

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Stabilization of Nonlinear Systems by Oscillating Controls with Application to Nonholonomic and Fluid Dynamics Alexander Zuyev School and Workshop on Mixing and Control, ICTP, Trieste 16–20 September 2019

Outline

- Motivation: Systems with Uncontrollable Linearization Controllability ⇒ Stabilizability ? Controllability ⇒ Stabilizability !
- 2. Stabilization by Fast Oscillating Controls

Nonholonomic Systems Control Design Scheme Exponential Stability Results Examples

- Systems with Drift: Small-Time Local Controllability (STLC) Conditions Control Design Scheme Euler's Equations in Rigid Body Dynamics
- 4. Hydrodynamical Models

The Navier–Stokes and Euler Equations Lie Brackets and Energy Cascades Stabilization of Finite-Dimensional Systems

Systems with Uncontrollable Linearization

Unicycle

$\dot{x}_1 = u_1 \cos x_3,$ $\dot{x}_2 = u_1 \sin x_3,$ $\dot{x}_3 = u_2.$

$J_1 \dot{x}_1 = (J_2 - J_3) x_2 x_3 + \mu_{11} u_1 + \mu_{21} u_2,$

Euler's equations in rigid body dynamics

 $J_2 \dot{x}_2 = (J_3 - J_1) x_1 x_3 + \mu_{12} u_1 + \mu_{22} u_2,$ $J_3 \dot{x}_3 = (J_1 - J_2) x_1 x_2 + \mu_{13} u_1 + \mu_{23} u_2.$

The Navier–Stokes and Euler equations on \mathbb{T}^2 (incompressible case)

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \frac{1}{\rho} \nabla p - \mathbf{v} \Delta \mathbf{v} = \sum_{j=1}^{m} u_j F_j(\mathbf{y}),$$
$$\nabla \cdot \mathbf{v} = 0, \quad \mathbf{y} = (y_1, y_2) \in \mathbb{T}^2,$$

 $v = (v_1(t, y), v_2(t, y))$ – velocity, p = p(t, y) – pressure. The Euler equations: v = 0.

Motivation: Controllability \Rightarrow Stabilizability ?

Consider

$$\dot{x} = f_0(x) + \sum_{j=1}^m u_j f_j(x) \equiv f(x, u), \quad x \in D \subset \mathbb{R}^n, \ u \in \mathbb{R}^m, \ 0 \in D, \quad (\Sigma)$$

where f_0 , f_1 , ..., f_m are smooth, $f_0(0) = 0$, and m < n.

Motivation: Controllability \Rightarrow Stabilizability ?

Consider

$$\dot{x} = f_0(x) + \sum_{j=1}^m u_j f_j(x) \equiv f(x, u), \quad x \in D \subset \mathbb{R}^n, \ u \in \mathbb{R}^m, \ 0 \in D, \quad (\Sigma)$$

where f_0 , f_1 , ..., f_m are smooth, $f_0(0) = 0$, and m < n.

Stabilization by a time-invariant feedback

Find a continuous u = k(x), k(0) = 0 s.t. the solution x = 0 of $\dot{x} = f(x, k(x)) \equiv F(x)$ is asymptotically stable in the sense of Lyapunov.

References

R.E. Kalman (1961), N.N. Krasovskii (1966), G.V. Kamenkov (1972),
V.I. Korobov (1973), Z. Artstein (1983), R.W. Brockett (1983),
V.G. Veretennikov (1984), M. Kawski (1989), J.-M. Coron, L. Praly, A. Teel (1995), F.H. Clarke, Yu. S. Ledyaev, E.D. Sontag, A.I. Subbotin (1997),
S. Celikovsky, E. Aranda-Bricaire (1999), P. Morin, J.-B. Pomet, C. Samson (1999), ..., F. Gao, Y. Wu, H. Li, Y. Liu (2018), ...

Krasnoselskii–Zabreiko theorem (1974)

If x = 0 is asymptotically stable for $\dot{x} = f(x, k(x)) \equiv F(x), x \in \mathbb{R}^n$, then $\gamma[F, S_{\varepsilon}] = (-1)^n$ for any small enough $\varepsilon > 0$.

Rotation (degree) of a continuous vector field $F : S_{\varepsilon} \to \mathbb{R}^n$ If $F(x) \neq 0$ on a sphere $S_{\varepsilon} = \varepsilon S^{n-1} \mathbb{R}^n$ then $\gamma[F, S_{\varepsilon}] \in \mathbb{Z}$ is well-defined.

Krasnoselskii–Zabreiko theorem (1974) If x = 0 is asymptotically stable for $\dot{x} = f(x, k(x)) \equiv F(x), x \in \mathbb{R}^n$, then $\gamma[F, S_{\varepsilon}] = (-1)^n$ for any small enough $\varepsilon > 0$. Rotation (degree) of a continuous vector field $F : S_{\varepsilon} \to \mathbb{R}^n$ If $F(x) \neq 0$ on a sphere $S_{\varepsilon} = \varepsilon S^{n-1} \mathbb{R}^n$ then $\gamma[F, S_{\varepsilon}] \in \mathbb{Z}$ is well-defined. Topological constraints for asymptotic stability

Topological constraints for asymptotic stability

Principle of nonzero rotation

If $F \in C(\overline{B})$, \overline{B} - closed ball, $\gamma[F, \partial B] \neq 0 \Rightarrow \exists \widetilde{x} \in B : F(\widetilde{x}) = 0$.

Topological constraints for asymptotic stability

Brockett's necessary stabilizability condition (1983)

If x = 0 is stabilizable for $\dot{x} = f(x, u)$ by a continuous feedback law u = k(x), k(0) = 0, then $\forall \varepsilon > 0 \exists \delta > 0$ s.t.

 $B_{\delta}(0) \subset f(B_{\varepsilon}(0), B_{\varepsilon}(0)), \quad B_{\varepsilon}(x^*) := \{x : \|x - x^*\| < \varepsilon\}.$

Examples of non-stabilizable systems

$$\dot{x}_1 = u_1, \ \dot{x}_2 = u_2, \ \dot{x}_3 = x_2u_1 - x_1u_2. \qquad (R.W. \ Brockett'83)$$
$$\dot{x}_1 = x_3, \ \dot{x}_2 = x_1^2 - 2x_1x_3^2, \ \dot{x}_3 = u. \qquad (J. - M. \ Coron \& L. \ Rosier'92)$$
$$= f_0 z^s + ug_0 z^q, \ z = x_1 + ix_2, \ 2q - 1 > s > 1. \ (B. \ Jakubczyk \& A.Z.'05)$$

An academic example (Brockett's example)

$$\dot{x}_1 = u_1, \ \dot{x}_2 = u_2, \ \dot{x}_3 = x_2u_1 - x_1u_2.$$

Brockett's condition fails: the system of algebraic equations

$$\begin{pmatrix} u_1 \\ u_2 \\ x_2u_1 - x_1u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ p_3 \end{pmatrix} \text{ has no solutions if } p_3 \neq 0.$$

