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Introduction and Motivation

In this talk, we will discuss a topologically-twisted N = 2 gauge theory on a
four-manifold with boundary.

By exploiting the fact that physical states of a TQFT are insensitive to
topological deformations, 2d and 3d mathematical invariants can be
identified.

The motivations for doing so are to:
• Provide physical proofs of known mathematical conjectures and

theorems.
• Obtain physical derivations and generalizations of mathematically

novel identities between 2d and 3d invariants, and more.
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Introduction and Motivation

This talk is based on
• M.-C. Tan et al., Boundary N = 2 Theory, Floer Homologies, Affine
Algebras, and the Verlinde Formula, arXiv preprint hep-th/1909.04058
(2019).

Built on earlier insights in
• M.-C. Tan, Supersymmetric surface operators, four-manifold theory and
invariants in various dimensions, Adv.Theor.Math.Phys. 15, 71-129
(2011).

Related is an earlier work by Lozano-Marino which provides computational
proofs of some of our results in
• C. Lozano and M. Marino, Donaldson Invariants of Product Ruled
Surfaces and Two-Dimensional Gauge Theories, Comm.Math.Phys, vol.
220, no. 2, pp. 231-261, 2001.
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Summary of Results

1. In Donaldson-Witten (DW) theory on a four-manifold M4 with boundary
Y3, and in particular, if the moduli space of instantons is zero-dimensional,
the partition function on M4 is expressed as a sum of instanton Floer
homology classes Ψinst

ZM4 = 〈1〉Ψ(ΦY3 ) =
∑
i

Ψinst(Φi
Y3) (1)

2. In DW theory on M4 = Σ× C , shrinking C leads to a sigma model on Σ,
with target moduli space of flat connections on C ,Mflat (C), that is
characterized by

Fab = 0 (2)
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Summary of Results

3. Moreover, upon shrinking C , since the topological term of the form
F ∧ F leads to the (holomorphic) pullback, i.e.

1
8π2

∫
M4

Tr (F ∧ F ) =
∫

Σ
X ∗ωflat (3)

the 2d model on Σ must be an A-twisted sigma model with target
Mflat (C), and action

S ′DW = 1
e2
∫

Σ
d2z

(
Gflat
IJ

(1
2∂zX

I∂zX J + 1
2∂zX

I∂zX J

+ ρz
J∇zχ

I + ρz
I∇zχ

J
)

− RIJKLρz
Iρz

JχKχL
)

+ iθ
∫

Σ
X ∗ωflat

(4)
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Summary of Results

4. In Seiberg-Witten (SW) theory on a four-manifold M4 with boundary Y3,
and in particular, if the moduli space of monopoles is zero-dimensional, the
partition function on M4 is expressed as a sum of monopole Floer homology
classes Ψmono

ZM4 = 〈1〉Ψ(ΦY3 ) =
∑
i

Ψmono(Φi
Y3) (5)

5. In SW theory on M4 = Σ× C , shrinking C leads to a sigma model on Σ
with target moduli space of vortices on C ,Mq

vort (C), that is characterized
by

Fww = i
4
(
1− |ϕ|2

)
Dwϕ = 0

(6)
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Summary of Results

6. Furthermore, upon shrinking C , the topological term of the form F ∧ F
(where Fµν = Fµν − i (σµν)α̇β̇M(α̇ M β̇ )) leads to the (holomorphic)
pullback, i.e.

1
8π2

∫
M4
F ∧ F =

∫
Σ

X ∗ωvort (7)

Hence, the 2d sigma model on Σ must be an A-model with target
Mq

vort (C), and action

S ′SW = 1
e2
∫

Σ
d2z

(
Gvort
IJ

(1
2∂zX

I∂zX J + 1
2∂zX

I∂zX J

+ ρz
J∇zχ

I + ρz
I∇zχ

J
)

− RIJKLρz
Iρz

JχKχL
)

+ iθ
∫

Σ
X ∗ωvort

(8)
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Summary of Results

7. Consider DW theory on M4 = R+ × Y3 ∼= R+ × I ×f Σ, of which the
partition function sums classes of HFinst∗ (Y3).

On the other hand, shrinking Σ leads to the open A-model on R+ × I with
targetMflat (Σ), where the partition function of the A-model sums classes
of the Lagrangian Floer homology HFLagr∗ (Mflat (Σ)).

