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What is Molecular Dunamics?

O O O @ O
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vdrop | & %0830%3%@@ 2
o °200 & F°
F(t)= MR(t) = -VV{R(®)})

\

Numerical Integration (?)

?

T'rajectory: Positions and Velocities over time

\
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Ingredients to conduct an MD simulation

1) Must need a way to integrate the differential equation
above to get positions and velocities in time

2) Need a potential to get the forces

3) Must generate initial velocities and/or thermostat or
keep the system at a particular

Classical Statistical Mechanics, Thermodynamics, Classical Mechanics
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What we can learn from MD simulations?

e Atomic and molecule distribution functions

e Phase diagrams

e ‘[ ransport coefficients (viscosity, diffusion, thermal
conductivity,...)

e Solvation energy and free energy
e Binding energy and free energy

e Microscopic insight
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General Order Parameter

}
AG activation free energy — rate
AG
AG free energy difference between isomers — k. OLEXP(— acl)
equilibrium constant kBT

Sampling problems in Molecular Dynamics
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Static vs Duynamic Properties: Techniques

Static properties

» Monte Carlo
* Molecular dynamics (particles have
kinetic energy)

Dynamic properties

* Molecular dynamics
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Statistical Mechanics

Main ideas (1):

Many-particle systems rapidly lose memory of their initial

conditions, and reach equilibrium, characterized by a handful of
variables (I, P, N, V,...)
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Statistical Mechanics

L] . . O O
Main ideas (2): 63,° OOQ&OO 0
o 0, 8% 5 %
. . Oo O ONE®
isolated, energy-conserving system: 26 0DD = o
o P00 & &

At equilibrium, every combination of momenta and positions
PisP2>P3s---PysT510, 15, ... Ty

allowed by energy conservation

2 2 2 2
P, P, P; Py
+ + + - +Vir,r,,r,...r, )= EF
2m, 2m, 2m, 2m,, ( v N)
is equally likely.
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Statistical Mechanics

Main ideas (3): . _ T
o O ®)
: : 0 O O
system in contact with heat bath 9 9, 8%%0%00
at temperature 7. O "0 ®
P o © % 0o & O

At equilibrium, probability of finding a combination of
momenta and positions

PisP2P3s-- Py I, 1, Ty

is proportional to Boltzmann factor,
P(pl,pz,p3,...pN,rl,rz,r3,...rN)

2 2 2 2
P, P P; Py 1
- + + +ee +V(r,r,r,...r ) _
2m, 2m, 2m, 2m,, e P k,T

o eXp
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Behavior of Macroscopic Variables

X irreversibly approaches an equilibrium value X,

X,, can be predicted from handful of other macroscopic variables
(pressure, temperature, composition) ~10% coord’s. not required!

Once equilibrium attained, system never changes or reverses itself.
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Ergodic hypothesis allows us to dispense with time average.
1 T
ATime= lim ? f th(p(t) ° X(t))
T —> 0

What we can get from an M D simulation

<A(pN,rN)> =éfde drNA(pN,rN)cS(H(pN,rN)—E)

ensemble

Ensemble Average: Experimental measurement

Ame = (A", 1™))

ensemble

1 Ali Hassanali Molecular Dynamics



Common Experimental Conditions

isolated system (N, VE) closed system in contact
o with heat bath (N, V. 1)
— .\
~ ——
closed system in contact with open system in contact
?]iz;tllo%h and volume reservoir with heat bath (1, V. 1) -

@)

~ ——

~
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Molecular Dunamics Ensembles

isolated system (N, VE) closed system in contact with
heat bath (N,V.,T)

microcanonical ensemble
canonical ensemble

open system in contact with
closed system in contact with heat heat bath (1, V, T O

bath and volume reservoir (N, P,"T) ©

w \_//
Isothermal-isobaric ensemble Grand-Canonical Ensemble
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Isolated Sustem vs System and Heat Bath

A

1solated U=E
system

time
system maintained at a
temperature T
t system energy E

— M

~_ | | A p l A A

What are the properties of / U= <E >
— these energy fluctuations?

energy exchange between system >
and surroundings time
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Properties of an obiect in contact with heat bath

system maintained at

a temperature 7 | system energy £
M WAAANAAMNR S A
U=(E)
THE ANSWER: fime
[probability that the system E;

is found in microstate j] = ¥ * €XP

k, T

If there are €2(E) microstates with the same energy E,

Q(E) - -
[probability of finding the _ P(E) z exp| - E, All Q(E)
system with energy £ “ k,T hm;\i;cl;t:tes
- F ] same energy
x Q(E)exp|—-—— E=E.
k,T