ż

Examples of non-stabilizable systems

$$\dot{x}_{1} = u_{1}, \ \dot{x}_{2} = u_{2}, \ \dot{x}_{3} = x_{2}u_{1} - x_{1}u_{2}.$$

$$(R.W. Brockett'83)$$

$$\dot{x}_{1} = x_{3}, \ \dot{x}_{2} = x_{1}^{2} - 2x_{1}x_{3}^{2}, \ \dot{x}_{3} = u.$$

$$(J. - M. Coron \& L. Rosier'92)$$

$$\dot{z} = f_{0}z^{s} + ug_{0}z^{q}, \ z = x_{1} + ix_{2}, \ 2q - 1 > s > 1.$$

$$(B. Jakubczyk \& A.Z.'05)$$

A practical motivation: stabilization of nonholonomic systems

$$\begin{split} \dot{x}_1 &= u_1 \cos x_3, \\ \dot{x}_2 &= u_1 \sin x_3, \\ \dot{x}_3 &= u_2, \quad x \in \mathbb{R}^3, \ u \in \mathbb{R}^2. \\ \text{Control Lyapunov functions do} \\ \text{not exist for underactuated} \\ (m < n) \text{ driftless } (f_0(x) \equiv 0) \\ \text{systems!} \end{split}$$

Brockett's stabilizability condition

Dynamic extension of Euler's equations with dim(u) = 2

$$\begin{split} \dot{\omega} &= A\omega \times \omega + \mu_1 u_1 + \mu_2 u_2, \\ \dot{\phi} &= \omega_1 \cos \theta + \omega_3 \sin \theta, \\ \dot{\theta} &= \omega_1 \sin \theta \tan \phi + \omega_2 - \omega_3 \cos \theta \tan \phi, \\ \dot{\psi} &= -\omega_1 \sin \theta \sec \phi + \omega_3 \cos \theta \sec \phi. \end{split}$$

C. Byrnes (2008): Brockett's condition is violated!

The algebraic equation

$$f(x, \phi, \theta, \psi, u_1, u_2) = (y_1, y_2, y_3, 0, 0, 0)^T$$

has no solutions generically for small |y|.

Motivation: Controllability \Rightarrow Stabilizability ?

Motivation: Controllability \Rightarrow Stabilizability ?

$$\dot{x} = f_0(x) + \sum_{j=1}^m u_j f_j(x) \equiv f(x, u), \quad x \in D \subset \mathbb{R}^n, \ u \in \mathbb{R}^m, \ m < n. \quad (\Sigma)$$
General question: Controllability \Rightarrow Stabilizability ?
Linear and Linearizable Systems
$$\dot{x} = Ax + Bu, \qquad \Rightarrow \qquad \exists u = Kx:$$
rank $(B, AB, ..., A^{n-1}B) = n \qquad x = 0$ - exponentially stable
General Systems of the Form (Σ)
Lie_{x=0}{ $f_0, f_1, ..., f_m$ } = $\mathbb{R}^n \qquad \Rightarrow \qquad \exists u = k(x): k \in C(D), \ k(0) = 0:$
(Lie algebra rank condition) $x = 0$ - asymptotically stable

Motivation: Controllability \Rightarrow Stabilizability !

Existence Results

J.-M. Coron (1995)

Assume that x = 0 is locally continuously reachable in small time for the control system

 $\dot{x} = f(x, u), \ (x, u) \in \mathcal{O} \subset \mathbb{R}^n \times \mathbb{R}^m, \ (0, 0) \in \mathcal{O}, \ f(0, 0) = 0,$ (Σ)

that (Σ) satisfies the Lie algebra rank condition at $(0,0) \in \mathbb{R}^n \times \mathbb{R}^m$ and that $n \notin \{2,3\}$. Then (Σ) is locally stabilizable in small time by means of almost smooth periodic time-varying feedback laws u = k(x, t).

F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag, A.I. Subbotin (1997)

System (Σ) is asymptotically controllable if and only if it admits an *s*-stabilizing feedback u = k(x). (Solutions are defined in the sense of sampling – " π -trajectories" or " π_{ε} -solutions").

Sampling and π_{ε} -solutions

Partition of $t \in [0, +\infty)$

For a given $\varepsilon > 0$, we denote by π_{ε} the partition of $[0, +\infty)$ into intervals

$$I_j = [t_j, t_{j+1}), t_j = \varepsilon j, j = 0, 1, 2, \dots$$

π_{ε} -solutions

Assume given a feedback u = h(t, x), $h : [0, +\infty) \times D \to \mathbb{R}^m$, $\varepsilon > 0$, and $x^0 \in \mathbb{R}^n$. A π_{ε} -solution of system (Σ) corresponding to $x^0 \in D$ and h(t, x) is an absolutely continuous function $x(t) \in D$, defined for $t \in [0, +\infty)$, which satisfies the initial condition $x(0) = x^0$ and the following differential equations

$$\dot{x}(t) = f(x(t), h(t, x(t_j))), \quad t \in I_j = [t_j, t_{j+1}),$$

for each j = 0, 1, 2,

Problem Formulation

General formulation

Let the assumptions of Coron's theorem be satisfied for the control system

$$\dot{x} = f_0(x) + \sum_{i=1}^m u_i f_i(x), \quad x \in D \subset \mathbb{R}^n, \ u \in \mathbb{R}^m, \ 0 \in D.$$
 (S)

Is it possible to construct a time-varying feedback law

$$u_{j} = \sum_{k=-N}^{N} a_{jk}(x) \exp\left\{i\frac{2\pi kt}{\varepsilon}\right\} \in \mathbb{R}, \quad j = 1, 2, ..., m, \qquad (C)$$

such that the solution x = 0 of (Σ) , (C) is asymptotically (exponentially) stable? Here $a_{jk}(x)$ are piecewise smooth functions, $a_{jk}(x) \rightarrow 0$ as $x \rightarrow 0$.

Why trigonometric polynomials?

Sine and cosine controls

Let

$$\dot{x} = u_1(t)f_1(x) + u_2(t)f_2(x), \ x(0) = x^0,$$

$$(t) = a\cos\left(\frac{2\pi kt}{\varepsilon}\right), \ u_2(t) = a\sin\left(\frac{2\pi kt}{\varepsilon}\right), \ k \in \mathbb{Z} \setminus \{0\}, \ t \in [0, \varepsilon].$$

Then

 U_1

$$x(\varepsilon) = x^0 + \frac{\varepsilon^2 a^2}{4\pi k} [f_1, f_2](x^0) + O(|a|^3 \varepsilon^3), \quad [f_1, f_2](x) := \frac{\partial f_2}{\partial x} f_1(x) - \frac{\partial f_1}{\partial x} f_2(x).$$

Applications to optimal control, motion planning, stabilization, ...