The physical equivalence between these partition functions (as well as 4d
and 2d instantons) means that we have

HFinst∗ (Y3) ∼= HFLagr∗ (Mflat (Σ) , L0, L1) (9)

which is the Atiyah-Floer conjecture.
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Summary of Results

8. Consider DW theory on M4 = Σ× S1 × R+, of which the partition
function sums classes in HF∗inst

(
Σ× S1).

On the other hand, shrinking Σ leads to the closed A-model on S1 × R+

with targetMflat (Σ), where the partition function of the A-model sums
over classes of the symplectic Floer cohomology HF∗symp (Mflat (Σ)).

Via the physical equivalence between the partition functions of DW theory
and the A-model on Σ (as well as 4d and 2d instantons), and further
making use of a result by Sadov in [1] which relates symplectic Floer and
quantum cohomologies, we have

QH∗(Mflat (Σ)) ∼= HF∗symp (Mflat (Σ)) ∼= HF∗inst
(

Σ× S1
)

(10)

which is Muñoz’s theorem.
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Summary of Results

9. The same analysis is carried out for SW theory, in which we consider
monopole analogs of (9) and (10). In an analogous manner, we prove the
monopole Atiyah-Floer conjecture, which takes the form

HFmono
∗ (q,Y3) ∼= HFHeeg∗

(
Mq

vort (Σ) , L0, L1
)

(11)

10. Our analysis of SW theory also allows us to deduce the mathematically
novel monopole analog of Muñoz’s theorem, which takes the form

QH∗(Mq
vort (Σ)) ∼= HF∗symp

(
Mq

vort (Σ)
) ∼= HF∗mono

(
q,Σ× S1

)
(12)

The results (9)–(12) can be generalized to higher rank gauge groups G ,
because the physical analysis is either independent of the choice of G , or
simply involves a straightforward extension.
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Summary of Results

11. Consider DW theory on M4 = Σ×D ∼= Σ× S1 ×R+, with gauge group
G = SU(2). Instanton Floer homology can be defined on Y3 = Σ× S1.

Moreover, shrinking D allows us to identify the target of the A-model on Σ
with the based loop group ΩG .

Such an A-model is known to possess affine symmetry [2]. The
corresponding A-model states form modules of an affine Lie algebra gaff,
which span the space of gaff-modules on Σ that we denote by Gmod(Σ).

We can identify the corresponding partition functions (as well as 4d and 2d
instantons), and hence establish the mathematically novel isomorphism

HFinst∗
(

Σ× S1
)
∼= Gmod(Σ) (13)
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Summary of Results

12. Next, consider DW theory on M4 = Σ×f D ∼= Mg ,p × R+, where Mg ,p
is a Seifert manifold, where ‘g , p’ refers to a Σ of genus g with an
S1-bundle that has Chern number p. This means Σ× S1 = Mg ,0 is a
trivially-fibered Seifert manifold.

By inserting p copies of the fibering operator P [3] in the partition function
over Mg ,0, which has the effect of shifting the Chern number by p, the
partition function over Mg ,p is obtained. We may then generalize (13) to
the case where Σ× S1 ∼= Mg ,0 is replaced by Mg ,p.

Denoting Gmod,p(Σ) as the space where each basis component is now acted
upon by p copies of a suitable representation of P, we similarly show that
there is a mathematically novel isomorphism

HFinst∗ (Mg ,p) ∼= Gmod,p(Σ) (14)
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Summary of Results
13. Making use of (10) and (13), it is then straightforward to write down
yet another novel mathematical identity

QH∗(Mflat (Σ)) ∼= Gmod(Σ) (15)

14. As a preliminary step to deriving the Verlinde formula, we first study an
A-model on D ∼= R+ × S1 with targetMflat (Σ). We further shrink S1 so
that we get a QM model onMflat (Σ) with action

SQM = 1
~

∫
dτ 1

2 Ẋ
I ẊI (16)

Thus, states of the A-model on D with targetMflat (Σ) are identified with
QM states onMflat (Σ). We can write the commutator relations for
X : R+ →Mflat (Σ) as

[X̂ I , P̂J ] = ~δIJ (17)

which amounts to quantizingMflat (Σ).
Meng-Chwan Tan (NUS)
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Summary of Results

15. Next, we make use of DW theory on M4 = Σ× D, to obtain, upon
shrinking D, an A-model on Σ with target ΩG , and, upon shrinking Σ, an
A-model on D with targetMflat (Σ). The latter A-model can be viewed as
a QM model onMflat (Σ), as we just saw.

