
The Very Basics of Molecular Dynamics




What is Molecular Dynamics?
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€ 

F(t) = MR
..
(t) = −∇V ( R(t){ })

             Numerical Integration (?) 

V ( R(t){ })

Trajectory: Positions and Velocities over time 

? 

? 

? 



Ingredients to conduct an MD simulation
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1)  Must need a way to integrate the differential equation 
above to get positions and velocities in time 

 

2)   Need a potential to get the forces 

 

3)  Must generate initial velocities and/or thermostat or 
keep the system at a particular  

Classical Statistical Mechanics, Thermodynamics, Classical Mechanics 



What we can learn from MD simulations?
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•  Atomic and molecule distribution functions 
•  Phase diagrams 

•  Transport coefficients (viscosity, diffusion, thermal 
conductivity,…) 
•  Solvation energy and free energy 
•  Binding energy and free energy 
•  Microscopic insight 

Molecular Dynamics




The free energy (vs potential energy) landscape
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G 

ΔG 

ΔG 

General Order Parameter 

activation free energy → rate 

ΔG free energy difference between isomers → 
equilibrium constant 

ΔG 
krateα exp(−

ΔGact

kBT
)

Sampling problems in Molecular Dynamics 



Static vs Dynamic Properties: Techniques
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Static properties 
 
•  Monte Carlo  
•  Molecular dynamics (particles have 

kinetic energy) 

Dynamic properties 
 
•  Molecular dynamics 



Statistical Mechanics
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Main ideas (1): 

 
 
 
Many-particle systems rapidly lose memory of their initial 
conditions, and reach equilibrium, characterized by a handful of 
variables (T, P, N, V,… ) 
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Statistical Mechanics
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Main ideas (2): 

isolated, energy-conserving system: 
 
 
 
At equilibrium, every combination of momenta and positions 
 
 
allowed by energy conservation 
 
 
 
 is equally likely. 
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Statistical Mechanics
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Main ideas (3): 

system in contact with heat bath 
at temperature T. 
 
 
At equilibrium, probability of finding a combination of 
momenta and positions 
 
 
is proportional to Boltzmann factor, 
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Behavior of Macroscopic Variables
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X

time 

Xeq 

X irreversibly approaches an equilibrium value Xeq. 

Xeq can be predicted from handful of other macroscopic variables 
(pressure, temperature, composition)    ~1023 coord’s. not required! 

Once equilibrium attained, system never changes or reverses itself. 



Ergodicity
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Ergodic hypothesis allows us to dispense with time average. 

ATime=
T −>∞
lim 1

T
dtA(p(t), x(t))

0

T

∫

A(pN ,rN )
ensemble

=
1
Ω

dpN drN∫ A(pN ,rN )δ H (pN ,rN )−E( )
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What we can get from an MD simulation 

Ensemble Average: Experimental measurement 

Atime ≈ A(pN ,rN )
ensemble



Common Experimental Conditions
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isolated system (N,V,E) closed system in contact 
with heat bath (N,V,T) 

closed system in contact with 
heat bath and volume reservoir 
(N,P,T) 

open system in contact 
with heat bath (μ,V,T) 

Molecular Dynamics




Molecular Dynamics Ensembles
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isolated system (N,V,E) closed system in contact with 
heat bath (N,V,T) 

closed system in contact with heat 
bath and volume reservoir (N,P,T) 

open system in contact with 
heat bath (μ,V,T) 

microcanonical ensemble 
canonical ensemble 

Isothermal-isobaric ensemble Grand-Canonical Ensemble 
Molecular Dynamics




Isolated System vs System and Heat Bath
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isolated 
system 

time 

U = E 

system maintained at a 
temperature T 

time 
energy exchange between system 
and surroundings 

system energy E 

EU =What are the properties of 
these energy fluctuations? 
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Properties of an object in contact with heat bath
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system maintained at 
a temperature T 

time 

system energy E 

EU =
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Normalize canonical partition function
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Q is the canonical partition function. 



The Boltzmann Factor: exponential function


1
 Ali Hassanali
 Molecular Dynamics


x 

e -x 

How would the Boltzmann factor look for 
different temperatures, lets say 20K vs 

300K? 



The Boltzmann Factor: exponential function
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x 

e -x 

e -10x 

e -0.1x 



Relative Fluctuations for Ideal Atomic Gas
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How about the temperature?


1
 Ali Hassanali
 Molecular Dynamics


closed system in contact with 
heat bath (N,V,T) 

canonical ensemble 

In the NVT ensemble it is the average temperature that is conserved: 
instantaneous temperature fluctuates 
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T
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Classical Statistical Mechanics: I
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Classical statistical mechanics for 1 particles in 1-dimension 
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Classical Statistical Mechanics: II
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Classical Statistical Mechanics: II


1
 Ali Hassanali


⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= )(

2
exp1),(

2

xV
m
p

C
pxP β

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= ∫∫

∞

∞−

∞

∞−

)(
2

exp
2

xV
m
pdpdxC β

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−×−= ∫∫

∞

∞−

∞

∞− m
pdpxVdx
2

exp)(exp
2

ββ

px CC ×=

[ ]
px C
m
p

C
xV ⎥

⎦

⎤
⎢
⎣

⎡
−

×
−

=
2

exp
)(exp

2

β
β

)()( pPxP ×=

Probability factors 

Molecular Dynamics




Properties of classical statistical mechanics
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Classical statistical mechanics 
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In classical statistical mechanics, momentum and configurational 
fluctuations are strictly uncorrelated (statistically independent). 
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H20 and D20 (what would change?)
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Classical statistical mechanics 
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Compare simulations of H2O and D2O. 

