals (attractive)

+ -

+ +

electrostatic

Levitt, M.et al Computer Physics 
Communications 91, 215(1995)



Molecular Mechanics and Force Fields
MM Force Fields

CT CT
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HC

HC

HC

HC

HC

HC

HC

H

H

O

N N

H1C

C

CT

C

Assignment of Atom Types (based on the chemical environment)



Molecular Mechanics and Force Fields
MM Force Fields

Ustretch
X−Y = Kr

X−Y × r − req
X−Y( )

2 CT CT
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Assignment of parameters



Molecular Mechanics and Force Fields
Force Field Parametrisation

Equilibrium bond distances and angles: X-ray crystallography

Bond and angle force constants: vibrational spectra, normal mode calculations with 
Quantum Mechanics (QM)

Dihedral angle parameters: difficult to measure directly with experiments; fit to QM 
calculations for rotations around a bond with other motions fixed

Atom charges: fit to experimental liquid properties, ESP charge fitting to reproduce 
electrostatic potentials of high level QM, X-ray crystallographic electron density

van der Waals parameters: often most difficult to determine, fit to experimental liquid 
properties, intermolecular energy fitting

Force Fields parameters are derived from experimental data or 
calculations performed at a higher level of theory (Quantum Mechanics)



Molecular Mechanics and Force Fields
Force Fields for Biomolecules

FFs commonly used for biomolecules:
AMBER
CHARMM
GROMOS
OPLS

Improved over time and validated 
against experimental data, including:

• experimental structures 
• secondary structure propensities
• NMR data (e.g. order parameters, 

chemical shifts, NOEs etc…)

ILDN and CHARMM22*, perform consistently well in repro-
ducing the experimental data in the set of tests presented here
(Fig. 3). As these two force fields are also among the most recent
ones, we examined whether force fields have generally improved
over time. The results show a clear correlation between the year of
publication of a force field and the assigned force field score,
suggesting that force fields are indeed improving over time (Fig. 3).
It should be noted that other factors will often be relevant to the

choice of a force field for specific types of MD simulations. Such
factors may include the availability of force field parameters for
molecules other than proteins (e.g., lipids, nucleic acids, carbohy-
drates, co-factors, substrates or drug molecules). In particular, it
should be noted that our tests do not include any membrane
proteins, and that the force field best used to describe such proteins
might in principle depend on the lipid model employed.
Our results also highlight areas for future improvements of the

force fields we tested. These include the ability to model the
temperature dependency of the conformational propensities in
both the AAQAA and CLN025 peptides, and to more accurately
match the kinetics and thermodynamics of the folding of villin and
the WW domain. We are hopeful that the tests described here will
prove useful in further refining contemporary force fields, thus
enhancing the value of MD simulation as a tool for elucidating the
molecular details of important biological processes.

Methods

Common methods. All production molecular dynamics
simulations were performed on Anton [2]. Simulations were
performed in the TIP3P water model ([32]; for Amber and OPLS-
AA force fields) or the CHARMM modified TIP3P water model
([18,32]; for CHARMM force fields).
Simulations and analysis of the native state of

ubiquitin and GB3. Production simulations of ubiquitin and
GB3 were performed in the NVT ensemble. We used a 9.5-Å cutoff
for the Lennard-Jones and short-range electrostatic interactions;
long-range electrostatic interactions were treated with the Gaussian
split Ewald method [33]. The starting structures for the simulations

were the high-resolution NMR structures of ubiquitin ([34]; PDB
entry 1D3Z) and GB3 ([35]; PDB entry 1P7E). The structures were
solvated in a cubic box with side lengths 58 Å, and were first
minimized, heated to 300 K during 0.4 ns, and finally equilibrated
in the NPT ensemble for 0.8 ns. The frame with the volume closest
to the average during this NPT simulation was used as starting point
for the production simulations in the NVT ensemble, thus ensuring
that the average pressure in the simulations is close to the reference
standard pressure. For both ubiquitin and GB3 we also performed
simulations in the NPT ensemble (using ff99SB*-ILDN) and found
that the calculated NMR observables are within error the same as
those in the corresponding simulations in the NVT ensemble.
We calculated backbone scalar couplings using published