R.W. Brockett (1981), H.J. Sussmann and W. Liu (1991), R.M. Murray and
S.S. Sastry (1993), W. Liu (1997), P. Morin, J.-B. Pomet, and C. Samson (1999),
A. Agrachev and A. Sarychev (2005), J.-P. Gauthier, B. Jakubczyk, and
V. Zakalyukin (2010), Y. Chitour, F. Jean, and R. Long (2013), F. Jean (2014),

Bracket Generating Systems

Nonholonomic system

$$\dot{x} = \sum_{i=1}^{m} u_i f_i(x), \quad x \in D \subset \mathbb{R}^n, \ 0 \in D, \ \|f_i\|_{C^2(D)} < \infty, \ m < n.$$
 (\$\Sum 0\$)

Assume the following step-2 bracket generating property at x = 0:

$$\operatorname{span} \{ f_i(x), [f_j, f_l](x) \mid i = 1, 2, ..., m, (j, l) \in S \} = \mathbb{R}^n,$$
 (B)

where $S \subseteq \{1, ..., m\}^2$, m + |S| = n.

Bracket Generating Systems

Nonholonomic system

$$\dot{x} = \sum_{i=1}^{m} u_i f_i(x), \quad x \in D \subset \mathbb{R}^n, \ 0 \in D, \ \|f_i\|_{C^2(D)} < \infty, \ m < n.$$
 (\$\Sum 0\$)

Assume the following step-2 bracket generating property at x = 0:

$$\operatorname{span} \{f_i(x), [f_j, f_l](x) \mid i = 1, 2, ..., m, (j, l) \in S\} = \mathbb{R}^n, \tag{B}$$

where
$$S \subseteq \{1, ..., m\}^2$$
, $m + |S| = n$.

Time-varying feedback controls $u_i = u_i^{\varepsilon}(t, x)$, i = 1, 2, ..., m:

$$u_{i}^{\varepsilon}(t,x) = v_{i} + \sum_{(j,l)\in S} a_{jl} \left\{ \delta_{ij} \cos\left(\frac{2\pi k_{jl}t}{\varepsilon}\right) + \delta_{il} \operatorname{sign}(a_{jl}) \sin\left(\frac{2\pi k_{jl}t}{\varepsilon}\right) \right\},$$

$$v_{i} = v_{i}(x), \ a_{jl} = a_{jl}(x), \ k_{jl} \in \mathbb{Z}, \ \varepsilon > 0.$$

(C)

Lie Bracket Extension

Nonholonomic system (Σ)

$$\dot{x} = \sum_{i=1}^m u_i f_i(x),$$

$$x \in D \subset \mathbb{R}^n, \ u \in \mathbb{R}^m, \ m < n.$$

Extended system (Σ_e)

$$\dot{x} = \sum_{i=1}^{m} \bar{u}_i f_i(x) + \sum_{(j,l)\in S} \bar{u}_{jl}[f_j, f_l](x),$$
$$\bar{u} = (\bar{u}_1, ..., \bar{u}_m, \bar{u}_{jl})_{(j,l)\in S} \in \mathbb{R}^n.$$

Control Design Scheme

Main idea: Consider a positive definite function V(x)

Define controls of the form (C) to approximate the flow of $\dot{\tilde{x}} = -\nabla V(\tilde{x})$ by trajectories of (Σ_0) .

Algebraic equations w.r.t. v_i and a_{jl} :

$$\sum_{i=1}^{m} v_i f_i(x) + \frac{\varepsilon}{4\pi} \sum_{(i,j)\in S} \frac{a_{ij}|a_{ij}|}{k_{ij}} [f_i, f_j](x) + \frac{\varepsilon}{2} \sum_{i,j=1}^{m} v_i v_j \frac{\partial f_j(x)}{\partial x} f_i(x) + \frac{\varepsilon}{2\pi} \sum_{i$$

Non-resonance assumption w.r.t. $k_{jl} \in \mathbb{Z} \setminus \{0\}$:

$$|k_{ql}|
eq |k_{jr}|$$
 for all $(q,l) \in S, (j,r) \in S, (q,l)
eq (j,r).$ (NR)

Exponential Stability Results

Theorem 1. Let V(x) be a function of class $C^2(D)$ such that

$$V(0) = 0, \ \|\nabla V(x)\|^{2} \ge \alpha_{1} V(x), \ V(x) \ge \beta_{1} \|x\|^{2}, \ \alpha_{1} > 0, \ \beta_{1} > 0,$$
(1)
$$\left\|\frac{\partial f_{i}(x)}{\partial x}\right\| \le L, \quad \forall x \in D, \ i \in \{1, ..., m\},$$
(2)

and let $v_i = v_i^{\varepsilon}(x)$, $a_{jl} = a_{jl}^{\varepsilon}(x)$ $(||x|| \le \rho_0, \varepsilon \le \varepsilon_0)$ be a solution of (Σ_A) such that $\lim_{\varepsilon \to 0} \left(\sup_{0 < ||x|| \le \rho_0} \frac{\|v^{\varepsilon}(x)\| + \|a^{\varepsilon}(x)\|}{\|x\|^{1/3}} \varepsilon^{2/3} \right) = 0.$ (3)

Then there exist $\rho \in (0, \rho_0]$, $\overline{\varepsilon} \in (0, \varepsilon_0]$, and $\lambda > 0$:

 $\|x^{0}\| \leq \rho, \varepsilon \in (0, \overline{\varepsilon}) \Rightarrow \|x(t)\| = O(e^{-\lambda t}), \|u^{\varepsilon}(t, x(t))\| = O(e^{-\frac{\lambda t}{3}}) \text{ as } t \to +\infty,$ (4)

for the π_{ε} -solutions of system (Σ_0) with controls (*C*).

 A. Z. "Exponential stabilization of nonholonomic systems by means of oscillating controls", SIAM J. Control Optim., 2016, Vol. 54, P. 1678-1696.

Exponential Stability Results

Theorem 2 (Local Solvability of the System of Algebraic Equations)

Assume that $f_1(x)$, $f_2(x)$, ..., $f_m(x)$ satisfy the condition (B) at x = 0, |S| = n - m, and let $V \in C^2(D)$ be a positive definite function. Then, for any small enough $\varepsilon > 0$, there exists a $\Delta > 0$ such that (Σ_A) has a solution

$$egin{aligned} & v^arepsilon(x) = (v_1^arepsilon(x), ..., v_m^arepsilon(x))', \ a^arepsilon(x) = (a_{jl}^arepsilon(x)_{(j,l)\in S})', \ k^arepsilon(x) = (k_{jl}^arepsilon(x)_{(j,l)\in S})', \ x\in B_\Delta(0). \end{aligned}$$

The above solution satisfies

$$\|v^{\varepsilon}(x)\| \leq M_{v}\|x\|, \ \|a^{\varepsilon}(x)\| \leq M_{a}\sqrt{\frac{\|x\|}{\varepsilon}}, \quad x \in B_{\Delta}(0),$$
 (5)

where the positive constants M_v and M_a do not depend on ε .

