





#### **Department of Pharmaceutical Sciences**

Menico Rizzi (menico.rizzi@uniupo.it)

The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania, 11-09-2019

### **Lecture Topics**

- Structural biology: understanding biology
- Structural Biology: understanding disease
- Structural biology: medicines discovery
- Structural biology: diagnosis
- Structural biology: medicines safety

### **Structural Biology**



### **Atomic resolution Structural Biology**



Venkatraman Ramakrishnan, Thomas A. Steitz, Ada E. Yonath, Nobel Laureates, 2009

### Atomic resolution structural biology Protein data base repository (www.rcsb.org)

0 0

| CRYST1  | 71.751                             | 86.8   | 39 13  | 7.300 9 | 0.00 90 | .00 90.0 | 0 C 2 2 21 | 8 |
|---------|------------------------------------|--------|--------|---------|---------|----------|------------|---|
| ORIG X1 | 1.000000 0.000000 0.000000 0.00000 |        |        |         |         |          |            |   |
| ORIG X2 | 0.000000 1.000000 0.000000 0.00000 |        |        |         |         |          |            |   |
| ORIG X3 | 0.00                               | 0000 ( | 0.0000 | 00 1.00 | 0000    | 0.0000   | 00         |   |
| SCALE1  | 0.013937 0.000000 0.000000 0.00000 |        |        |         |         |          |            |   |
| SCALE2  | 0.00                               | 0000 ( | 0.0115 | 16 0.00 | 0000    | 0.0000   | 00         |   |
| SCALE3  | 0.000000 0.000000 0.007283 0.00000 |        |        |         |         |          | 00         |   |
| ATOM    | 1 N                                | MET A  | 26     | 21.403  | 16.250  | 60.212   | 1.00 88.81 |   |
| ATOM    | 2 CA                               | MET A  | 26     | 20.418  | 17.212  | 59.640   | 1.00 88.80 |   |
| ATOM    | 3 C                                | MET A  | 26     | 20.090  | 16.906  | 58.180   | 1.00 88.49 |   |
| ATOM    | 40                                 | MET A  | 26     | 18.922  | 16.755  | 57.821   | 1.00 89.79 |   |
| ATOM    | 5 CB                               | MET A  | 26     | 20.951  | 18.643  | 59.745   | 0.00 88.85 |   |
| ATOM    | 6 CG                               | MET A  | 26     | 22.334  | 18.831  | 59.148   | 0.00 89.18 |   |
| ATOM    | 7 SD                               | MET A  | 26     | 22.719  | 20.561  | 58.831   | 0.00 90.92 |   |
| ATOM    | 8 CE                               | MET A  | 26     | 22.525  | 20.624  | 57.044   | 0.00 88.32 |   |
| ATOM    | 9 N                                | LEU A  | 27     | 21.120  | 16.822  | 57.341   | 1.00 87.26 |   |
| ATOM    | 10 CA                              | LEU A  | 27     | 20.932  | 16.538  | 55.920   | 1.00 86.01 |   |
| ATOM    | 11 C                               | LEU A  | 27     | 20.116  | 17.663  | 55.275   | 1.00 84.57 |   |
| ATOM    | 12 0                               | LEU A  | 27     | 19.167  | 17.405  | 54.531   | 1.00 84.54 |   |
| ATOM    | 13 CB                              | LEU A  | 27     | 20.198  | 15.200  | 55.745   | 1.00 86.86 |   |
| ATOM    | 14 CG                              | LEU A  | 27     | 20.626  | 14.025  | 56.638   | 1.00 87.46 |   |
| ATOM    | 15 CD1                             | LEU A  | 27     | 19.735  | 12.824  | 56.367   | 1.00 87.49 |   |
| ATOM    | 16 CD2                             | LEU A  | 27     | 22.083  | 13.676  | 56.386   | 1.00 87.98 |   |
| ATOM    | 17 N                               | GLY A  | 28     | 20.488  | 18.907  | 55.569   | 1.00 82.68 |   |
| ATOM    | 18 CA                              | GLY A  | 28     | 19.778  | 20.054  | 55.025   | 1.00 79.80 |   |
| ATOM    | 19 C                               | GLY A  | 28     | 19.981  | 20.272  | 53.536   | 1.00 78.02 |   |
| ATOM    | 20 0                               | GLY A  | 28     | 20.567  | 19.433  | 52.854   | 1.00 79.79 |   |
| ATOM    | 21 N                               | ASP A  | 29     | 19.490  | 21.402  | 53.032   | 1.00 74.79 |   |
| ATOM    | 22 CA                              | ASP A  | 29     | 19.609  | 21.749  | 51.616   | 1.00 71.24 |   |
| ATOM    | 23 C                               | ASP A  | 29     | 21.069  | 21.780  | 51.178   | 1.00 67.63 |   |
| ATOM    | 24 0                               | ASP A  | 29     | 21.759  | 22.789  | 51.329   | 1.00 66.09 |   |
| ATOM    | 25 CB                              | ASP A  | 29     | 18.984  | 23.116  | 51.365   | 1.00 73.62 |   |
| ATOM    | 26 CG                              | ASP A  | 29     | 19.612  | 24.199  | 52.214   | 1.00 75.49 |   |
| ATOM    | 27 OD1                             | ASP A  | 29     | 19.613  | 24.049  | 53.455   | 1.00 77.67 |   |
| ATOM    | 28 OD2                             | ASP A  | 29     | 20.108  | 25.196  | 51.646   | 1.00 77.37 |   |
|         |                                    |        |        |         |         |          |            |   |



