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Systems with Uncontrollable Linearization

Euler's equations in rigid body dynamics

. s .
X1 = U1 COS X3, °; Jix1 = (J2 = J3)X2X3 + p11u1 + po1 Uz,
{ (, hxo = (I35 — h)xix3 + paous + poous,
) J3x3 = (1 — o)xixo + pazur + posuy.

Xp = U7 Sin X3,

).(3 ="

ov
ot

V-v=0, y:(yl,yg)E']I‘Z,

+(v-V)v+ Vp—VAv—ZuJ i(y),
j=1

v = (vi(t,y), va(t,y)) — velocity, p = p(t,y) — pressure.
The Euler equations: v = 0.
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Motivation: Controllability = Stabilizability ?

Consider

=f(x)+ Y ufi(x)=f(x,u), xeDCR", ueR™, 0D, ()
j=1

where fy, f1, ..., fm are smooth, f(0) =0, and m < n .
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Motivation: Controllability = Stabilizability ?

Consider
x = fo(x) +Zuj-ﬁ(x) =f(x,u), xeDCR", ueR™ 0D, (Y
=1

where fy, fi, ..., f, are smooth, 7(0) =0, and m < n .

Stabilization by a time-invariant feedback

Find a continuous u = k(x), k(0) = 0 s.t. the solution x = 0 of
x = f(x, k(x)) = F(x) is asymptotically stable in the sense of Lyapunov.

References

R.E. Kalman (1961), N.N. Krasovskii (1966), G.V. Kamenkov (1972),

V.I. Korobov (1973), Z. Artstein (1983), R.W. Brockett (1983),

V.G. Veretennikov (1984), M. Kawski (1989), J.-M. Coron, L. Praly, A. Teel
(1995), F.H. Clarke, Yu. S. Ledyaev, E.D. Sontag, A.l. Subbotin (1997),

S. Celikovsky, E. Aranda-Bricaire (1999), P. Morin, J.-B. Pomet, C. Samson
(1999), ... , F. Gao, Y. Wu, H. Li, Y. Liu (2018), ...
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Motivation: Obstacles for asymptotic stability

Krasnoselskii—Zabreiko theorem (1974)
If x =0 is asymptotically stable for x = f(x, k(x)) = F(x), x € R", then
v[F,S:] = (—1)" for any small enough ¢ > 0.

Rotation (degree) of a continuous vector field F : S, — R”
If F(x) # 0 on a sphere 5. = £S"7"R" then v[F, S;] € Z is well-defined.
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Motivation: Obstacles for asymptotic stability

Krasnoselskii—Zabreiko theorem (1974)
If x =0 is asymptotically stable for x = f(x, k(x))
v[F,S:] = (—1)" for any small enough ¢ > 0.

F(x), x € R", then

Rotation (degree) of a continuous vector field F : S, — R”
If F(x) # 0 on a sphere S, = £S" "R" then v[F, S;] € Z is well-defined.
Topological constraints for asymptotic stability

’Y[Fa SE] =1
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Motivation: Obstacles for asymptotic stability

Topological constraints for asymptotic stability

5

’Y[F,56]=0 7[F756]=1 'Y[F:SE]=2

Principle of nonzero rotation

If F e C(B), B - closed ball, y[F,0B] #0 = 3t € B: F(X) = 0.
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Motivation: Obstacles for asymptotic stability

Topological constraints for asymptotic stability

’Y[Fase]zo 'y[F,Sg]:l 7[F,55]=2

Brockett's necessary stabilizability condition (1983)

If x = 0 is stabilizable for x = f(x, u) by a continuous feedback law
u = k(x), k(0) =0, then Ve >0 30 > 0 s.t.

Bs(0) C f(B:(0), B:(0)), Bo(x*):={x:||x —x*|| <e}.
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Motivation: Obstacles for asymptotic stability

Examples of non-stabilizable systems

X] = U1, Xp = U, X3 = XplU1 — X1 Up. (RW BI’OCkett/83)

X| = X3, Xo = x2 —2x1x3, x3=u.  (J. — M. Coron & L. Rosier'92)

z = foz°+ugoz9, z = x1+ix2, 2g—1 > s > 1. (B. Jakubczyk & A.Z.05)

An academic example (Brockett's example)

X1 = U1, Xp = U2, X3 = Xpl1 — X1U2.