Exponential Stability Results

Corollary of Theorems 1 and 2

Assume that $f_1(x)$, $f_2(x)$, ..., $f_m(x)$ satisfy the condition (B) with |S| = n - m at x = 0. Then, for any positive definite quadratic form V(x), there exist constants $\rho_0 \ge \rho > 0$ and $\varepsilon_0 \ge \overline{\varepsilon} > 0$ such that the algebraic system (Σ_A) admits a solution

$$\begin{aligned} v_i &= v_i^{\varepsilon}(x), \ a_{jl} = a_{jl}^{\varepsilon}(x), \quad x \in \overline{B_{\rho_0}(0)} \subset D, \ \varepsilon \in (0, \varepsilon_0], \\ &i \in \{1, ..., m\}, \ (j, l) \in S, \\ \text{and, for any } \varepsilon \in (0, \overline{\varepsilon}], \text{ there is a } \lambda = \lambda(\varepsilon) > 0; \\ x^0 \in \overline{B_{\rho}(0)} \Rightarrow \|x(t)\| &= O(e^{-\lambda t}), \ \|u^{\varepsilon}(t, x(t))\| = O(e^{-\lambda t/3}) \text{ as } t \to +\infty, \\ &(6) \\ \text{for each } \pi_{\varepsilon}\text{-solution } x(t) \text{ of system } (\Sigma_0) \text{ with } (C). \end{aligned}$$

Sketch of the Proof

Technical Lemma. Assume that $V \in C^2(D)$,

$$\beta \|x\|^{2} \leq V(x) \leq \gamma_{1} \|x\|^{2}, \ \alpha V(x) \leq \|\nabla V(x)\|^{2} \leq \gamma_{2} V(x), \ \left\|\frac{\partial^{2} V(x)}{\partial x^{2}}\right\| \leq \mu.$$

f $x : [0, \varepsilon] \rightarrow D$ is a function s.t. $x(\varepsilon) = x(0) - \varepsilon \nabla V(x(0)) + r_{\varepsilon}, \ x(0) \neq 0$, then
 $V(x(\varepsilon)) \leq V(x(0)) \left\{1 - \alpha \varepsilon + \frac{\gamma_{2} \varepsilon^{2} \mu}{2} + \frac{\mu \|r_{\varepsilon}\|^{2}}{2\beta \|x(0)\|^{2}} + \frac{\sqrt{\gamma_{2}}(1 + \varepsilon \mu) \|r_{\varepsilon}\|}{\sqrt{\beta} \|x(0)\|}\right\}.$

2

Sketch of the Proof

Volterra (Chen–Fliess) expansion of the solutions of (Σ_0)

$$\begin{aligned} x(t) &= x^{0} + \sum_{i=1}^{m} f_{i}(x^{0}) \cdot \int_{0}^{t} u_{i}(s) ds + \sum_{i,j=1}^{m} \left. \frac{\partial f_{i}}{\partial x} f_{j} \right|_{x=x^{0}} \cdot \int_{0}^{t} \int_{0}^{s} u_{i}(s) u_{j}(v) dv ds \\ &+ \sum_{i,j,l=1}^{m} \left. \frac{\partial}{\partial x} \left(\frac{\partial f_{i}}{\partial x} f_{j} \right) f_{l} \right|_{x=x^{0}} \cdot \int_{0}^{t} \int_{0}^{s} \int_{0}^{v} u_{i}(s) u_{j}(v) u_{l}(p) dp dv ds + R(t), \\ &\|R(t)\| = O\left(t^{4} \|u\|_{L^{\infty}[0,\varepsilon]}^{4} \right), \ 0 \leq t \leq \varepsilon. \end{aligned}$$

Consider the control system

$$\dot{x}_1 = u_1, \ \dot{x}_2 = u_2, \ \dot{x}_3 = u_1 x_2 - u_2 x_1,$$
(7)

where $x = (x_1, x_2, x_3)^* \in \mathbb{R}^3$ is the state and $u = (u_1, u_2)^* \in \mathbb{R}^2$ is the control.

A. Astolfi (1999):

System (7) can be exponentially stabilized by a time-invariant feedback law for the initial values in some open and dense set $\Omega \neq \mathbb{R}^3$, $0 \notin \operatorname{int} \Omega$.

System (7) satisfies the rank condition (B1) with $S = \{(1,2)\}$:

 $span{f_1(x), f_2(x), [f_1, f_2](x)} = \mathbb{R}^3$ for each $x \in \mathbb{R}^3$,

where

$$f_1(x) = \begin{pmatrix} 1\\0\\x_2 \end{pmatrix}, \ f_2(x) = \begin{pmatrix} 0\\1\\-x_1 \end{pmatrix},$$

$$[f_1, f_2](x) = \frac{\partial f_2(x)}{\partial x} f_1(x) - \frac{\partial f_1(x)}{\partial x} f_2(x) = \begin{pmatrix} 0\\ 0\\ -2 \end{pmatrix}.$$

$$V(x) = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2).$$

$$u_1^{\varepsilon}(t, x) = v_1(x) + a(x)\cos\left(\frac{2\pi k}{\varepsilon}t\right),$$

$$u_2^{\varepsilon}(t, x) = v_2(x) + |a(x)|\sin\left(\frac{2\pi k}{\varepsilon}t\right),$$
(8)
(9)

where

$$v_1(x) = -x_1, \ v_2(x) = -x_2, \ k \in \mathbb{N},$$
$$a(x) = \begin{cases} -x_1 \pm \sqrt{x_1^2 + \frac{2\pi |x_3|}{\varepsilon}}, & x_3 \neq 0, \\ 0, & x_3 = 0. \end{cases}$$

By Theorem 1, the feedback control (8)–(9) ensures exponential stability of the equilibrium x = 0, provided that $\varepsilon > 0$ is small enough.

Figure: Trajectory of the closed-loop system (7)–(9) with $x_1^0 = x_2^0 = x_3^0 = 1$ and $\varepsilon = 1$.

Example 2: Unicycle

Rolling without slipping

$$\dot{x}_1 = u_1 \cos x_3, \ \dot{x}_2 = u_1 \sin x_3, \ \dot{x}_3 = u_2.$$
 (10)

Time-varying feedback:

$$u_1^{\varepsilon}(t,x) = v_1(x) + a(x)\cos\left(\frac{2\pi}{\varepsilon}t\right), \qquad (11)$$

$$u_2^{\varepsilon}(t,x) = v_2(x) + |a(x)| \sin\left(\frac{2\pi}{\varepsilon}t\right), \qquad (12)$$

$$v_1(x) = -x_1 \cos x_3 - x_2 \sin x_3, \ v_2(x) = -\varkappa x_3, \ \varkappa > 0,$$

$$a(x) = v_1 \pm \sqrt{v_1^2 - 2\pi v_1 x_3 + \frac{4\pi}{\varepsilon} (x_2 \cos x_3 - x_1 \sin x_3)}.$$

Unit disc rolling on the plane

$$\begin{aligned} \dot{x}_1 &= u_1 \cos x_3, \\ \dot{x}_2 &= u_1 \sin x_3, \\ \dot{x}_3 &= u_2, \\ \dot{x}_4 &= u_1, \qquad x = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4, \ u = (u_1, u_2)^T \in \mathbb{R}^2. \end{aligned}$$
(13)

Z. Li, J. Canny "Motion of two rigid bodies with rolling constra IEEE Tr. Robotics and Autom., 1990, Vol. 6, P. 62-71.

Bracket generating condition

span{
$$f_1(x), f_2(x), [f_1, f_2](x), [[f_1, f_2], f_2](x)$$
} = \mathbb{R}^4 ,
 $f_1(x) = (\cos x_3, \sin x_3, 0, 1)^T, f_2(x) = (0, 0, 1, 0)^T$.