1 Ali Hassanali Molecular Dynamics



Normalize canonical partition function

P oxexpl-p E.]
p_ ON,V,T)=Se "5
Q0

2
E Q(E)e "

O 1s the canonical partition function.
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Thc [‘Soltzmann Factor: exonential Function

How would the Boltzmann factor look for
different temperatures, lets say 20K vs

300K?
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The Boltzmarm Factor: exonential Function
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Relative Fluctuations for Ideal Atomic Gas

Ideal atomic gas example:

o o) a3,
( )
o, = 3N2 o, |[\2p° o
26 RV
2/3/

Molecular Dynamics
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How about the temperature?

closed system in contact with
heat bath (/N,V.T)

w

canonical ensemble

Or 1
(T) N,
In the NVT ensemble it 1s the average temperature that 1s conserved:
instantaneous temperature fluctuates
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Classical Statistical Mechanics: |

(Classical stat. mech. for N particles in 3-dimensions

\., o % <ol $ 2 )
) ,% | |
0% o ‘°

N
B = r’ <r,r,,I,,...Ir,
kT

P" <> P,,P1sPss-- Py

(Classical statistical mechanics for 1 particles in i-dimension

P P(x, p) « exp

m

L)
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Classical Statistical Mechanics: I

P(x, p)  exp —/a’(é’—mwu))

Normalization: f dx f dp P(x,p)=1

P(x, p) = %exp —/a’(;#woc))

m

2

—/a’(;#wu))

m

C = idxidp exp
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Classical Statistical Mechanics: I

2

C=:£dx:£dp exp —/3(2’;+V(x))

m

o 0 2

>/ = fdxexp[— /J’V(x)]x fdp exp —/))é?—m
=C,xC,

Probability factors

L =-#4,)

P(x,p)= %exp — /3’(% + V(x)) _ eXP[_C{?’V(x) - 2m
= P(x)x P(p)
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Properties of classical statistical mechanics

Classical statistical mechanics

P, pY) = exp -/3( i +V(rN))

2
P(r",p") = exp - expl- V("))

1

N
_ /32
=1
Probability
distribution factors. P (rNaPN) =P (rN)P (PN)

In classical statistical mechanics, momentum and configurational
fluctuations are strictly uncorrelated (statistically independent).
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H20 and D20 (what would change?)

Classical statistical mechanics

P, p") o exp[—/o’z P

2m,

2
I

exp[— BV " )}

P(r",p")=P(x")P(p")

Compare simulations of H,O and D,O0.

In classical stat. mech., 1s there a

difference 1n their boiling or freezing
point?

Is there a difference in their
configurational distribution functions?
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When does classical stat. mech break down?

Question: When is the classical limit a good approximation?

Answer: Limit of large mass/high temperature (?)

Nuclear quantum effects are important when

ho 4

k,T

Zero point energy of O-H stretch of
water 1s more than 0.2 eV!

\.
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Where do we get the forces?
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Ingredients to conduct an MD simulation

Px",p") = exp —/9’(2 P, +V(rN))

~ 2m,

F(t)= MR(t) = -VV({R(D)})

I need an algorithm that allows me to generate positions and
velocities 1n time that will be subject to the above rules:

1) Must need a way to integrate the differential equation above to
get positions and velocities in time

2) Need a potential to get the forces

3) Must generate 1nitial velocities (How?)
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What are empirical potentials?

Function devised to approximate Born-

Oppenheimer energy as a function of O/i
nuclear positions. &,
Empirical potentials often deduced from 0\./0 I/O
potential between a pair of molecules...

center of mass coord’s

O—.% j V( l,,, )

. and then assuming full N-molecule potential 1s sum
of pairwise interactions.

angular coord’s

Recent interest in high-quality

parameterizations, including
r : :
V( ) E V( > X, W ) 3-body, 4-body,..interactions

until convergence.
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Intramolecular (bonded)

Harmonic distance interaction between
neighboring atoms:

oV@
Vharm( 1) =— (’”y_’”ijo)z

Harmonic angle potentials:

b @)= (00"
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Intramolecular (bonded)

Harmonic dihedral angle potential:
k
Vharm (¢) = 5 (¢ - ¢O )2

Periodic dihedral angle potential:

Vi () = coslnlg - ¢°)
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Bonded vs Non-bonded Interactions

B 12 6 7
o, o, q.9;
V( rN) _ E 4 51']' i _ i + E J
oy Vi Vi T
Lennard Jones potential Electrostatics
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Non-bonded: Electrostatics

Molecular charge distribution usually represented by
distribution of point charges.

gy = +.4238 qy = +.4238
Example:
SPC/E water model
qo = —-8476

Vees = E 2 rqa_qib ‘

sites a on sites b on a
first molecule second molecule
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| ondon dispersion forces

Quantum mechanical motion of electrons in different atoms or
molecules is correlated.