Brockett's condition fails: the system of algebraic equations

U1 0
up =10 has no solutions if p3 # 0.
XolUy — X1U2 P3
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Motivation: Obstacles for asymptotic stability

Examples of non-stabilizable systems

X] = U1, Xp = Up, X3 = XplU1 — X1 Up. (RW BI’OCketl'/83)
X| =X3, Xo = x2 —2x1x3, x3=u.  (J. — M. Coron & L. Rosier'92)

z = fhz*+ugoz?, z=x1+ixp, 2gq—1 > s > 1. (B. Jakubczyk & A.Z.'05)

A practical motivation: stabilization of nonholonomic systems

X1 = U7 COS X3,

5(2 = sin X3,

x3 =, xeR3 ueR?
Control Lyapunov functions do
not exist for underactuated
(m < n) driftless (fo(x) = 0)
Unicycle systems!
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Brockett's stabilizability condition

Dynamic extension of Euler's equations with dim(u) = 2

w=Aw X w+ puy + pouo,
¢ = wy cos + wzsinb,

0 = wysinftan ¢ + wy — w3 cosftan ¢,

¥ = —ws sin fsec ¢ + w3 cos Bsec .

C. Byrnes (2008): Brockett's condition is violated!

The algebraic equation

f(X7 d)aeadja uy, U2) - (}’17}’2»)’3a0;0;0)T

has no solutions generically for small |y|.
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Motivation: Controllability = Stabilizability ?

>'<:fo(x)+2uj-6-(x)5f(x,u), xeDCR" ueR" m<n ()
j=1
General question: ?

vx%, x! € D3u0u € L]0, T] Jk € C(D): k(0)=0
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Motivation: Controllability = Stabilizability ?

$=R(x)+ > ufi(x)=f(x,u), x€DCR" ueR™" m<n (%)

General question: ?

Linear and Linearizable Systems

x = Ax + Bu, dJu = Kx :

=
rank(B, AB, ...,A""'B) = n x =0 - exponentially stable
General Systems of the Form (X)

Liex—o{fo, fi, .., fm} = R" 4 Ju=k(x): ke C(D), k(0)=0:

(Lie algebra rank condition) x =0 - asymptotically stable
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Motivation: Controllability = Stabilizability !

Existence Results

J.-M. Coron (1995)

Assume that x = 0 is locally continuously reachable in small time for the
control system

X = f(X, U), (Xa u) € O CR" xR, (070) €0, f(0,0) =0, (Z)

that (X) satisfies the Lie algebra rank condition at (0,0) € R” x R™ and
that n ¢ {2,3}. Then (X) is locally stabilizable in small time by means of
almost smooth periodic time-varying feedback laws u = k(x, t).

F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag, A.l. Subbotin (1997)

System (X) is asymptotically controllable if and only if it admits an
s-stabilizing feedback u = k(x). (Solutions are defined in the sense of

sampling — “m-trajectories” or “m.-solutions”).
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Sampling and 7.-solutions

Partition of t € [0, +00)

For a given € > 0, we denote by 7. the partition of [0, +00) into intervals

i =t tiv1), ti=¢€j, j=0,1,2,....

m.-solutions

Assume given a feedback u = h(t, x), h:[0,+0c0) x D — R™, ¢ >0, and
x% € R". A 7.-solution of system (X) corresponding to x° € D and h(t, x)
is an absolutely continuous function x(t) € D, defined for t € [0, +00),
which satisfies the initial condition x(0) = x° and the following differential
equations

x(t) = £(x(8), h(t, x(57))),  t € i = [, tjva),

foreach j=0,1,2,... .
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Problem Formulation

General formulation

Let the assumptions of Coron's theorem be satisfied for the control system

m
x=1f(x)+ Y uf(x), xeDCR, ueR" 0eD. (%)
i=1

Is it possible to construct a time-varying feedback law

N
2kt
uj = Z ajk(x)exp{i 7; }GR, I & 1 2 e, (1 (0)
k=—N

such that the solution x = 0 of (X), (C) is asymptotically (exponentially)
stable? Here aj(x) are piecewise smooth functions, ajx(x) — 0 as x — 0.
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Why trigonometric polynomials?