# No matter which technique always remember

### **Experimentally determined MODEL**

(data ≠ information ≠ knowledge ≠ wisdom)

### Structure function relationship



### Drug discovery and development

• The long and complex process to make a medicine available to Patients

## Drug discovery pipeline

- Hit compounds (or lead compounds)
- Hit/lead optimization
- Preclinical development
- Clinical trials (phases I-IV)
- Market

### **Drug discovery**

MUCH more to consider than BINDING

## Drug discovery medicine-target interaction

- Target(s) Medicine interactions
- Molecular target(s) Medicine interactions
- Binding: energetic and kinetic aspects
- Molecular Recognition (selectivity)
- Stability (affinity potency) (reversible vs irreversible)
- Kinetics (potency) (on and off binding)

## Drug discovery hit/lead identification

- In vitro screenings of chemical libraries (synthetic, focused, natural compounds) by using the recombinant targets
- Potency and selectivity on target
- Permeability, preliminary pharmacological properties

## Drug discovery hit/lead identification

- Ex-vivo (in vivo, e.g. bacterium) screenings of chemical libraries (synthetic, focused, natural compounds), phenotype screening
- Potency and selectivity on target
- Permeability, preliminary pharmacological properties

### Drug discovery hit/lead identification

- In silico structure-based screenings
- Rational structure-based drug design
- Potency and selectivity on target
- Permeability, preliminary pharmacological properties

### Drug discovery

- Medicines
- Chemicals (ligand-protein or ligand-RNA or ligand-DNA interactions)
- Biologicals (mainly but not only protein-protein interactions)

### **Biological Medicines**

- Therapeutic proteins
- Gene therapies
- Cell therapies (autologous heterologous)
- Gene modified cell therapies

Biological Medicines Therapeutic proteins

- Insuline(s)
- Enzymes
- Monoclonal antibodies (trastuzumab)
- Receptors
- Fusion proteins (*tagraxofusp*, first in the market by the end of 2019, blastic cancer)
- Cytokines (interleukin)
- Etc

## Drug discovery Structural biology

- Understanding interactions (description)
- Predicting and evaluating interactions
- Designing a small molecule
- Designing a protein or a multiple domains protein

## The reward: understanding-->control molecular interactions





#### **Protein-Protein**



Drug-target interaction *duocarmycin* 

## The reward: understanding-->control protein engineering



**FUSION PROTEIN:** *-fusp* 



### Sodium and Potassium: "almost" identical



"...sodium is almost the same as potassium (.....); the difference can be small, but they can lead to radically different consequences, like a railroad's switch point; the chemist's trade consists in good part in being aware of these differences, knowing them close up, and foreseeing their effects. And not only the chemist's trade."

Primo Levi, The Periodic Table

### Ion channels

Ion channels are nature's electrical impulse generators



### **Roderick MacKinnon (2003 Nobel laureate)**

### Pumps and ion channels



### Selectivity and directionality

Selective ion channels polarize the membrane



### Potassium channel crystal structure





## A funnel assembly



### The selectivity pore

The pore (2 subunits shown)



### The selectivity pore

The K<sup>+</sup> selectivity filter G G

## The selectivity pore





1

### A gating mechanism



### A gating mechanism

Mechanics of pore gating



(KcsA: closed)

### A gating mechanism

Mechanics of pore gating



(MthK: opened)

# A gating mechanism voltage dependent

Voltage-dependent channels open in response to membrane depolarization



# A gating mechanism voltage dependent

Voltage-dependent channel gating



### Nature electronic

Voltage-dependent channels are life's transistors


# Voltage-dependent potassium channel crystal structure





# Voltage-dependent potassium channel crystal structure

KvAP subunit topology



# Structure-based gating mechanism

Conceptual model for voltage-dependent gating



Closed

# Structure-based gating mechanism

Conceptual model for voltage-dependent gating



Opened

## "Nothing in biology makes sense except in the light of Evolution" (T. Dobzhansky)

Many ion channels used in the nervous system are highly conserved across the tree of life and apparently arose for purposes other than electrical signal production.