Correlation of instantaneous polarizations leads to (distance)™
attraction.
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| ennard-Jones Potential

Common (traditional) 2-parameter potential to
” describe overlap repulsion and L.ondon

dispersion forces.
- o 12 o 6
v, (r)y=4¢e||—| —-|—
r r
Vi AV
YO
<
€ ¥ Actually, repulsive part of
potential better described
< > by an exponential: Ae™"
21/6

(“Buckingham” or “exp-6” potentials)
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Other waus to specity Lennard-Jones Potential

12 6 7

VU<,/>=45:(§) 4] |

oF _ C

v, (r) = A2

A B
v, (r)y=—+
LJ() rlz r6
VA7)
§ O
V r
<< >
21/60-
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PBC, Minimum Image, Ewald
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The need for periodic boundary conditions

Fluid can be strongly perturbed
by wall out to ~5 molecular
diameters.

p* 15 ¥

0.5

-10 -5 0 5 10
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riodic Boundary Conditions (PBC)
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Periodic Boundary Conditions

“simulation cell, primary cell....”
P p ry

. o o o T “periodic replicas”

for simplicity, cubic simulation cell of volume 13

r . . . -\
position of particle i
< inreplicaindexed > =r,_ =r +nlL

L,

byn = (n,, n, n) / .
- ~ | position of jin n = (0,0,0) indexes
primary cell the primary cell
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Minimum Image Convention

When

potential decays rapidly with

distance

neglect all n except the one for
which Ir;-r; + nLl is smallest.

J
lNcell N |/
E=lim =5 3 -r, +nL)
J
Ncell_>002 n i,j

“Min"referstor;-r; + nl

Ali Hassanali

i<j

omit i=jwhenn = 0.

N
~ E N{linv(ri -r; + nL)




Minimum Image Convention

N
E = E Mlinv(ri -r; + nL)

i<j

Neglect all n except the one for ® ° °
which Ir;-r; + nLl is smallest. le Lo lo

o J°| o J°| o J°

@ e @
"I'he minimum image between o | [ “~ lo |
particles i and jin the drawing o J°| o J o J°
are within the same cell. R ° o

e lo le
o /| o Jo| o JO
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Minimum Image Convention

N
E = E Mlinv(ri -r; + nL)

i<j

Neglect all n except the one for
which [r; - r; + nZ| 1s smallest.

"T'he minimum image between
particles i and jin the drawing
are across two different cells.

Ali Hassanali Molecular Dynamics
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How to implement Minimum Image

E. = i N{lin V(ri -r+ nL) ° ° °

i<j (6} (€] ()

Place coordinate within primary cell,
sothat —L/2<x,<LJ/2

x(1)=x(1)-nint(x(1)/Lx) *Lx

nearest integer function

Minimum 1mage distance between particles i and ; .

xij=x(1)-x(3)

xij=xij-nint (xij/Lx) *Lx
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Calculating force between two particles

J
Well need this soon ... "/ @

Suppose there is an interaction vqu. -, ‘) between particles iand .

(Calculate the force on particle i from this interaction

Exercise f = )
X.1
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Calculating force between two particles

Well need this soon ... "/ @

Suppose there is an interaction vqu. -, ‘) between particles iand .

Calculate the force on particle 7 from this interaction

0
fxi =__Vqri_r') =‘Vqr —T; )
> axl J ‘
a x.—xj
c')x r —rj‘
) xl.—xj
If V(Jl‘l.—l'. ), then f;c,i ==V ri_rj‘ .
/ rl.—rj‘

Ali Hassanali Molecular Dynamics



Fwald Sum for Electrostatics

omit i=j when n = 0.

When potential is long range (Coulomb,...), the full sum must
be calculated.

Full sum is soften slowly (and conditionally) convergent.