Unit disc rolling on the plane

$$\begin{aligned} \dot{x}_1 &= u_1 \cos x_3, \\ \dot{x}_2 &= u_1 \sin x_3, \\ \dot{x}_3 &= u_2, \\ \dot{x}_4 &= u_1, \qquad x = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4, \ u = (u_1, u_2)^T \in \mathbb{R}^2. \end{aligned}$$

$$(13)$$

Z. Li, J. Canny "Motion of two rigid bodies with rolling constraint", IEEE Tr. Robotics and Autom., 1990, Vol. 6, P. 62-71.

Stabilizing controls

$$u_{1}^{\varepsilon}(t,x) = a_{1}(x) + a_{12}(x)\cos\frac{2\pi k_{12}}{\varepsilon}t + a_{122}(x)\cos\frac{2\pi k_{1122}}{\varepsilon}t,$$

$$u_{2}^{\varepsilon}(t,x) = a_{2}(x) + a_{12}(x)\sin\frac{2\pi k_{12}}{\varepsilon}t + a_{122}(x)\left(\sin\frac{2\pi k_{2122}}{\varepsilon}t + \sin\frac{2\pi k_{3122}}{\varepsilon}t\right).$$

Stabilizing controls

$$u_{1}^{\varepsilon}(t,x) = a_{1}(x) + a_{12}(x)\cos\frac{2\pi k_{12}}{\varepsilon}t + a_{122}(x)\cos\frac{2\pi k_{1122}}{\varepsilon}t,$$

$$u_{2}^{\varepsilon}(t,x) = a_{2}(x) + a_{12}(x)\sin\frac{2\pi k_{12}}{\varepsilon}t + a_{122}(x)\left(\sin\frac{2\pi k_{2122}}{\varepsilon}t + \sin\frac{2\pi k_{3122}}{\varepsilon}t\right).$$

(14)

Here

$$a_1(x) = -\frac{1}{\varepsilon} \frac{\partial V(x)}{\partial x_4}, \ a_2(x) = -\frac{1}{\varepsilon} \frac{\partial V(x)}{\partial x_3}, \ a_{12}(x) = a_1(x) + \sqrt{a_1(x)^2 + 2k_{12}h(x)},$$

$$h(x) = \pi a_1(x)a_2(x) + a_1(x)a_{122}(x) \left(\frac{1}{k_{2122}} + \frac{1}{k_{3122}}\right) + \frac{2\pi}{\varepsilon^2} \left(\frac{\partial V}{\partial x_2}\cos x_3 - \frac{\partial V}{\partial x_1}\sin x_3\right)$$

Cubic equation with respect to a_{122}

$$\begin{aligned} &\frac{\varepsilon^3 a_{122}^3}{16\pi^2 k_{2122} k_{3122}} \cos(x_3) + \frac{\varepsilon^3}{16} \frac{3k_{1122}^2 + 10k_{2122} k_{3122}}{\pi^2 k_{2122}^2 k_{3122}^2} a_{122}^2 a_1 \cos(x_3) \\ &+ \frac{\varepsilon^3 a_{122}}{4\pi} \left(\frac{2(k_{2122} + k_{3122})}{\varepsilon k_{2122} k_{3122}} a_1 \sin(x_3) + \frac{(k_{2122} + k_{3122})a_1 a_2}{k_{2122} k_{3122}} + \frac{a_2^2}{\pi k_{1122}^2} \right) \\ &+ \frac{(k_{2122} + k_{3122})a_1 a_{12}}{\pi k_{2122} k_{3122} k_{12}} - \frac{(k_{2122} + k_{3122})a_{12}^2}{\pi k_{2122} k_{3122} k_{12}} \right) \\ &+ \frac{\varepsilon^3}{4\pi k_{12}} \left(\frac{2\pi_{12}}{3} a_1 a_2^2 + a_1 a_2 a_{12} + \frac{a_2^2 a_{12}}{\pi k_{12}} + \frac{3a_1 a_{12}^2}{4\pi k_{12}} \right) \\ &- \frac{a_2 a_{12}^2}{2} - \frac{a_{12}^3}{2\pi k_{12}} \right) \cos(x_3) + \frac{\varepsilon^2}{4\pi k_{12}} \left(2\pi k_{12} a_1 a_2 + 2a_1 a_{12} - a_{12}^2 \right) \\ &- \varepsilon a_1 \cos(x_3) = -\frac{\partial V(x)}{\partial x_1}. \end{aligned}$$

Zuyev

Time plots of the π_{ε} -solution of system (13) with controls (14)

Initial conditions and parameters

$$x_1(0) = x_2(0) = 1, \ x_3(0) = x_4(0) = \pi/4, \ \varepsilon = 1.$$

Systems with Drift: Local Controllability

$$\begin{split} \dot{x} &= f_0(x) + \sum_{j=1}^m u_j f_j(x) \equiv f(x, u), \quad x \in D \subset \mathbb{R}^n, \ u \in \mathbb{R}^m, \ m < n. \quad (\Sigma) \\ \text{i.e bracket of } f_i(x) \ \text{and } f_j(x): \\ & [f_i, f_j](x) = L_{f_i} f_j(x) - L_{f_j} f_i(x), \ L_{f_i} f_j = \frac{\partial f_j(x)}{\partial x} f_i(x). \\ \text{Step-3 bracket generating condition at } x = 0 \in D: \\ & \text{span} \left\{ f_i(x), \ [f_{i_1}, f_{i_2}](x), \ [f_{j_1}, [f_{j_2}, f_{j_3}]](x), [f_{i_1}, f_0](x), \ [f_{i_1}, [f_{i_2}, f_0]](x) \right\} = \mathbb{R}^n, \\ & i \in S_1, \ (i_1, i_2) \in S_2, \ (j_1, j_2, j_3) \in S_3, \ (l_1, l_2) \in S_{20}, \\ & S_1, S_{10} \subseteq \{1, 2, \dots, m\}, \ S_2, S_{20} \subseteq \{1, 2, \dots, m\}^2, \ S_3 \subseteq \{1, 2, \dots, m\}^3, \\ & |S_1| + |S_2| + |S_3| + |S_{10}| + |S_{20}| = n. \end{split}$$

STLC of (Σ) at x = 0: Sussmann (1987), Agrachev and Sarychev (2005).