In doing so, we can derive Falting’s definition of the Verlinde formula [4, 5]

V`(Σ) ∼= H0(Mflat (Σ) ,L`) (18)

where V`(Σ) is the space of zero-point conformal blocks of gaff at level ` on
Σ.

The LHS of (18) is obtained from the A-model on Σ with target ΩG , and
the RHS is obtained from the QM model onMflat (Σ), where H0 is the
space of holomorphic sections of the determinant line bundle L.
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Summary of Results

16. We also derive Pauly’s definition of the Verlinde formula [6], which
considers extra operator insertions on Σ. This derivation will proceed
similarly to the case with no operator insertions, because we can exploit the
position-independence of operator insertions in an A-model on Σ.

We are then able to derive the isomorphism

V`(Σ, ~p) ∼= H0(Mpara (Σ, ~p) ,L`) (19)

where ~p = (p1, · · · , pn) are the operator insertion points on Σ, and V`(Σ, ~p)
is the space of n-point conformal blocks of gaff at level ` on Σ.
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Main Body of the Talk

LET’S EXPLAIN HOW WE
GOT THESE RESULTS
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DW Theory

In terms of a scalar supercharge Q, the action of DW theory can be
written in Q-exact form as

SDW = 1
e2Tr {Q,VDW }+ iθ

8π2
∫
M4

Tr (F ∧ F ) . (20)

Scalar supercharge Q generates the transformations

δAµ = ζχµ

δφ = 0
δφ† = 2

√
2iζη

δη = iζ[φ, φ†]
δχµ = 2

√
2ζDµφ

δλα̇β̇ = iζF+
α̇β̇
,

(21)

where ζ is a Grassmannian parameter.
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Observables of DW Theory
Observables of DW theory are n-point correlation functions

〈O1 . . .On〉 =
∫
DΦ O1 . . .One−SDW , (22)

where DΦ denotes the total path-integral measure over all fields. The
operators Or , r = 1, . . . , n, are Q-invariant, which means (22) is
independent of the gauge coupling e.

Taking a Fourier expansion of Φ about its classical values Φ0 – i.e.
Φ = Φ0 +

∑
s>0 Φs – (22) can be written as

〈O1 · · · On〉 =
(∫

dΦ0 O1 . . .On

) (∫ ∏
s>0

dΦs e−SKE
)

=
(∫

dΦ0 O1 . . .On

)
,

(23)

where SKE contains only kinetic terms from the DW action.
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Observables of DW Theory
To evaluate the Φ0 part of (23), one studies the BPS equations, which turn
out to be the instanton equations

Fµν + 1
2εµνρλF

ρλ = 0, (24)

of which the solutions span the moduli space of instantons,Mk
inst (M4).

Due to U(1)R R-symmetry, the operator insertions O1 . . .On are constrained
to possess an R-charge equal to the virtual dimension ofMk

inst (M4).

Let us study the case when the underlying four-manifold has a boundary,
Y3, so that observables take the form

〈O1 . . .On〉Ψ(ΦY3 ) =
∫
DΦ e−S O1 . . .On ·Ψ(ΦY3), (25)

where Ψ(ΦY3) imposes boundary conditions on the fields, and ΦY3 are fields
restricted to Y3. Importantly, Ψ can be identified with a class in the
instanton Floer homology HFinst∗ (Y3).
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Observables of DW Theory

In this study, the virtual dimension will be taken to be zero, which means
that the operators Or , r = 1, . . . , n must be replaced by the identity
operator 1.