Ewald method:
Original slowly convergent sum — two rapidly convergent sums.
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Coulomb Sums are Conditionally Convergent

Coulomb sum with only like

1

or unlike charges ~ 4 [dr r’ ;

does not converge.

v ,L

lNcell N [} '
= lim — E v(rl.—r].+nL)+ E v(rl.—rj+nL)+---
Ne = n | iENa®,jeNat iENa™, jeCl”

=00 —00+4 00 —00 =97

Ali Hassanali
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Fwald Sum

deLeeuw, Perram, Smith, Proc.RoySoc.Lond. A373:27 (1980)
Introduce integral representation for » ~ 1.

1 |
—=—(dtt" e

Break this integral into two parts.

2

1 (04

; _“[

N J /
Y Y

_1/2 1 p -1/2 -t
+ — [dtt™ " e
\NIT ’[

long-range short-range

o will be chosen for numerical convenience.
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Ewald Method

2

1 1° .17 2
o— dt t—1/2 e—tr b dt t—1/2 e—tr
T Nea)

N AN J
Y Y
erf(ar) l-erf(ar) erfc(ar)
v r v
long-range short-range
erf(ar)
B r 6 g +0 "
-0.5 7

_erfe(ar)

r
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Fwald Method: Hidden Assumptions

E, =FE +FE  +F

cell = Lreal T Eself T Lrecip
] New QL erfc(a‘ri —T, +nL‘) a X
‘Nhﬂliloozz E 9.4, ‘rl.—rj +fnL‘ Ese,f=—ﬁlzlqiz
0 -2 [ 27
Brecip = 2”1L3 i%%}o (%) exp —(Z—T) expl2zim-(r, -1, )/ L]

‘5?(2“)

. . v
Hidden assumptions: o S, -0
1
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Intergrators & Thermostats
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Molecular Duynamics

“Molecular dynamics” means solve Newton’s equations of motion
for many atoms or molecules.

d’ 0 N
m. —r. =——1V(r

“Usual” MD 1s microcanonical simulation

Variants for constant 7 or P are common.
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L. Verlet, Phys. Rev. 159:98 (1967)

r(t+A) =r" (1) + At v" (1) +%A¢2 a" (£) +---
s

rN(f—At)=rN(t)—AtVN(t)+%A12 a(t)+--

Forwards and
backwards Taylor
expansions

r"t+A)+r" (t-A)=2r" )+ A’ a" (t)+--- «— ADD2eq.’s

Verlet algorithm (1% version)

r' (¢ +An) =2r" () -r" (t - At)+ A’ a™ () +---

 Configuration at two time points needed to start .
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Verlet Algorithm

L. Verlet, Phys. Rev. 159:98 (1967)

1

rY(t+A) =" (O)+ AV () +=APaV () +--- ]
2 Forwards and

> backwards Taylor

r"(t-A)=r"()- At v (¢) + %Aﬂ a (¢)+--- | cxpansions
e+ A =1 (1= M) = 200V (0) ++ — SUBTRACT
2eq.’s

rV(t+At)-r" (t - Ar)
2At

*Velocity: vV (1) =
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Molecular Dunamics Ensembles

closed system in contact with

isolated system (N, V E) heat bath (N.V.T)

microcanonical ensemble

canonical ensemble

Potential + Kinetic Energy

Different conserved quantities
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Constant Temperature MD: Nose Thermostat

Extend Hamiltonian to include “heat bath” variable s.

Nosé, J.Chem.Phys. 81:511 (1984), Mol.Phys. 52:255 (1984)

STATIS file: N p? 2
e H(pN,l‘N,S,PS)=lE p12+V(rN)+ D, +g+llns

conserved quantity 245 ms M p

(Choice of the constant g made later.)

MD average from this Hamiltonian.
1
(A" x")) =  fdp"dr*dp,ds A" .x") o(H (p".r".s.p,) - E)

Q = (dp"dr"dp,ds SH@",r",s,p,)-E)
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Constant Temperature MD: Nose Thermostat

Microcanonical molecular dynamics with the Hamiltonian,

2

N
P, p g+1
Hp".r",s, =E L+ (") + £ Ins, g=3N
b P:) 4t 2mjs ) 2M Joi =

leads to a canonical distribution with respect to another Hamiltonian,

r 2

H, = ipj +V ("), where Py
0 J12m , pj_ S .