Venoms contain inhibitors of ion channel function





## Protein kinases



## Signal transduction cascade

From **Protein Structure and Function** by Gregory A Petsko and Dagmar Ringe



© 1999-2004 New Science Press

# **Closed vs open conformations**

From Protein Structure and Function by Gregory A Petsko and Dagmar Ringe



© 1999-2004 New Science Press

## Closed vs open conformations



# Philadelphia chromosome (translocation) chronic myeloid leukemia



# BCR/ABL chimeric protein kinase constitutively active



## Crystal structure of ABL





closed inactive

## ima**tinib**



# imatinib targets a closed conformation





С

## asciminib is an allosteric inhibitor

# Sickle cell disease: Glu>Val<sup>6</sup> variant alters the surface charge in hemoglobin S









Oxygen binding to Fe(II)

# Biochemistry of neurodegenerative diseases and prions

| Neurodegenerative disease | Patologic protein (amyloid) |
|---------------------------|-----------------------------|
| Alzheimer's disease       | Amyloid β                   |
| Parkinson disease         | α-synuclein                 |
| Frontotemporal dementia   | Tau                         |
| Hungtington disease       | Huntingtin                  |
| Creutzfeldt-Jakob disease | Prion                       |

## Prions proteins: pathological conformation

**PrP**<sup>C</sup>

The normal protein is called PrP<sup>c</sup> (for cellular)

## has dominant secondary structure α-helix is easily soluble

#### is monomeric and digested by proteases

is a transmembrane glycoprotein (neurons, lymphocytes); its function is unknown; it binds Cu<sup>2+</sup> (regulation its homeostasis) PrP<sup>Sc</sup>

The abnormal, disease-producing protein is called PrP<sup>Sc</sup> (for scrapie) has the same amino acid sequence has dominant secundary structure β-sheets is insoluble is multimeric and resistant to proteases When PrP<sup>Sc</sup> comes in contact with PrP<sup>C</sup>, it converts the PrP<sup>C</sup> into more of itself These molecules bind to each other forming

aggregates

## **Prions proteins**

**PrP**<sup>C</sup>

**PrP**<sup>Sc</sup>

Predominantly  $\alpha$ -helix

β-sheets (40%), α-helix (30%)



# Prions aggregates



## **Originator vs Biosimilar**

Sequence contains the information to guide folding into the native structure (conformation)

Altering the sequence can alter the structure (conformation)

Post-translation modifications can "alter" the structure (even only with local misfolding, e.g. in a loop)

# Drug discovery & Structural Biology

medicine discovery (optimization)

- medicine safety (selectivity-stability)
- improve access to medicine

UNIVERSITÀ DEL PIEMONTE ORIENTALE

Department of Pharmaceutical Sciences Biochemistry and Structural Biology Unit







Davide Ferraris Silvia Garavaglia Riccardo Miggiano





Franca Rossi



The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania, 11-09-2019



## Funding



#### Tuberculosis: a global burden

Estimated TB incidence rates, 2017



- The leading cause of death from a single infectious agent (above HIV/AIDS)
- Ninth cause of death worldwide
- 10.0 million people developed TB disease in 2017
- Estimated 1.3 million deaths in 2017 among HIV-negative people
- Additional 300 000 deaths from TB among HIV-positive people

### Mycobacterium tuberculosis - Humankind: a long standing relationship



## Infection by Mycobacterium tuberculosis



#### Tuberculosis: a global burden



Nature Reviews | Microbiology

- First line treatment (isoniazide and rifampicin)
- Second line treatments (Kan, fluoroquinolone)

Major problems with fighting TB:

- Multidrug resistant (MDR) strains
- Extensively drug resistant (XDR) strains
- Total drug resistant strains (TDR)

## New antitubercular drugs are badly needed

### Target-based vs. phenotypic screening

#### **Target-based screening**

Methods: HTS of large compound libraries for inhibition of a critical enzyme/protein