Sine and cosine controls

Let

x = u1(t)A(x) + ua(t)fa(x), x(0) = x°,
ur(t) = acos (zﬁTkt> , up(t) = asin <27T7kt) , ke Z\ {0}, t € [0,¢].

Then

ot

X(0) = 2 + 2 BO®) + O(ale). [ Al = 2200~ 2h

o 2(%):

Applications to optimal control, motion planning, stabilization, ...

R.W. Brockett (1981), H.J. Sussmann and W. Liu (1991), R.M. Murray and

S.S. Sastry (1993), W. Liu (1997), P. Morin, J.-B. Pomet, and C. Samson (1999),
A. Agrachev and A. Sarychev (2005), J.-P. Gauthier, B. Jakubczyk, and

V. Zakalyukin (2010), Y. Chitour, F. Jean, and R. Long (2013), F. Jean (2014),
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Bracket Generating Systems

Nonholonomic system

=Y uifi(x), x€DCR", 0€D, |fillcxpy<oo,m<n. (o)
i=1

Assume the following step-2 bracket generating property at x = 0:
span{fi(x),[f;, il(x)|i =1,2,..,m,(j,I) € S} =R", (B)
where S C {1,...,m}2, m+|S| =n.
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Bracket Generating Systems

Nonholonomic system

=Y uifi(x), x€DCR", 0€D, |filcpy<oo,m<n. (o)
i=1

Assume the following step-2 bracket generating property at x = 0:
span {fi(x),[f;, fil(x)| i =1,2,..m,(j,]) € S} =R", (B)
where S C {1,...,m}2, m+|S| = n.

Time-varying feedback controls u; = uf(t, x), i

2kt . . 2mwk;t
ui(t,x) = vi + Z aj {(5,-J- cos ( €J ) + 0j sign(aj) sin ( 81 )} :

U.Nes
Vi = V,'(X), aj| = aj/(x), kj/ €Z, e>0.

(€)
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Lie Bracket Extension

Q.

4

"_-‘

Nonholonomic system (%)

X = i u;fi(x)
i=1

xe€DCR", ueR™ m<n.

Extended system (X.)

)'(:ZU;f,'(X)'i‘ Z aylf;, A (x),
i—1

(,Hes
u= (Ul, ooy U, @/)07/)65 e R".
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Control Design Scheme

Main idea: Consider a positive definite function V/(x)

Define controls of the form (C) to approximate the flow of X = —V V(%)
by trajectories of (Xo).

Algebraic equations w.r.t. v; and aj:

e dilagl o o e Of(x),
D)+ g D0 TR + 5 D iy b+
i=1 (ig)es ij=1
€ agi agj
o= v D [ v 2 |2 ) = V(). (Za)
qi qj

i<j (9,/)€S

(g)€S

Non-resonance assumption w.r.t. kj € Z\ {0}:

|kq/|7é|k_/r| for all (q7l)657(j7r)esa(qal)#(jvr)' (NR)
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Exponential Stability Results

Theorem 1. Let V/(x) be a function of class C?(D) such that

V(0) =0, [VV(X)I? 2 a1V(x), V(x) 2 Bullx[?, 2 >0, B1 >0, (1)

of;(x) .
— <
H o | = L, VxeD,ie{l,..,m}, (2)
and let v; = vi(x), ay = a3(x) (|[x]| < po, € < €0) be a solution of (X4) such that
i (s LI 25 ‘)
€20\ o<||x||<po [|x]]

Then there exist p € (0, po], € € (0,e0], and A > 0:

X1l < pye € (0,8) = [Ix(2)]| = O(e™*), [|u (¢, x(£))]| = O(e™ ) as t = +o0,

(4)

for the m.-solutions of system (Xg) with controls (C).

m A. Z. "Exponential stabilization of nonholonomic systems by means of
oscillating controls”, SIAM J. Control Optim., 2016, Vol. 54, P. 1678-1696.
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Exponential Stability Results

Theorem 2 (Local Solvability of the System of Algebraic Equations)

Assume that fi(x), f2(x), ..., fm(x) satisfy the condition (B) at x =0,
|S|=n—m, and let V € C2(D) be a positive definite function. Then, for
any small enough € > 0, there exists a A > 0 such that (X 4) has a solution

vE(x) = (Vi (x); - vin(x))'s 8 (%) = ((X)ginpes)'

k*(x) = (ki(x)¢nes)'s x € Ba(0).