Nose Mol. Phys., 52:255 (1984); J. Chem. Phys., 81:511 (1984,).
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Nose Thermostat: Equations of Motion

N
HE " sp) =Y, Pl yetys P 8]

Ins,
2m, 5° 2M B

The Nos¢ Hamiltonian leads to the following equations of motion

. O0H P, . oH aV
o, Tms P Tar
j j j
oH p, , oH YopS +1
5= = ps=__=_E ]3+g
op, M ds “Ams  ps
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Nose-Hoover Thermostat: Equations of Motion

N
P p L8t 1
Hp",r",s L+ V(M) + = Ins,
" r",s,p,) = E T ')+ o+ 5
Hoover showed rescaling to a new time variable df =sdt , leads to:

d, dvdt p, P, P . P,
' dtdi' ms® ms m, wherepj=?-

dp’, dlp,/s)a d(p /s) vy p,ds V@)

—_ _ — —_ J = — _— ’.
dt’ dt dt or, s dt ar, P,
where £ = s _ = Lds, 1s a type of friction coefficient.
dt sdt

Friction: CONTROL file Nose-Hoover time constant
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Nose-Hoover Thermostat

Hoover, Phys.Rev. A31:1695 (1985)

dt = sdt ar; _ P,
dt' m,
p,=tL. J
dt' ar, /
N /'2
d—é‘,=L Ep’ ) [ 1
dt M| m, p

C changes according to different between K.E. and 3Nk,T/2.
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Some Practical Issues of

Force Fields
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Force Fields for Bio-Molecular Simulations

78
4
R N/
GROMACS s V—%vk ’ )
FAST. FLEXIBLE. FREE. Ve “
\,
2
OPLS-AA/M
GROMOS
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Bio-molecular Force-fields and Water models

Wisdom is that FF should not be mixed

FF fitting: experimental observables vs ab initio data

SPC and SPC/E: GROMOS

TIP3P: CHARMM and AMBER

TIP4P/TIPsP/TIP4P-EW: OPLS



Challenge of Current Water Models

TABLE III. Melting properties of ice I at p=1 bar for different models. T}, and 7., melting and critical
temperatures; p; and P, coexistence densities of liquid water and ice; H; and Hp,, enthalpies of liquid and ice
(we have not included the 3RT term ansing from the translational and rotational kinetic terms); AH, melting
enthalpy; dp/dT, slope of the coexistence curve. Numbers in parenthesis for the TIP4P model are the estimated
errors for TIP4P. The errors for the other models are of the same order of magnitude. Unless otherwise stated,
the quantities have been calculated 1n this work.

Model SPC SPC/E TIP4P TIP4P/Ew  TIPSP  TIPSP* TIP3P Expt.
T, (K) 1905 215 232.(5) 2455 2739 270 1456 27315
T, (K)® 5938 638.6 5882 .- 5213 5213 647.1
T,,/T, 0321 0337 0394 ..o 0525 0517 0422
o (g/cms) 0991 1011 1.002(6) 0992 0987 1.000 1017 0999
pm (g/cm’) 0934 0950 0.940(2) 0936 0967 0982 0947 0917
H,; (Kcal/mol) -1164 -1249 -1098 -12.02 -1033 E -11.69 ..o
Hp, (Kcal/mol) -1222 1323 -1203 -1307 -1208 -1199
AH (Kcal/mol) 0.62 074 1.05(5) 1.05 1.75 1.73 03 144
dp/dT (bar/K) -115 -126 —-160(20) -164 -708 -714 —66 -135
*From Ref. 51.

®From Ref. 22 (SPC, SPC/E), Ref. 23 (TIP4P), Refs. 87 and 99 (TIPSP).




How Good/Bad Are the Force Fields?

Hydration Free Energies

10 - A
« /AL
_— 0 - / I -
= A
S 10T Ywst o T
§ | (X |
3 - &
8 -39 x AMBER99
+ GROMOS 53A6
“ > OPLS-AA

-40 -30 -20 -10 0 10
experimental AG (kJ/mol)

Figure 2. Calculated hydration free energy (298 K, 1 atm) vs the
experimental values for three force fields with the SPC/E water model.
The amino acid side chain analogues are indicated according to the
letter coding 1n Table 1.




The Case of Folded vs Disordered Proteins

Paul Robustelli®, Stefano Piana®’, and David E. Shaw®®

Edited by Michael L. Klein, Temple University, Philadelphia, PA, and approved April 16, 2018 (received for review January 19, 2018)

Developing a molecular dynamics force field for both
folded and disordered protein states

®D. E. Shaw Research, New York, NY 10036; and "Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
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