Control Design Scheme

Theorem 3. Let $0 \in D$, $f_i \in C^4(D)$, $i = 0, \ldots, m$. Assume that:

$$\begin{aligned} \mathcal{F}(x) &= \left(f_i(x)_{i \in S_1}, \left[f_{l_1}, [f_{l_2}, f_0]\right](x)_{l \in S_{20}}\right) \text{ is of full rank for all } x \in D, \\ S_1 &\subseteq \{1, ..., m\}, \ S_{20} \subseteq \{1, ..., m\}^2, \ |S_1| + |S_{20}| = n, \\ f_0(0) &= L_{f_0} f_0(0) = 0 = L_{f_0} L_{f_0} f_0(0) = \left[f_0, [f_0, f_k]\right](0) = 0, \\ \left[f_{l_1}, [f_{l_1}, f_0]\right](x) + \left[f_{l_2}, [f_{l_2}, f_0]\right](x) = O(||x||^{\mu}), \ \left[f_0, [f_{l_1}, f_{l_2}]\right](x) = O(||x||^{\mu}), \ \mu > 0, \\ \text{for any} (l_1, l_2) \in S_{20} \text{ and any } k : (l_1, k) \in S_{20} \text{ or } (k, l_2) \in S_{20}. \end{aligned}$$

Then the time-varying feedback control

$$\begin{aligned} u_{k}^{\varepsilon}(t,x) &= \sum_{i \in S_{1}} \delta_{ki} a_{i} + \frac{4\pi}{\varepsilon} \sum_{(l_{1}, l_{2}) \in S_{20}} \kappa_{l_{1}l_{2}} \left(\delta_{kl_{1}} + \delta_{kl_{2}} \mathrm{sign}(a_{l_{1}l_{2}}) \right) \sqrt{|a_{l_{1}l_{2}}|} \cos\left(\frac{2\pi\kappa_{l_{1}l_{2}}t}{\varepsilon}\right), \\ \begin{pmatrix} a_{i} \\ a_{l_{1}l_{2}} \end{pmatrix}_{i \in S_{1}, (l_{1}, l_{2}) \in S_{20}} &= -\mathcal{F}^{-1}(x) (Qx + f_{0}(x)), \quad Q = Q^{\top} > 0, \quad (C) \end{aligned}$$

ensures asymptotic stability of the trivial solution of (Σ), if $\varepsilon > 0$ is small enough and positive integers $\kappa_{l_1 l_2}$ have no resonances of order up to 3.

Systems with Drift: Rotating Rigid Body

Euler's equations with 2 control torques

$$\dot{x} = f_0(x) + \sum_{j=1}^2 u_j f_j(x), \quad x \in \mathbb{R}^3, \ u \in \mathbb{R}^2,$$
 (Σ_3)

 $f_0(x) = (\alpha_1 x_2 x_3, \alpha_2 x_1 x_3, \alpha_3 x_1 x_2)^{\top}, \ f_1 = (1, 0, 0)^{\top}, \ f_2 = (0, 1, 0)^{\top}, \ \alpha_3 \neq 0.$

Bracket generating condition:

 ${
m span}\,\{f_1(x),f_2(x),[f_1,[f_2,f_0]](x)\}={\mathbb R}^3\quad {
m at \ each}\ x\in{\mathbb R}^3.$

Matrix notation

$$\mathcal{F}(x) = \left(f_i(x)_{i \in S_1}, [f_{l_1}, [f_{l_2}, f_0]](x)_{(l_1, l_2) \in S_{20}}
ight), \; S_1 = \{1, 2\}, \; S_{20} = \{(1, 2)\}.$$

Systems with Drift: Rotating Rigid Body

Euler's equations with 2 control torques

$$\dot{x} = f_0(x) + \sum_{j=1}^2 u_j f_j(x), \quad x \in \mathbb{R}^3, \ u \in \mathbb{R}^2,$$
 (Σ_3)

 $f_0(x) = (\alpha_1 x_2 x_3, \alpha_2 x_1 x_3, \alpha_3 x_1 x_2)^{\top}, \ f_1 = (1, 0, 0)^{\top}, \ f_2 = (0, 1, 0)^{\top}, \ \alpha_3 \neq 0.$

Bracket generating condition:

 $\operatorname{span} \{ f_1(x), f_2(x), [f_1, [f_2, f_0]](x) \} = \mathbb{R}^3$ at each $x \in \mathbb{R}^3$.

Time-varying controls (Exponential stabilization)

$$u_{1} = a_{1} + \frac{4\pi\sqrt{|a_{12}|}}{\varepsilon}\cos\left(\frac{2\pi t}{\varepsilon}\right), \ u_{2} = a_{2} + \frac{4\pi\sqrt{|a_{12}|}}{\varepsilon}\operatorname{sign}\left(a_{12}\right)\cos\left(\frac{2\pi t}{\varepsilon}\right). \ (C)$$

Control design with $(a_{1}, a_{2}, a_{12})^{\top} = a(x)$:
 $a(x) = -\mathcal{F}^{-1}(x)\left(\gamma x + f_{0}(x)\right), \ \gamma > 0.$

Systems with Drift: Rotating Rigid Body

Euler's equations with 2 control torques

$$\dot{x} = f_0(x) + \sum_{j=1}^2 u_j f_j(x), \quad x \in \mathbb{R}^3, \ u \in \mathbb{R}^2,$$
 (Σ_3)

 $f_0(x) = (\alpha_1 x_2 x_3, \alpha_2 x_1 x_3, \alpha_3 x_1 x_2)^{\top}, \ f_1 = (1, 0, 0)^{\top}, \ f_2 = (0, 1, 0)^{\top}, \ \alpha_3 \neq 0.$

Bracket generating condition:

 $\operatorname{span} \{ f_1(x), f_2(x), [f_1, [f_2, f_0]](x) \} = \mathbb{R}^3$ at each $x \in \mathbb{R}^3$.

Time-varying controls (Exponential stabilization)

 $u_{1} = a_{1} + \frac{4\pi\sqrt{|a_{12}|}}{\varepsilon}\cos\left(\frac{2\pi t}{\varepsilon}\right), \ u_{2} = a_{2} + \frac{4\pi\sqrt{|a_{12}|}}{\varepsilon}\operatorname{sign}\left(a_{12}\right)\cos\left(\frac{2\pi t}{\varepsilon}\right). \ (C)$ Control design with $(a_{1}, a_{2}, a_{12})^{\top} = a(x)$:

$$a_1 = \gamma x_1 + \alpha_1 x_2 x_3, \ a_2 = \gamma x_2 + \alpha_2 x_1 x_3, \ a_{12} = \frac{\gamma}{2\alpha_3} x_1 + \frac{1}{2} x_1 x_2.$$

Stabilization of Euler's Equations

Simulation results

Cf.: Reyhanoglu (1996), Aeyels (1985), Morin and Samson (1997).