- Uncertainty of molecule absorption and general biology
- Low success rate
- Multiple failures for such approach

#### Whole-cell screening

Methods: HTS of molecules with bactericidal effects

- Associated with <u>whole genome sequencing</u>
- Direct identification of the genes involved in pathogenisis
- Identification of the mutations that confer resistance



Valerie Mizhrai University of Cape Town (South Africa)

Tom Blundell, University of Cambridge, (UK) György Kéri, Vichem Ltd, Budapest (Hungary) Barry Clifton III, NIAID, Bethesda (USA) Menico Rizzi, UPO, Novara (Italy)



Park et al. Essential but not vulnerable: indazole sulfonamides targeting IMPDH as potential leads against *Mycobacterium tuberculosis*. ACS Infect Dis, 2017 Jan 13;3(1):18-33



Singh et al. The inosine monophosphate dehydrogenase, GuaB2, is a vulnerable new bactericidal drug target for tuberculosis. ACS Infect Dis, 2017 Jan 13;3(1):5-17

### <u>Phenotypic screening – 2</u>: 15344 compounds



15,344-compound library





VCC234718 (sulfonamide)

### VCC234718-resistant Mtb mutant selection and characterisation



#### Table 1. Susceptibility of Mtb Strains to VCC234718

| 10xMIC <sub>90</sub> | strain  | $MIC_{90}$ ( $\mu M$ ) |
|----------------------|---------|------------------------|
|                      | H37RvMA | 2                      |
|                      | SRMV2.6 | >100                   |

#### Whole genome sequencing -> Resistance-conferring mutation: guaB2<sup>Y487C</sup>





# Purine de novo biosynthesis and salvage pathways in *Mtb* illustrating the impact of GuaB2 inhibition



## hypoxanthineguanine phosphoribosyl transferase 🜟

#### Effect of guab2 silencing: conditional guaB2-KO strain are growth impaired



→ Dose-dependent impaired growth of conditional guaB2-KO strain

→ GuaB2 is essential for growth

#### Guanine does not rescue *Mtb* survival *guaB2*-silenced mice

C57BL/6 mice were **infected by aerosol** with **conditional** *guaB2*-KO mutant strain. **Transcriptional silencing of** *guaB2* was achieved by feeding the animals with **doxycycline-containing food**. **Lung homogenates** were plated on agar plates **with or without guanine supplementation**.



→ Guanine does not rescue *Mtb* survival in infected lung tissues

## **Depletion of GuaB2 is bactericidal in** *Mtb* **in vitro**



## K*i* = 0.10 microM



### VCC718 is an uncompetitive Guab2 inhibitor
#### VCC234718 is uncompetitive against *Mtb* IMPDH





### VCC718 is a selective uncompetitive Guab2 inhibitor



#### Binding of VC234718 to M. thermoresistible IMPDH

- 85% amino acid identity with the Mtb IMPDH
- 100% conservation of residues in the active site
- higher protein expression yields than the Mtb homologue. Mth
- ΔCBS domain (equally active as the wt)
- 1.6 Å resolution



#### Y487C

resistance-conferring mutation

➔ Disrupts the pi-stacking between Y and the cyclohexyl group of VCC234718

### X-ray crystal structure of VCC234718 bound to *Mth* GuaB2



#### Conclusions

- Phenotypic screening has identifed new sulfonamides Guab2 (IMPDH) inhibitors
- Such inhibitors target IMPDH activity
- IMPDH (Guab2) is essential for Mtb infection
- Guanine could NOT rescue *Mtb* in mice treated with *guaB2*-KO *Mtb* strains
- → The vulnerability of GuaB2 still to be completely addressed
- → Targeting of GuaB2 for the development of new anti-TB drugs can be considered.

## Malaria



## Malaria life cycle









### The kynurenine pathway in A. gambiae





XA concentration required to sustain half-maximal gametogenesis: *P. berghei* 9.0  $\mu$ M; *P. falciparum* 2.0  $\mu$ M XA concentration in a typical human blood meal: 0.6 – 0.8  $\mu$ M



#### The Anopheles gambiae 3HKT



**Fig. 2.** Developmental- and tissue-specific *Ag-hkt* expression analysis. RT-PCR amplification of total RNA from different tissues and developmental stages with *Ag-hkt*- and *rpS7*-specific primers. Lanes: 1, embryos; 2, larvae; 3, pupae; 4, adult females; 5, salivary glands; 6, ovaries; 7, midgut; 8, carcasses (adult females with salivary gland, ovaries and gut removed); 9, adult males.