Then, observables are partition functions that sum classes of HFinst∗ (Y3),
and take the form

ZM4 = 〈1〉Ψ(ΦY3 ) =
∑
i

Ψinst(Φi
Y3) (26)

where i denotes the i th gauge connection on Y3 that descends from an
instanton solution on M4.
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DW Theory and a 2d A-model

Let us take M4 = C × Σ, where C and Σ are compact Riemann surfaces
with genera g > 1 and h > 1, respectively. Since we have a product
manifold, the metric may be written in a block diagonal form

ds2 = (GΣ)AB dxAdxB + (GC )ab dx
adxb. (27)

Since we have a TQFT, we can shrink either Riemann surface, say C ,
without affecting its observables. This topological deformation is
described by multiplying in a scaling factor ε, such that

ds2 → ds ′2 = (GΣ)AB dxAdxB + ε (GC )ab dx
adxb, (28)

and then set ε→ 0.

Equivalently, we may view this as the limit in which we take Σ to be much
bigger than C . This is why we have denoted indices on the small Riemann
surface C as a, b, · · · , and those on its large counterpart Σ as A,B, · · · .
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DW Theory and a 2d A-model
To ensure that the action remains finite, this deformation amounts to
imposing the flatness condition

Fab = 0 (29)
of which solutions span the moduli space of flat connections on C ,
Mflat (C).

We may define its symplectic form and metric, in terms of basis cotangent
vectors α as [7]

ωflat
IJ =

∫
C
d2w Tr (αIwαJw − αIwαJw ) , (30)

Gflat
IJ =

∫
C
d2w Tr (αIwαJw + αIwαJw ) , (31)

where we have switched to complex coordinates on M4, defined by
z = x1 + ix2, w = x3 + ix4,
z = x1 − ix2, w = x3 − ix4,

(32)
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DW Theory and a 2d A-model
Upon shrinking C , the gauge kinetic term of the DW action becomes

1
4e2

∫
M4

dx4
√
GM4Tr (FµνFµν)→ 1

e2
∫

Σ
d2z Gflat

IJ ∂zX I∂zX J , (33)

where X : Σ→Mflat (C). This is the free action for the 2d sigma model
on Σ with targetMflat (C).

On the other hand, the topological term of the DW action,
k = 1

8π2
∫
M4

Tr (F ∧ F ), becomes

1
8π2

∫
M4

Tr (F ∧ F ) =
∫

Σ
X ∗ωflat (34)

which is the (holomorphic) pullback of ωflat.

Moreover, shrinking on a compact Riemann surface generically breaks half
of supersymmetry, which means that the 2d sigma model must have 4
supercharges.
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DW Theory and a 2d A-model

The only 2d model consistent with all these features is the 2d A-twisted
sigma model, which has the action

S ′DW = 1
e2
∫

Σ
d2z

(
Gflat
IJ

(1
2∂zX

I∂zX J + 1
2∂zX

I∂zX J

+ ρz
J∇zχ

I + ρz
I∇zχ

J
)

− RIJKLρz
Iρz

JχKχL
)

+ iθ
∫

Σ
X ∗ωflat

(35)

where RIJKL is the Riemann curvature tensor onMflat (C), and
∇zχ

I = ∂zχ
I + χJΓIJK∂zXK . Here, ΓIJK are the Christoffel symbols on

Mflat (C).

Because of topological invariance, states of the A-model must be identified
with those of DW theory.
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SW Theory

The action of SW theory can also be written in Q-exact form as

SSW = 1
e2 {Q,VSW }+ iθ

8π2
∫
M4

(F ∧ F ) . (36)

Scalar supercharge Q generates the transformations

δAµ = ζχµ,

δφ = 0,
δφ† = 2

√
2iζη,

δη = iζ[φ, φ†],
δχµ = 2

√
2ζDµφ,

δλα̇β̇ = iζ
(
F+
α̇β̇

+ 2iM(α̇M β̇)
)
,

δMα̇ = −
√
2ζµα̇,

δM α̇ =
√
2ζµα̇,

δµα̇ = 2iζφMα̇,

δµα̇ = 2iζM α̇φ,

δνα = −i
√
2ζDα̇αMα̇,

δνα = −i
√
2ζDαα̇M

α̇
.

(37)

where ζ is a Grassmannian parameter.
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Observables of SW Theory
The BPS equations are SW equations

F+
α̇β̇

= −2iM(α̇M β̇) (38a)

Dα̇αMα̇ = 0, (38b)

of which the solutions span the moduli space of monopoles,Mq
mono (M4),

where q is the monopole charge.