The Navier–Stokes Equations on \mathbb{T}^2 (case of incompressible fluid)

$$\frac{\partial v}{\partial t} + (v \cdot \nabla) v + \frac{1}{\rho} \nabla p - \nu \Delta v = \sum_{j=1}^{m} u_j(t) F_j(y), \quad y = (y_1, y_2) \in \mathbb{T}^2,$$

$$\nabla \cdot v = 0, \qquad (continuity equation)$$
where $v = (v_1(t, y), v_2(t, y)) - velocity, \quad p = p(t, y) - pressure.$

W

The Navier–Stokes Equations on \mathbb{T}^2 (case of incompressible fluid)

$$\frac{\partial v}{\partial t} + (v \cdot \nabla) v + \frac{1}{\rho} \nabla p - \nu \Delta v = \sum_{j=1}^{m} u_j(t) F_j(y), \quad y = (y_1, y_2) \in \mathbb{T}^2,$$

$$\nabla \cdot v = 0, \qquad (continuity equation)$$

here $v = (v_1(t, y), v_2(t, y)) - velocity, \quad p = p(t, y) - pressure.$

Reduction Scheme

$$\mathbf{v}(t, \mathbf{y}) \leftrightarrow \mathbf{w}(t, \mathbf{y}) = \nabla^{\perp} \cdot \mathbf{v} = \frac{\partial v_2}{\partial y_1} - \frac{\partial v_1}{\partial y_2}$$

W

The Navier–Stokes Equations on \mathbb{T}^2 (case of incompressible fluid)

$$\frac{\partial v}{\partial t} + (v \cdot \nabla) v + \frac{1}{\rho} \nabla p - \nu \Delta v = \sum_{j=1}^{m} u_j(t) F_j(y), \quad y = (y_1, y_2) \in \mathbb{T}^2,$$

$$\nabla \cdot v = 0, \qquad (continuity equation)$$

here $v = (v_1(t, y), v_2(t, y)) - velocity, \quad p = p(t, y) - pressure.$

Reduction Scheme

$$\mathbf{v}(t,y) \leftrightarrow \mathbf{w}(t,y) =
abla^{\perp} \cdot \mathbf{v} = rac{\partial v_2}{\partial y_1} - rac{\partial v_1}{\partial y_2} = \sum_{k \in \mathbb{Z}^2} q_k(t) e^{ik \cdot y}$$

W

The Navier–Stokes Equations on \mathbb{T}^2 (case of incompressible fluid)

$$\frac{\partial v}{\partial t} + (v \cdot \nabla) v + \frac{1}{\rho} \nabla p - \nu \Delta v = \sum_{j=1}^{m} u_j(t) F_j(y), \quad y = (y_1, y_2) \in \mathbb{T}^2,$$

$$\nabla \cdot v = 0, \qquad (continuity equation)$$

where $v = (v_1(t, y), v_2(t, y))$ – velocity, p = p(t, y) – pressure.

Reduction Scheme

$$\mathbf{v}(t,y) \leftrightarrow \mathbf{w}(t,y) = \nabla^{\perp} \cdot \mathbf{v} = \frac{\partial v_2}{\partial y_1} - \frac{\partial v_1}{\partial y_2} = \sum_{k \in \mathbb{Z}^2} q_k(t) e^{ik \cdot y} \approx \sum_{k \in G} q_k(t) e^{ik \cdot y}$$

Galerkin Approximations with m inputs

$$\dot{q}_{k} = \sum_{l+n=k} (l_{1}n_{2} - l_{2}n_{1})|l|^{-2}q_{l}q_{n} - \nu|k|^{2}q_{k} + \sum_{j=1} u_{j}\phi_{jk}, \ k, l, n \in G.$$
(F)

A. Agrachev and A. Sarychev (2005) "Navier–Stokes Equations: Controllability by means of Low Modes Forcing", *Journal of Mathematical Fluid Mechanics*, Vol. **7**: 108–152.

Galerkin approximation of the Euler equations ($\nu = 0$)

$$\dot{x} = f_0(x) + \sum_{j=1}^m u_j f_j(x), \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m.$$

(F)

Galerkin approximation of the Euler equations ($\nu = 0$)

$$\dot{x} = f_0(x) + \sum_{j=1}^m u_j f_j(x), \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m.$$

Step-3 bracket generating condition

span{ $f_j(x)$, [f_α , [f_β , f_0]](x) : $j \in S_1$, (α (β 0)) ∈ S_3 } = ℝⁿ for all $x \in ℝ^n$, (B₃) $S_1 \subset \{1, ..., m\}, S_2 \subset \{(α (β 0)) : α, β \in \{1, ..., m\}\}, |S_1| + |S_3| = n$. • W. E and J. Mattingly (2001) • A. Agrachev and A. Sarychev (2005)

Lie Brackets and Energy Cascades

Energy cascade

U. Frisch (2018): *Turbulence: The Legacy of A. N. Kolmogorov*, Cambridge University Press.

Step-3 case: parametrization of controls

$$u(x,t) = \sum_{j \in S_1} u^j + \sum_{j \in S_3} u^j,$$

$$u^j = a_j e_j \quad \text{for } j \in S_1,$$

$$4\pi \sqrt{|a_j|} \cos\left(\frac{2\pi K_j t}{k_j}\right) (a_j + \operatorname{sign}(u_j) a_j) \text{ for } i = (a_j(20)) \in S$$

$$u^{j} = \frac{4\pi \sqrt{|a_{j}|}}{\varepsilon} \cos\left(\frac{2\pi \kappa_{j} t}{\varepsilon}\right) (e_{\alpha} + \operatorname{sign}(v_{j})e_{\beta}) \text{ for } j = (\alpha (\beta 0)) \in S_{3},$$

where e_j is the *j*-th unit vector in \mathbb{R}^m .

Stabilizing control design with $v_j = v_j(x)$

$$\sum_{j\in S_1} a_j f_j(x) + \sum_{j\in S_3} a_j [f_\alpha, [f_\beta, f_0]](x) = -\left(\frac{\partial V(x)}{\partial x}\right)^* - f_0(x). \quad (\Sigma_A)$$

Step-3 case: parametrization of controls

$$u(x,t) = \sum_{j \in S_1} u^j + \sum_{j \in S_3} u^j, \qquad (C$$
$$u^j = a_j e_j \quad \text{for } j \in S_1,$$
$$\frac{4\pi\sqrt{|a_j|}}{\varepsilon} \cos\left(\frac{2\pi K_j t}{\varepsilon}\right) (e_\alpha + \operatorname{sign}(v_j)e_\beta) \text{ for } j = (\alpha \ (\beta \ 0)) \in S_3,$$

where e_i is the *j*-th unit vector in \mathbb{R}^m .

Theorem 4.

Let the control system (Γ) satisfy (B_3) and $f_i = \text{const}$ for i = 1, 2, ..., m. Then, for any positive definite quadratic form V(x) and any non-resonant set of integers { $K_j \mid j \in S_3$ }, the controls (C) with $a_j = a_j(x)$ stabilize the solution x = 0 of (Γ) asymptotically, provided that $\varepsilon > 0$ is small enough.