The above solution satisfies
|x|
[veOOll < Myllx|l, [l ()| < M, | ’, x € Ba(0), (5)

where the positive constants M, and M, do not depend on €.
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Exponential Stability Results

Corollary of Theorems 1 and 2

Assume that fi(x), f2(x), ..., fim(x) satisfy the condition (B) with

|S| = n— m at x = 0. Then, for any positive definite quadratic form V/(x),
there exist constants pg > p > 0 and g9 > & > 0 such that the algebraic
system (X4) admits a solution

vi = vi(x), ay = aj(x), x € By(0)C D, e €(0,¢0],
ie{l,..,m}, (j,I) €S,
and, for any ¢ € (0, Z], there is a A = A\(¢) > 0:

x° € B,(0) = [Ix(t)l| = O(e™), l|u* (£, x(t))| = O(e™3) as t = +oo,

(6)

for each m.-solution x(t) of system (Xg) with (C).
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Sketch of the Proof

Assume that V € C%(D),

0?V(x
BlixIP < V(x) < mlixlP, aV(x) < IVV)I? < 72V(). H | <

If x:[0,e] — D is a function s.t. x(g) = x(0) — eV V/(x(0)) + r-, x(0) # 0, then

2

x(e X et EH plrl? V72(1 +ep)|rell
V(x(e)) < V( (0)){1 T T 2BOE T VAR }

=V (x(£)
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Sketch of the Proof

of the solutions of (¥)

x(t)=x +Zf / ui(s ds—l—Z 8f

//u,(s uj(v)dv ds
ij=1
, ///u, s)uj(v)u(p)dp dv ds + R(t),

“ B
+Zax

IR(e) = O (¢ ||u||Lw[o,E]) 0<t<e.
x(1)
N x(0)=x°
) () =V(x")
=V (x(&)
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Example 1: Brockett’s Example

Consider the control system
X1 = U1, Xp = U, X3 = U1X2 — UpX1, (7)

where x = (x1,x2, x3)* € R3 is the state and v = (u1, u2)* € R? is the
control.

A. Astolfi (1999):

System (7) can be exponentially stabilized by a time-invariant feedback law
for the initial values in some open and dense set Q # R3, 0 ¢ int Q.
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Example 1: Brockett’s Example

System (7) satisfies the rank condition (B1) with S = {(1,2)}:

span{fi(x), f(x), [fi, K](x)} = R*> for each x € R?,

1 0
f(x) = (0) , h(x) = ( 1 ),
X2 —X1

0
1, 510x) = 220 - 20 (x)=(o).

-2

where
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Example 1: Brockett’s Example

V() = 504 + 8+ ).
V(£ %) = va(x) + a(x) cos (% t), (8)

U (t, %) = va(x) + |a(x) sin (%1&) (9)

where
vi(x) = —x1, va(x) = —x2, k €N,

4@:{‘Miwx+hw,@¢m

0, x3 = 0.

By Theorem 1, the feedback control (8)—(9) ensures exponential stability
of the equilibrium x = 0, provided that € > 0 is small enough.
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Example 1: Brockett’s Example

Figure: Trajectory of the closed-loop system (7)—(9) with x{ = x§ = x§ =1 and ¢ = 1.
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Example 2: Unicycle

Rolling without slipping

X1 = U3 COS X3, )'(2 = u sin X3, )'(3 = Us. (10)

Time-varying feedback:

(1) = () + o) cos (e (11)

U5 (t, %) = va(x) + |a(x)] sin (zgt) ,

vi(x) = —x3 cosx3 — xpsinx3, va(x) =

—xx3, x>0,

4
a(x) =wv £ \/V12 —2Tv1X3 + —ﬂ(xz COS X3 — X Sin x3).
€
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Example 3: Unit disc rolling on the plane

Unit disc rolling on the plane

X1 = U7 COS X3,

Xp = U7 Sin X3,

. (13)
X3 = Uz,

- T . b T o 2
X4 = U1, x=(x1,x2,x3,xa)" € R* u=(u1, )’ € R".