Rossi F., et al. (2005) FEBS Journal **272**: 5653–5662 Identification and biochemical characterization of the Anopheles gambiae 3-hydroxykynurenine transaminase.

### **Ag3HKT:** structure-based site-directed mutagenesis



### Crystal structure of the *Anopheles gambiae* 3-hydroxykynurenine transaminase

Franca Rossi<sup>+</sup>, Silvia Garavaglia<sup>+</sup>, Giovanni Battista Giovenzana<sup>+</sup>, Bruno Arcà<sup>‡</sup>, Jianyong Li<sup>§</sup>, and Menico Rizzi<sup>+</sup>¶

PNAS | April 11, 2006 | vol. 103 | no. 15 | 5711-5716



**Ag3HKT:** structure-based site-directed mutagenesis

### Ag3HKT mutant S43A

steady-state kinetics

|                       |                                    | Wild-<br>type | S43A |
|-----------------------|------------------------------------|---------------|------|
| D,L 3OH<br>kynurenine | kcat (sec <sup>-1</sup> )          | 5.8           | 20.3 |
| xynurenne             | K <sub>M</sub> (mM)                | 0.6           | 6.7  |
|                       | $\frac{kcat/K_{M}}{(sec^{-1}/mM)}$ | 9.6           | 3.0  |
| D,L kynurenine        | kcat (min <sup>-1</sup> )          | 5.8           | 12.1 |
|                       | K <sub>M</sub> (mM)                | 2.0           | 6.3  |
|                       | $\frac{kcat/K_{M}}{(sec^{-1}/mM)}$ | 2.9           | 1.92 |
| L kynurenine          | kcat (min <sup>-1</sup> )          | 6.0           | 14.8 |
|                       | K <sub>M</sub> (mM)                | 1.0           | 4.9  |
|                       | $\frac{kcat/K_{M}}{(sec^{-1}/mM)}$ | 6.0           | 3.0  |



### Biochemical and structural analysis of Anopheles gambiae 3-HKT (Ag-HKT)



Recombinant Ag-HKT expression,

Rossi F., et al. (2005) FEBS J 272: 5653-5662



X-ray crystallography-based study of Ag-HKT structure



Rossi F., et al. (2006) Proc Natl Acad Sci U.S.A. 103: 5711-5716

Canavesi R., et al. (2019) J Pharm Biomed Anal 173:154-161

### close-up of Ag-HKT ligand binding site

#### crystal structure of Ag-HKT::INI



# KAT I vs KAT II kynurenine aminotransaminase



Rossi et al. Curr. Opin. Struct. Biol., 2008, 6, 748-55



Human KatI vs A. gambiae 3-HKT 5.1 Å rmsd over 320 aa

# The Xanthurenic Trigger



**Calcium and a Calcium-Dependent Protein Kinase Regulate Gamete Formation and Mosquito Transmission in a Malaria Parasite** O. Billker et al.; **Cell**, Vol. 117, 503–514, May 14, 2004



# Pf-CDPK4



Absence in human kinome



# Looking for CDPK4 inhibitors

Biochemistry 1994, 33, 15259-15265

15259

#### Drug Binding by Calmodulin: Crystal Structure of a Calmodulin-Trifluoperazine Complex<sup>†,‡</sup>

William J. Cook,\*,<sup>§,II</sup> Leigh J. Walter,<sup>II</sup> and Mark R. Walter<sup>II,⊥</sup>

Departments of Pathology and Pharmacology and Center for Macromolecular Crystallography, University of Alabama at Birmingham, Birmingham, Alabama 35294

Received July 19, 1994; Revised Manuscript Received October 18, 1994<sup>®</sup>

# Looking for CDPK4 inhibitors



# Inhibition mechanism characterisation

| Kinetic parameters: | <i>V</i> <sub>max</sub> = 0,155 nmol/min; <i>K</i> <sub>M</sub> = 106 μM; <i>k</i> <sub>cat</sub> = 48,9 min <sup>-1</sup> |
|---------------------|----------------------------------------------------------------------------------------------------------------------------|
| Assay conditions:   | 50 mM Tris-HCl pH 7.5; 4 mM MgCl <sub>2</sub> ; 2 mM CaCl <sub>2</sub> ;<br>150 μM substrate; Δ [ATP]; 0.5 μg CDPK4        |
| Time: 10'           | Temperature: 30°C                                                                                                          |







# Inhibitory theory



Identity > 70 %



Identity 74.4 %

# Acknowledgments

### ORGANIZERS !!!

• ALL OF YOU FOR YOUR ATTENTION !!