An Example: Galerkin approximation with n = 8, m = 4

$$\dot{x} = f_0(x) + \sum_{j=1}^4 u_j f_j(x), \quad x = (x_1, x_2, ..., x_8)^* \in \mathbb{R}^8,$$
 (F)

$$G = \{(k_1, k_2) \in \mathbb{Z}^2 | |k_1| \le 1, |k_2| \le 1\},$$

 $q_{1,1} = x_1 + ix_2, \ q_{1,-1} = x_3 + ix_4, \ q_{1,0} = x_5 + ix_6, \ q_{0,1} = x_7 + ix_8.$

Controlled modes

$$f_1=(1,0,0,0,0,0,0,1)^*,\;f_2=(0,1,0,0,0,0,1,0)^*,$$

$$f_3 = (0, 0, 1, 0, 0, 1, 0, 0)^*, \ f_4 = (0, 0, 0, 1, 1, 0, 0, 0)^*.$$

Bracket generating condition:

 $\operatorname{span}\{f_1, ..., f_4, [f_2, [f_1, f_0]], [f_3, [f_1, f_0]], [f_4, [f_1, f_0]], [f_4, [f_2, f_0]]\} = \mathbb{R}^8.$

Controls for the case (B_3) with n = 8, m = 4

$$\begin{split} u_{1} &= a_{1} + \frac{4\pi}{\varepsilon} \left(\sqrt{|a_{210}|} \mathrm{sign}(a_{210}) \cos(\omega_{1}t) + \sqrt{|a_{310}|} \mathrm{sign}(a_{310}) \cos(\omega_{2}t) \right) \\ &+ \sqrt{|a_{410}|} \mathrm{sign}(a_{410}) \cos(\omega_{3}t) \right) , \\ u_{2} &= a_{2} + \frac{4\pi}{\varepsilon} \left(\sqrt{|a_{210}|} \cos(\omega_{1}t) + \varepsilon^{2} \sqrt{|a_{420}|} \mathrm{sign}(a_{420}) \cos(\omega_{4}t) \right) , \\ u_{3} &= a_{3} + \frac{4\pi}{\varepsilon} \sqrt{|a_{310}|} \cos(\omega_{2}t) , \\ u_{4} &= a_{4} + \frac{4\pi}{\varepsilon} \left(\sqrt{|a_{410}|} \cos(\omega_{3}t) + \sqrt{|a_{420}|} \cos(\omega_{4}t) \right) , \end{split}$$

where $\varepsilon > 0$,

$$\omega_1 = \frac{2\pi K_{210}}{\varepsilon}, \ \omega_2 = \frac{2\pi K_{310}}{\varepsilon}, \ \omega_3 = \frac{2\pi K_{410}}{\varepsilon}, \ \omega_4 = \frac{2\pi K_{420}}{\varepsilon},$$

 $v = (v_1, v_2, v_3, v_4, v_{210}, v_{310}, v_{410}, v_{420}) = -M^{-1}(Qx + f_0(x)), Q$ -positive definite.

Higher order controllability conditions

$$\dot{x} = f_0(x) + \sum_{j=1}^m u_j f_j(x), \quad x \in \mathbb{R}^n, \ u \in \mathbb{R}^m.$$
(Γ)

Consider the following sets of "words of indices":

$$\mathcal{W}_1 = \{ (\alpha) : \alpha \in \{1, 2, ..., m\} \}, \\ \mathcal{W}_k = \{ (\alpha (\beta 0)) : \alpha \in \mathcal{W}_l, \ \beta \in \mathcal{W}_p, \ l, p - \text{odd}, \ l + p = k - 1 \}, \ k = 3, 5, 7,$$

Define the map $B(f_i, f_j) := [f_i, [f_j, f_0]]$ and introduce iterated Lie brackets with the indices from W_k :

$$f_j = B(f_\alpha, f_\beta) \text{ for } j = (\alpha (\beta 0)) \in \mathcal{W}_k.$$

Bracket generating condition:

$$\operatorname{span} \{ f_j(x) : j \in S \} = \mathbb{R}^n \quad \text{for all } x \in \mathbb{R}^n,$$

where $S = S_1 \cup S_3 \cup ... \cup S_N$, $S_k \subset W_k$, |S| = n.

(B)

Control design scheme under (B)

$$u = \sum_{j \in S_1 \cup S_3 \cup \ldots \cup S_N} u^j,$$

where $u^j = v_j$ for $j \in S_1$, and $u^j = u^j_{\varepsilon_j}(v_j, t)$ is defined recursively in terms of controls implementing along f_{α} and f_{β} for $j = (\alpha (\beta 0)) \in S_k$, $k \ge 3$. Main idea: define $v_j = v_j(x)$ from the condition $x(\varepsilon) \approx x_0 - \kappa \varepsilon \nabla V(x_0)$ under a suitable choice of small parameters $\varepsilon > 0$ and $\varepsilon_j > 0$.

Control design scheme under (B)

$$u = \sum_{j \in S_1 \cup S_3 \cup \ldots \cup S_N} u^j,$$

where $u^j = v_j$ for $j \in S_1$, and $u^j = u^j_{\varepsilon_j}(v_j, t)$ is defined recursively in terms of controls implementing along f_{α} and f_{β} for $j = (\alpha (\beta 0)) \in S_k$, $k \ge 3$. Main idea: define $v_j = v_j(x)$ from the condition $x(\varepsilon) \approx x_0 - \kappa \varepsilon \nabla V(x_0)$ under a suitable choice of small parameters $\varepsilon > 0$ and $\varepsilon_j > 0$.

The motion along $f_j = [[f_1, [f_2, f_0]], [f_3, f_0]], j = ((1(20))(30))$

$$u_{1} = \frac{2|v_{j}|^{1/4}}{\varepsilon_{f}} \frac{d}{dt} \left(\sin\left(\frac{t}{\varepsilon_{f}^{2}}\right) \cos\left(\frac{t}{\varepsilon_{s}^{2}}\right) \right),$$

$$u_{\varepsilon_{j}}^{j}(v_{j}, t) : u_{2} = \frac{\sqrt{2}|v_{j}|^{1/4}}{\varepsilon_{f}\varepsilon_{s}^{3}} \cos\left(\frac{t}{\varepsilon_{f}^{2}}\right),$$

$$u_{3} = \frac{\sqrt{2}|v_{j}|}{\varepsilon_{s}} \operatorname{sign}(v_{j}) \cos\left(\frac{t}{\varepsilon_{s}^{2}}\right), \quad \varepsilon_{s} \asymp \varepsilon, \quad \varepsilon_{f} \asymp \varepsilon_{s}^{2}.$$

$$f_{1} \qquad f_{2} \qquad f_{3} \qquad f_{1} \qquad f_{2} \qquad f_{3} \qquad f_{4} \qquad f_{3} \qquad f$$

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

Thank you for your attention!

- A.Z. (2016): Exponential stabilization of nonholonomic systems by means of oscillating controls // SIAM J. Control Optim.
- A.Z. and V. Grushkovskaya (2017): Motion planning for control-affine systems satisfying low-order controllability conditions // International Journal of Control.
- V. Grushkovskaya, A.Z., and C. Ebenbauer (2018): On a class of generating vector fields for the extremum seeking problem: Lie bracket approximation and stability properties // Automatica.
- A.Z. and V. Grushkovskaya (2019): On stabilization of nonlinear systems with drift by time-varying feedback laws // arXiv: 1904.10219.

http://zuyev.science