Z. Li, J. Canny “Motion of two rigid bodies with rolling constraint”,
IEEE Tr. Robotics and Autom., 1990, Vol. 6, P. 62-71.

Bracket generating condition

span{fl(x), f2(X)v [flv f2](x)’ [[ﬂv f2]a f2] (X)} — R47
fi(x) = (cosxs,sinx3,0,1)7, fH(x) = (0,0,1,0)".
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Example 3: Unit disc rolling on the plane

Unit disc rolling on the plane

X1 = U7 COS X3,
)'(2 = u sin X3,
. (13)
X3 = Uz,
X4 = Uy, x=(x1,%,x3,%)" €R*, u=(u1,up)" € R2
Z. Li, J. Canny “Motion of two rigid bodies with rolling constraint”,
IEEE Tr. Robotics and Autom., 1990, Vol. 6, P. 62-71.

Stabilizing controls

21k
t + a122(x) cos ﬂt,
€

271’/(12

ui (t, x) = a1(x) + ai2(x) cos

27Tk12

2mko120 " 2mk3120 t)

us(t, x) = ax(x) + az(x) sin t + a122(x) (sin —t +si

ion by oscillating controls



Example 3: Unit disc rolling on the plane

Stabilizing controls

27kin 2mki122
€

27k 27k 21k
W812t+a122(x)(sin %t+sinm

ui (t, x) = a1(x) + aiz(x) cos t + a122(x) cos t,

uS(t, x) = ax(x) + aza(x) sin t).
(14)

Here

_18V(X)’ an(x) = _16V(x

a(x) = e Oxa e Ox3

1 1 2 oV ov .
h(x) = mai(x)az(x) + a1(x)3122(x)(@ + @) + 5_7; <6_x2 cosxy — 7 —sin X3>

), 312(X) = al(x) + \/31(X)2 + 2/(12/'I(X)7
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Example 3: Unit disc rolling on the plane

Cubic equation with respect to aj»»

3.3
£7a12) €3 3kZ1pp + 10ko122k3122 5
cos(x3 a%,,a;1 cos(x3
16’/T2k2122k3122 ( ) 16 e k2122k3122 2z ( )
g 2( ko120 + k . ko120 + k3100)a1a e
4 S ( (ko122 3122)‘_7,1 Sl - (ko122 + k3122)a1a2 22
Am cko122k3122 ko122k3122 Tk{100
+(k2122 + kaizz)arare  (kewz2 + k3122)3%2)
Tko120k3120 k12 ko122 k3120 k12
3 2 2
€ 27T12 a>ai2 331 arp
aF ki ( 3 3132 + ajaraip + ki ke
2 3 2
ara a 5
_ le = Wfﬂ) COS(X3) aF Arkis (271'/(123132 + 2aia1p — 3%2)
oV(x)
— ga; cos(x3) = — .
=l (X3) 8X1
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Example 3: Unit disc rolling on the plane

Time plots of the 7 -solution of system (13) with controls (14)

%, (1)

]
0:\[\
Wi :

U v b 5 5 o[l
051 t 1

03
04 ! r T T d
xl( f) 0 2 4 (] 3 10
2 x (f] t

1 2
A Fhas.

N S
N \J’ \jf H t 6 8 10 71* ‘vf \Jﬁ WoTT t 5 5 10

Initial conditions and parameters

x1(0) = x2(0) =1, x3(0) = x4(0) = 7 /4, e = 1.
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Systems with Drift: Local Controllability

m
x)+2ujﬁ-(x)£f(x,u), xeDCR" ueR" m<n (%)
Jj=

Lie bracket of f,(x) and fi(x):

8f(x)

[fi, i1(x) = L fi(x) — Lgfi(x), Lefi = — —fi(x).

Step-3 bracket generating condition at x =0 € D:

span{ () 116100 [ 5110016 6100 6l ] 0} = B,

i€ S1, (i1, 12) € S2, (j1,42,43) € S35 (h, k) € So0,
S1,510 C{1,2,...,m}, S5, C {1,2,...,m}?, S3C{1,2,...,m}3,
51| + |S2] + 53] + [S10] + |S20] = n.