In classical stat. mech., is there a 
difference in their boiling or freezing 
point? 

Is there a difference in their 
configurational distribution functions? 



When does classical stat. mech break down?
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Question: When is the classical limit a good approximation? 

Answer: Limit of large mass/high temperature (?) 

Molecular Dynamics


Nuclear quantum effects are important when  

hω
kBT

>1

Zero point energy of O-H stretch of 
water  is more than 0.2 eV! 



Where do we get the forces?
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Ingredients to conduct an MD simulation
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F(t) = MR
..
(t) = −∇V ( R(t){ })
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I need an algorithm that allows me to generate positions and 
velocities in time that will be subject to the above rules: 

1)  Must need a way to integrate the differential equation above to 
get positions and velocities in time 

2)   Need a potential to get the forces 

3)  Must generate initial velocities (How?) 



What are empirical potentials?
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Function devised to approximate Born-
Oppenheimer energy as a function of 
nuclear positions. 

Empirical potentials often deduced from 
potential between a pair of molecules… 

i j ),;,( jjiiv ωω rr
center of mass coord’s 

angular coord’s 

… and then assuming full N-molecule potential is sum 
of pairwise interactions. 

∑
<

=
ji

jjii
N vV ),;,()( ωω rrr

Recent interest in high-quality 
parameterizations, including 
3-body, 4-body,..interactions 
until convergence. 



Intramolecular (bonded) potentials
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Harmonic distance interaction between 
neighboring atoms: 

( )20
2

)( ijijijharm rrkrv −=

( )20

2
)( θθθ −=
kvang

Harmonic angle potentials: 

θ



Intramolecular (bonded) potentials
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φ

Harmonic dihedral angle potential: 

( )20

2
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Periodic dihedral angle potential: 
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Bonded vs Non-bonded Interactions
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Non-bonded: Electrostatics
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Molecular charge distribution usually represented by 
distribution of point charges. 

Example: 
SPC/E water model 

ba

ba

ba
se

qqv
rr −

= ∑∑−

molecule second
on  sites

moleculefirst 
on  sites

qH = +.4238 qH = +.4238 

qO = -.8476 



London dispersion forces
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Quantum mechanical motion of electrons in different atoms or 
molecules is correlated. 

Correlation of instantaneous polarizations leads to (distance)-6 
attraction. 



Lennard-Jones Potential
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Common (traditional) 2-parameter potential to 
describe overlap repulsion and London 
dispersion forces. 
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Other ways to specify Lennard-Jones Potential
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PBC, Minimum Image, Ewald
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The need for periodic boundary conditions
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Fluid can be strongly perturbed 
by wall out to ~5 molecular 
diameters. 
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Periodic Boundary Conditions (PBC)
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… …

. . . 

. . . 
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Periodic Boundary Conditions
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“simulation cell, primary cell,…” 

“periodic replicas” 

nr ,i=
position of particle i 
in replica indexed 
by n = (nx, ny, nz) 

for simplicity, cubic simulation cell of volume L3 : 

position of i in 
primary cell 

n = (0,0,0) indexes 
the primary cell 

Li nr +=

Molecular Dynamics
Ali Hassanali




Minimum Image Convention
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( )∑ ∑ +−=
∞→

cell

cell

N N

ji
jiNcell LvE

n
nrr
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'
2
1lim

omit i=j when n = 0. 

When 
potential decays rapidly with 
distance 

( )∑
<

+−≈
N

ji
ji Lv nrr

n
Min

neglect all n except the one for 
which |ri - rj + nL| is smallest. 

“Min” refers to ri – rj + nL 
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Minimum Image Convention
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Neglect all n except the one for 
which |ri - rj + nL| is smallest. 

i 
j 

The minimum image between 
particles i and j in the drawing 
are within the same cell. 

i i 

i 

i i i 

i i 

j j 

j j j 

j j j 
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Min
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Minimum Image Convention
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Neglect all n except the one for 
which |ri - rj + nL| is smallest. 

i 

j 

The minimum image between 
particles i and j in the drawing 
are across two different cells. 

i i 

i i i 

i i i 

j j 

j j j 

j j j 
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How to implement Minimum Image
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( )∑
<

+−≈
N

ji
jicell LvE nrr

n
Min

xij=x(i)-x(j) 

xij=xij-nint(xij/Lx)*Lx 

x(i)=x(i)-nint(x(i)/Lx)*Lx 

Place coordinate within primary cell, 
so that   - Lx/2 < xi ≤ Lx/2 

Minimum image distance between particles i and j . 

nearest integer function 
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Calculating force between two particles
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We’ll need this soon … 

fx,i = ?