Karplus relationships for HNHA, HNCO and HNCB [36], and
HACO [37] couplings and compared to experimental data
measured for ubiquitin ([38]; HNHA, HNCO, HNCB and
HACO) and GB3 ([36]; HNHA, HNCO and HNCB). We
calculated backbone residual dipolar couplings and the associated
Q scores as previously described [39] and compared to
experimental values in ubiquitin [34] and GB3 [35]. Order
parameters were calculated from the values of the internal
autocorrelation functions at lag times close to the experimentally
determined rotational correlation times.

Simulated tempering simulations and analysis of
AAQAA and CLN025 peptides. The temperature-dependent
conformational properties of the (AAQAA)3 [24] and CLN025
[25] peptides were obtained using simulated tempering simulations
[40] in the NPT ensemble. In contrast to the simulations of folded
proteins or of protein folding, we found it necessary to perform
these simulations in the NPT ensemble to avoid changing the
average pressure as the temperature varied. We used a 9.5-Å cutoff
for the Lennard-Jones and short-range electrostatic interactions;
long-range electrostatic interactions were treated with the Gaussian
split Ewald method [33].

The helical fraction of the AAQAA-peptide was calculated as
the fraction of helical residues [13,15] at each temperature in the
simulated tempering simulations and compared to the experimen-
tal values [24]. The fraction of the CLN025 that was folded was
determined by applying a dual-cutoff approach [15,41] to separate
the simulations into folded and unfolded states. In this analysis, a
folding event was recorded if the Ca-RMSD to the experimental
NMR structure dropped below 1.0 Å and an unfolding event was
recorded once the same RMSD went above 4.0 Å.

Folding simulations of villin and WW domain. Simula-
tions of fast-folding variants of villin [29] and the WW domain
[30] were performed in the NVT ensemble using a Nose-Hoover
thermostat and a force-shifted cutoff [42] of 10.0 Å (villin) or 10.5 Å
(WW domain) for the Lennard-Jones and electrostatic interactions.
The starting structures for the simulations were heat-unfolded states
of the two proteins in a cubic box of water with side length 52 Å.
The simulations were performed near the experimental melting
temperatures (at 360 K for villin and 370 K for the WW domain).
For the WW domain, we recorded a folding event when the Ca-
RMSDs (to PDB entry 2F21) calculated over four stretches of amino
acids all were below the cutoff value: 2–33 (2.0 Å), 8–22 (1.1 Å), 12–
18 (0.6 Å), 19–30 (0.9 Å). An unfolding event was recorded when
the same set of RMSDs went above 7.0 Å, 5.8 Å, 1.8 Å and 3.8 Å,
respectively. For villin, we recorded a folding event when the Ca-
RMSDs (to PDB entry 2F4K) calculated over three stretches of
amino acids were all below the cutoff value: 3–31 (1.2 Å), 3–18
(0.9 Å), 14–31 (0.9 Å). An unfolding event was recorded when the
same set of RMSDs simultaneously went above 5.0 Å, 4.6 Å, and
2.5 Å, respectively.