STLC of (X) at x = 0: Sussmann (1987), Agrachev and Sarychev (2005).
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Control Design Scheme

Theorem 3. Let0€ D, f; € C*D), i =0, ..., m. Assume that:

F(x) = ((xViesis [fus [ Bl (s ) s of full rank for all x € D,
S1C{1,...,m}, Soo C{1,....,m}?, |Si| +|S20| = n,

f6(0) = L fo(0) = 0 = L L o(0) = [fo, [fo, ]| (0) = O,

[fu, [fi, fo]] (%) + [, [fi, o]} (x) = O(lIxII"), [0, [fu, £u]] (x) = O(lIx|I), w >0,
for any (h, h) € Sy and any k : (I, k) € Sy or (k, k) € Sx.
Then the time-varying feedback control

up(t,x) =Y 0kai+ % > ks, (O + Susign(ays)) v/]ays,| cos (%—’Z“*-t)

i€S (h,k)€S20

a/1 b

< <t ) =-F1(x)(Qx+h(x), Q=QT >0, (C)
i€S1,(h,kh)ESx

ensures asymptotic stability of the trivial solution of (X), if e > 0 is small enough
and positive integers ky,;, have no resonances of order up to 3.
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Systems with Drift: Rotating Rigid Body

Euler's equations with 2 control torques

2
%= f(x)+ Y ufi(x), x€R ueR?, (=3)
j=1

fo(x) = (a1xox3, apx1x3, a3x1x2) |, i = (1,0,0)", f, = (0,1,0)", a3 # 0.

Bracket generating condition:
span {fi(x), f2(x), [fi, [&, f]](x)} =R at each x € R3.

Matrix notation

]:(X) - <fi(X)i€517 [f/17 [f/27 ff)]](x)(h,lz)ESzo)’ 5= {172}7 S20 = {(172)}'
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Systems with Drift: Rotating Rigid Body

Euler's equations with 2 control torques

*=hH(x)+ > ufi(x), xR ueR? )

fo(x) = (auxax3, aox1x3, azxixe) ', i = (1,0,0)7, fo = (0,1,0)7, asz #0.

Bracket generating condition:
span {fi(x), f2(x), [fi, [/, H]](x)} =R  at each x € R3.

Time-varying controls ( )

u = ap + Vel V6|"”2|cos (2t), up = ap + 47TTI‘m'sign (a12) cos (22£) . (C)

e e
Control design with (a1, ag, alg)T = a(x):
a(x) = ~F () (x+6(x)), 7> 0.
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Systems with Drift: Rotating Rigid Body

Euler's equations with 2 control torques

*=hH(x)+ > ufi(x), xR ueR? )

fo(x) = (auxax3, aox1x3, azxixe) ', i = (1,0,0)7, fo = (0,1,0)7, asz #0.

Bracket generating condition:
span {fi(x), f2(x), [fi, [/, H]](x)} =R  at each x € R3.

Time-varying controls ( )
u = ap + Vel V6|"”2| cos (), iy = ap + Ls1gn (a12) cos (22£) . (C)

Control design with (a1, ag, alg)T = a(x):

= YX1tQ1X2X3, a2 = YXo+02X1X3, d12 = 2a3X1+ X1X2.
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Stabilization of Euler’s Equations

Simulation results

m ) 'WV\/VVV UAY et

)3 AR 1

AT /}\/X/x( AN
1) ¥ i W VUVVF 3

:
‘ |

a) b)

[=— Controls from IL.A — Controls from [Reyhanoglu, 1996] — Controls from [Aeyels, 1985] — Controls from [Morin & Samson, 1997]|

Solutions of (X3) with (C). Fig. a): x(0) = (3,2,1)7; fig. b): x(0) = (0,0,2)7.

I
T

Cf.: Reyhanoglu (1996), Aeyels (1985), Morin and Samson (1997).
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Hydrodynamical Models

The Navier-Stokes Equations on T? (case of incompressible fluid)
8 m

‘;+(V V)V+ VP_VAV—ZU_/(t)FJ(y)a y:(Y17Y2)ET2,

Jj=1 . .
V v=0, (continuity equation)

where v = (v1(t,y), wa(t, y)) — velocity, p = p(t,y) — pressure.