When M4 has a boundary, Y3, and the virtual dimension ofMq
mono (M4) is

zero, relevant observables are partition functions that sum classes of the
monopole Floer homology HFmono

∗ (Y3), that take the form

ZM4 = 〈1〉Ψ(ΦY3 ) =
∑
i

Ψmono(Φi
Y3) (39)

where i denotes the i th gauge connection and monopole field on Y3 that
descends from a monopole solution on M4.
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SW Theory and a 2d A-model
Let us take M4 = C × Σ, where C and Σ are compact Riemann surfaces
with genera g > 1 and h > 1, respectively. We can define a modified
gauge curvature of the form

Fµν = Fµν − i (σµν)α̇β̇M(α̇ M β̇ ), (40)

so that a kinetic term of the form F ∧ ∗F can be written in the SW action.

Let us shrink C . To ensure that the action remains finite, this topological
deformation amounts to imposing the constraints

Fww = i
4
(
1− |ϕ|2

)
Dwϕ = 0

(41)

of which solutions span the moduli space of charge q vortices
connections on C ,Mq

vort (C).
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SW Theory and a 2d A-model

We may define its symplectic form and metric, in terms of basis cotangent
vectors α and β̃ as

Gvort
IJ =

∫
C
d2w

(
αIwαJw + β̃Iw β̃Jw + αIwαJw + β̃Iw β̃Jw

)
(42)

ωvort
IJ =

∫
C
d2w

(
αIwαJw + β̃Iw β̃Jw − αIwαJw − β̃Iw β̃Jw

)
. (43)

Upon shrinking C , the modified gauge kinetic term of the SW action
becomes

1
4e2

∫
M4

dx4
√
GM4 F

µνFµν →
1
e2
∫

Σ
d2z Gvort

IJ ∂zX I∂zX J , (44)

where X : Σ→Mq
vort (C). This is the free action for the 2d sigma model

on Σ with targetMq
vort (Σ).
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SW Theory and a 2d A-model

On the other hand, we have the topological term in the SW action

Stop = 1
8π2

∫
M4

(F ∧ F) . (45)

Upon shrinking C of the SW action, Stop, becomes, in the path integral,

1
8π2

∫
M4
F ∧ F =

∫
Σ

X ∗ωvort (46)

which is the (holomorphic) pullback of ωvort.
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SW Theory and a 2d A-model

The only 2d model consistent with all these features is the 2d A-twisted
sigma model, which has the action

S ′SW = 1
e2
∫

Σ
d2z

(
Gvort
IJ

(1
2∂zX

I∂zX J + 1
2∂zX

I∂zX J

+ ρz
J∇zχ

I + ρz
I∇zχ

J
)

− RIJKLρz
Iρz

JχKχL
)

+ iθ
∫

Σ
X ∗ωvort

(47)

where RIJKL is now the Riemann curvature tensor onMq
vort (C), and

∇zχ
I = ∂zχ

I + χJΓIJK∂zXK . Here, ΓIJK are the Christoffel symbols on
Mq

vort (C).

Because of topological invariance, observables of the A-model must be
identified with those of SW theory.
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The Atiyah-Floer Conjecture

Consider DW theory on M4 = R+ × Y3, for which the partition function
can be identified with HFinst∗ (Y3).

A Heegaard split, Y3 = Y ′3 ∪Σ Y ′′3 , can be carried out along Σ.

Y ′3 Y ′′3Σ

Note that Y ′3
,′′ = I ′,′′ ×f Σ, which means the metric of M ′4

,′′ = R+ × Y ′3
,′′ is

a warped metric – i.e. it takes the form

dsM′
4

,′′2 =
(
dx1

)2
+
(
dx2

)2
+ f (x2) (GΣ)ab dx

adxb, (48)

where x1 is identified with the time-direction R+.
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The Atiyah-Floer Conjecture
DW theory is defined on M ′4

,′′, whence one can carry out a Weyl rescaling
on (48), so that the metric becomes

dsM′
4

,′′2 = 1
f (x2)

[(
dx1

)2
+
(
dx2

)2]
+ (GΣ)ab dx

adxb. (49)

Topologically, this describes a product manifold M ′4
,′′ = R+ × I ′,′′ × Σ

Upon shrinking Σ, we will obtain, from the DW theory on M ′4
,′′, an open

A-model on R+ × I ′,′′ with targetMflat (Σ), where the open string starts
and ends on two Lagrangian branes L̃′,′′ and L′,′′.