( )jiv rr −Suppose there is an interaction          between particles i and j . 

Calculate the force on particle i from this interaction 

i 
j 

Exercise 
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Calculating force between two particles
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We’ll need this soon … 

( )jiv rr −Suppose there is an interaction          between particles i and j . 
Calculate the force on particle i from this interaction 

i 
j 

Molecular Dynamics
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Ewald Sum for Electrostatics
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( )∑ ∑ +−=
∞→

cell

cell

N N

ji
jiNcell LvE

n
nrr

,

'
2
1lim

omit i=j when n = 0. 

When potential is long range (Coulomb,…), the full sum must 
be calculated. 

Full sum is soften slowly (and conditionally) convergent. 

 
Ewald method: 
Original slowly convergent sum → two rapidly convergent sums. 
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Coulomb Sums are Conditionally Convergent
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does not converge. 
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Ewald Sum
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deLeeuw, Perram, Smith, Proc.RoySoc.Lond.A373:27 (1980) 

Introduce integral representation for r - 1 . 

∫
∞
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r π

Break this integral into two parts. 
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α will be chosen for numerical convenience. 
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Ewald Method
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Ewald Method: Hidden Assumptions
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Intergrators & Thermostats
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Molecular Dynamics
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“Molecular dynamics” means solve Newton’s equations of motion 
for many atoms or molecules. 

)(2

2
N

i
ii V

dt
dm r

r
r

∂
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“Usual” MD is microcanonical simulation 

Variants for constant T or P are common. 



MD Integration: Verlet Algorithm
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L. Verlet, Phys. Rev. 159:98 (1967) 

!+Δ+Δ−=Δ− )(
2
1)()()( 2 ttttttt NNNN avrr

!+Δ+=Δ−+Δ+ )()(2)()( 2 ttttttt NNNN arrr

Forwards and 
backwards Taylor 
expansions 

!+Δ+Δ−−=Δ+ )()()(2)( 2 ttttttt NNNN arrr
Verlet algorithm (1st version) 

•  Configuration at two time points needed to start . 

!+Δ+Δ+=Δ+ )(
2
1)()()( 2 ttttttt NNNN avrr

ADD 2 eq.’s 
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Verlet Algorithm
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L. Verlet, Phys. Rev. 159:98 (1967) 
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2
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!+Δ=Δ−−Δ+ )(2)()( tttttt NNN vrr

Forwards and 
backwards Taylor 
expansions 

• Velocity: 
t

ttttt
NN

N

Δ

Δ−−Δ+
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2
)()()( rrv

SUBTRACT 
2 eq.’s 
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Molecular Dynamics Ensembles
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isolated system (N,V,E) closed system in contact with 
heat bath (N,V,T) 

microcanonical ensemble 
canonical ensemble 

Different conserved quantities 

Potential + Kinetic Energy 

Molecular Dynamics




Constant Temperature MD: Nose Thermostat
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H (pN ,rN , s, ps ) =
1
2

p j
2

mjs
2

j=1

N

∑ +V (rN )+ ps
2

2M
+
g+1
β
ln s

Extend Hamiltonian to include “heat bath” variable s. 

Nosé, J.Chem.Phys. 81:511 (1984), Mol.Phys. 52:255 (1984) 

MD average from this Hamiltonian. 

( )EpsHAdsdpddA s
NNNN

s
NNNN −

Ω
= ∫ ),,,(),(1),( rprprprp δ

( )EpsHdsdpdd s
NN

s
NN −=Ω ∫ ),,,( rprp δ

(Choice of the constant g made later.) 
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STATIS file: 
 conserved quantity 



Constant Temperature MD: Nose Thermostat
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Microcanonical molecular dynamics with the Hamiltonian, 

leads to a canonical distribution with respect to another Hamiltonian, 
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Nose Mol. Phys., 52:255 (1984); J. Chem. Phys., 81:511 (1984). 
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Nose Thermostat: Equations of Motion
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The Nosé Hamiltonian leads to the following equations of motion 
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Nose-Hoover Thermostat: Equations of Motion
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Hoover showed rescaling to a new time variable   , leads to: tdsdt ʹ=
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Friction: CONTROL file Nose-Hoover time constant 
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Nose-Hoover Thermostat
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Hoover, Phys.Rev. A31:1695 (1985) 
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ζ  changes according to different between K.E. and 3NkBT/2. 



Some Practical Issues of 
Force Fields
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Force Fields for Bio-Molecular Simulations


Ali Hassanali
 Molecular Dynamics


GROMOS 



Bio-molecular Force-fields and Water models 


Wisdom is that FF should not be mixed 
 

FF fitting: experimental observables vs ab initio data 
 
 

SPC and SPC/E: GROMOS 
 
 

TIP3P: CHARMM and AMBER 
 
 

TIP4P/TIP5P/TIP4P-EW: OPLS 



Challenge of Current Water Models




How Good/Bad Are the Force Fields?


Hydration Free Energies 



The Case of Folded vs Disordered Proteins