0
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Hydrodynamical Models

The Navier-Stokes Equations on T? (case of incompressible fluid)

0
8‘; +(v-V)v+ Vp—l/AV—ZUj(t)Fj( ), v =(,y) € T?
Jj=1

V v=0, (continuity equation)
where v = (v1(t,y), wa(t, y)) — velocity, p = p(t,y) — pressure.

Reduction Scheme

dv,  0Ovg
ty) e w(ty)=v+t.v=22_21
v(t,y) <> w(t,y) Y=o oy
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Hydrodynamical Models

The Navier-Stokes Equations on T? (case of incompressible fluid)
6 m

v
t+(V V)V+ vp_VAV_ZUJ(t)FJ(y)a y=(Y1,Y2)ET27

J=1 . ]
V v=0, (continuity equation)

where v = (vi(t,y), va(t, y)) — velocity, p = p(t,y) — pressure.

0

Reduction Scheme

Oov 0w .
t, <~ t, —VJ_ = —— — —— = i ik-y
V( .y) W( .y) v ayl ay2 kgezz qk( )e
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Hydrodynamical Models

The Navier-Stokes Equations on T? (case of incompressible fluid)

ov 1 ~
5t T VIV oVp—vhy = ; u(F(y)s ¥y =(n1,52) € T?,
V-v=0, (continuity equation)

where v = (v1(t,y), va(t, y)) — velocity, p = p(t,y) — pressure.

Reduction Scheme

ova vy ik- To
v(t,y) o w(t,y)=V+t.v=—-2=_— == gr(t)e V= gr(t)e™
(t,) & wit.y) oot P SUICEEDILIC

Galerkin Approximations with m inputs

Ge=>_ (hna— L)l ?qign — vIKPqe + > ujdjx, k,l,neG. (T
I+n=k j=1
A. Agrachev and A. Sarychev (2005) “Navier-Stokes Equations: Controllability by means of Low

Modes Forcing”, Journal of Mathematical Fluid Mechanics, Vol. 7: 108-152.
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Stabilization of the Galerkin System

Galerkin approximation of the Euler equations (v = 0)

m
x=f(x)+ Y ufi(x), x€R", ueR™ (N
j=1
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Stabilization of the Galerkin System

Galerkin approximation of the Euler equations (v = 0)

x=f(x)+ Y ufi(x), x€R", ueR™ (N

Step-3 bracket generating condition

span{f(x), [fu, [f3, GlI(x)  j € S1, (a(B0)) € Sz} = R” for all x € R,
(Bs)
Sic{l,...m}, S C {(a (ﬁO)) ca, B €{1,...,m}}, |S1] +|S3] = n.
m W. E and J. Mattingly (2001)
m A. Agrachev and A. Sarychev (2005)
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Lie Brackets and Energy Cascades

Energy cascade

©)©)©) / EA

0606060666 H

Energy
dissipation
€

U. Frisch (2018): Turbulence: The Legacy of A. N. Kolmogorov, Cambridge
University Press.
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Stabilization of the Galerkin System

Step-3 case: parametrization of controls
ux, t) =Y W+ > W, (C)

JES JES3

v = ajej for j€ S,

| cos (27T£(jt) (eq + sign (vj)eg) for j = (a(B0)) € Ss,

where ¢; is the j-th unit vector in R™.

€

Stabilizing control design with v; = v;(x)

S a6+ X alf [, 600 = - (ZE0) < g0, (4

JESL JES3
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Stabilization of the Galerkin System

Step-3 case: parametrization of controls
u(x, t) => W+ > W, ()

JES1 JES3

W= ajej for j€ S,

N ]
=" €|aj| cos (%;(Jt) (ea +sign(vj)eg) for j = (a(50)) € Ss,

where ¢; is the j-th unit vector in R™.

Let the control system (') satisfy (B3) and f; = const for i = 1,2, ..., m.