Figure 3. Improvement of force fields over time. For each force
field, we assigned a score depending on the agreement with
experiments in the tests presented here. Low scores indicate good
agreement with experiments. These scores are plotted against the year
in which the force field was published. For the force fields that involve
multiple corrections (e.g., ff99SB*-ILDN), we use the year of the most
recently published correction.
doi:10.1371/journal.pone.0032131.g003
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Ab-initio folding from first principles
Force Fields and MD

Study of folding mechanisms

http://www.youtube.com/watch?v=gFcp2Xpd29I

Voelz, V. A. et al. J. Am. Chem. Soc. 132, 1526–1528 (2010).

final structure



http://www.youtube.com/watch?v=gFcp2Xpd29I

Simulation by Computer of a protein fast folder

Ab initio folding (force-field and simulation based)

https://www.youtube.com/watch?v=sD6vyfTtE4U

http://www.youtube.com/watch?v=gFcp2Xpd29I
https://www.youtube.com/watch?v=sD6vyfTtE4U


Learning outcomes of this lecture:

Why do we need to predict protein structures
Importance of 3D structure Knowledge
Folding: Anfinsen theorem Levinthal paradox
Structure Prediction: Comparative Modelling: which are the main steps
involved?
Main problems encountered in Comparative Modelling
What is DSSP and which information gives?
Assessing protein structures
Analysing Structures
Analysing Dynamics of Structures



Suggested readings
Secondary structure predictions: 

1) DSSP: Kabsch W, Sander C.Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and
geometrical
features. Biopolymers. 1983 22(12):2577-637.

2) Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence.Adv Enzymol Relat
Areas Mol Biol. 1978;47:45-148.

3) Chen H, Gu F, Huang Z. Improved Chou-Fasman method for protein secondary structure prediction. BMC Bioinformatics.
2006 12:7 Suppl 4:S14

Tertiary structure predictions:
1) Forster MJ (2002) Molecular Modelling in structural biology. Micron 33, 365-384
2) Sutcliffe MJ, Hayes FR, Blundell TL. Knowledge based modelling of homologous proteins, Part II: Rules for the

conformations of substituted sidechains. Protein Eng. 1987 1(5):385-92.
3) Sutcliffe MJ, Haneef I, Carney D, Blundell TL. Knowledge based modelling of homologous proteins, Part I:Three-dimensional

frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1987 1(5):377-84.

Very recent methods

Protein structure determination using metagenome sequence data. Ovchinnikov S, Park H, Varghese N, Huang PS, Pavlopoulos GA, Kim DE, 
Kamisetty H, Kyrpides NC, Baker D. Science. 2017 Jan 20;355(6322):294-298. doi: 10.1126/science.aah4043.

De novo structure prediction with deeplearning based scoring R.Evans *,1 , J.Jumper *,1 , J.Kirkpatrick *,1 , L.Sifre *,1 ,
T.F.G.Green 1 , C.Qin ,1 , A.Zidek 1 , A.Nelson 1 , A.Bridgland 1 , H.Penedones 1 , S.Petersen 1 , K.Simonyan 1 , S.Crossan 1 , D.T.Jones 2 ,
D.Silver 1 , K.Kavukcuoglu 1 , D.Hassabis 1 , A.W.Senior (Goodle Deepmind)

Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints.  Greener JG, Kandathil SM, 
Jones DT. Nat Commun. 2019 Sep 4;10(1):3977. doi: 10.1038/s41467-019-11994-0.



Web resources
Introductory MD simulation tutorials and How-tos
GROMACS (freely available) 
http://www.gromacs.org/Documentation/Tutorials#General_GROMACS_Use
http://www.gromacs.org/Documentation/How-tos

NAMD (freely available) 
http://www.ks.uiuc.edu/Training/Tutorials/index-all.html#namd

AMBER
http://ambermd.org/tutorials/#basic_tut

VMD (visualisation of MD trajectories, freely available)
http://www.ks.uiuc.edu/Training/Tutorials/vmd/tutorial-html/

YASARA
http://www.yasara.org/movies.htm

Servers
MDWeb
http://mmb.irbbarcelona.org/MDWeb/ (System set-up)
We-NMR
https://www.wenmr.eu/wenmr/molecular-dynamics-software (run simulations on the GRID, 
requires registration)

Databases
MolMovDB (database of macromolecular motions, contains morphs between different 
conformations)
http://www.molmovdb.org/