Then, for any positive definite quadratic form V/(x) and any non-resonant
set of integers {Kj | j € S3}, the controls (C) with a; = aj(x) stabilize the
solution x = 0 of (I') asymptotically, provided that £ > 0 is small enough.
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Stabilization of the Galerkin System

An Example: Galerkin approximation with n=8, m =14

4
X = fb(X) + Z Ujf}(X), X = (X17X27 ""XS)* € Rga (r)
j=1

G ={(ki, ko) € Z°| [ka| < 1, |ko| <1},
gi,1 = X1+ X2, q1,—-1 = X3 + iXa, q1,0 = X5 + iXe, Go,1 = X7 + iXg.
fi = (1,0,0,0,0,0,0,1)*, £ =(0,1,0,0,0,0,1,0)*,
f;=(0,0,1,0,0,1,0,0)*, f2 =(0,0,0,1,1,0,0,0)".

Bracket generating condition:

span{f, ..., fa, [f2, [fi, o]l [, [, ol [fa, [, o], [fa, [, o]} = RE.
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Stabilization of the Galerkin System

Controls for the case (Bs) with n =8, m =4

v =a + 4; <MSign(aglo) cos(w1t) + v/|az10/sign(asio) cos(wat)
[2ssolsign(aso) cos(wst) )

up =ax + 4?71- (\/m cos(wit) + £2v/|aaz0|sign(asz0) cos(w4t)) :

U3 =az + 4—\/@cos(w2t)

Uy =ay —I— = (Wcos(wﬁ) + v/|a420| cos(wat )

where € > 0,
27 K10 27 K310 27 Ky10 27 Ky
Wi =———, W= , W3 = , Wi = ——,
€ €
1 . ..
v = (v1, va, V3, Va, Vo10, V310, Va10, Vazo) = —M ™~ (Qx + fo(x)), Q—positive definite.
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Stabilization of the Galerkin System

Higher order controllability conditions
m
x = fo(x) + Z uifi(x), xeR" ueR™ ()
j=1
Consider the following sets of “words of indices”:

Wi ={(a):a€{1,2,...,m}},
Wi ={(a(80)): aeW,, BEW,, I,p—odd, | +p=k—1}, k=3,5,7,....

Define the map B(f;, f;) := [fi, [f;, fo]] and introduce iterated Lie brackets with the
indices from Wi:

f, = B(f,,f;) forj = (a(B0)) € Wi.

Bracket generating condition:
span {fj(x) : j € S} =R" for all x € R", (B)
where S = S; U S3; U ... U Sy, Sk C Wy, |5| = n.

Zuyev Stabilization by oscillating controls



Stabilization of the Galerkin System

Control design scheme under (B)

=5

JESIUS3U...USN
where v/ = vj for j € 51, and W= Lréj(\/j, t) is defined recursively in terms
of controls implementing along f, and f3 for j = («(80)) € Sk, k > 3.
Main idea: define v; = vj(x) from the condition x(g) = xg — keV V/(x0)
under a suitable choice of small parameters € > 0 and ¢; > 0.
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Stabilization of the Galerkin System

Control design scheme under (B)

P S

JESIUS3U...USy

where v/ = v; for j € Sy, and &/ = uéj(vj, t) is defined recursively in terms
of controls implementing along f, and f3 for j = («(80)) € Sk, k > 3.
Main idea: define v; = vj(x) from the condition x(g) = xg — keV V/(x0)
under a suitable choice of small parameters € > 0 and ¢; > 0.

The motion along f; = [[f1, [, f]], [f3, fo]], j = ((1(20))(30))

g Al d (e
YT e dt €2 e2))’

: V2 IvJI” ) fua0)
ul (v, t) : up = = oS E% ;
u3 = Y 2|Vj|Sign(Vj)COS (%) , Es X €, Ef X €2
& € fa20))30)
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” : COMPUTATIONAL METHODS IN
\’ i @ SYSTEMS AND CONTROL THEORY

Thank you for your attention!

m A.Z. (2016): Exponential stabilization of nonholonomic systems by means of
oscillating controls // SIAM J. Control Optim.

m A.Z. and V. Grushkovskaya (2017): Motion planning for control-affine
systems satisfying low-order controllability conditions // International
Journal of Control.

m V. Grushkovskaya, A.Z., and C. Ebenbauer (2018): On a class of generating
vector fields for the extremum seeking problem: Lie bracket approximation
and stability properties // Automatica.

m A.Z. and V. Grushkovskaya (2019): On stabilization of nonlinear systems
with drift by time-varying feedback laws // arXiv: 1904.10219.

http://zuyev.science
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