L̃′,′′ L′,′′
R+ × I ′,′′
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The Atiyah-Floer Conjecture

To relate to DW theory on M4, we just need to ‘glue’ them so that we get a
single sigma model with a pair of different Lagrangian branes L̃′ and L′′.

We merge the adjacent Lagrangian branes L′ and L̃′′, so that the two strings
merge into a single open string, which now extends between L̃′ = L0 and
L′′ = L1 instead.

L̃′ = L0 L′

R+ × I ′ R+ × I ′′
L̃′′ L′′ = L1
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The Atiyah-Floer Conjecture

States of the A-model can then be identified with classes of the Lagrangian
Floer homology HFLagr∗ (Mflat (Σ) , L0, L1).

The physical equivalence between the partition function of DW theory on
M4 which sums classes in HFinst∗ (Y3), and the partition function of the
A-model on R+ × I which sums classes in HFLagr∗ (Mflat (Σ) , L0, L1), means
that we have

HFinst∗ (Y3) ∼= HFLagr∗ (Mflat (Σ) , L0, L1) (50)

which is the Atiyah-Floer conjecture [8]. Moreover, the grading of the
LHS indeed corresponds to that of the RHS since 4d and 2d instanton
numbers are equivalent.
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The Monopole Analog of the Atiyah-Floer Conjecture
Consider SW theory on M4 = R+ × Y3, for which the partition function
can be identified with HFmono

∗ (q,Y3).

We Heegaard split Y3 = Y ′3 ∪Σ Y ′′3 , and take the Weyl rescaled warped
metric, so Σ can be trivially shrunken away. Hence, an open A-model on
R+ × I ′,′′ with targetMq

vort (Σ) is obtained.

States of the A-model are then identified with the classes of the Heegaard
Floer homology HFHeeg∗

(
Mq

vort (Σ) , L0, L1
)
.

Since the partition function of SW theory on M4 = R+ × Y3, which sums
classes in HFmono

∗ (q,Y3), can be identified with the partition function of
the A-model on R+ × I, which sums classes in HFHeeg∗

(
Mq

vort (Σ) , L0, L1
)
,

we have
HFmono
∗ (q,Y3) ∼= HFHeeg∗

(
Mq

vort (Σ) , L0, L1
)

(51)

which is the monopole Atiyah-Floer conjecture [9]. Moreover, the
grading of the LHS and RHS correspond, as 2d and 4d instanton numbers
are equivalent.
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Muñoz’s Theorem: Relating Instanton Floer to Quantum
Cohomology
Consider DW theory on M4 = Σ× S1 × R+. Shrinking Σ away, a closed
A-model on S1 × R+ with targetMflat (Σ) is obtained.

It is known from [1] that for any closed topological A-model with target T ,
there is an isomorphism between the quantum cohomology QH∗(T ), and
symplectic Floer cohomology HF∗symp (T ). This tells us that our A-model
possesses the isomorphism QH∗(Mflat (Σ)) ∼= HF∗symp (Mflat (Σ)).

Since ∂M4 = Σ× S1, the partition function of DW theory on M4 will sum
classes in the instanton Floer cohomology HF∗inst

(
Σ× S1). Since the

partition function of DW theory is equivalent to the partition function of the
A-model on S1×R+ which sums classes in HF∗symp (Mflat (Σ)), we can write

QH∗(Mflat (Σ)) ∼= HF∗symp (Mflat (Σ)) ∼= HF∗inst
(

Σ× S1
)

(52)

which is Muñoz’s theorem [10]. Moreover, the grading of the LHS and
RHS correspond, since 2d and 4d instanton numbers are equivalent.
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Monopole Analog of Muñoz’s Theorem
We will now consider SW theory on M4 = Σ× S1 × R+. Shrinking Σ, we
obtain a closed A-model on S1 × R+ with targetMq

vort (Σ).

Since the partition function of SW theory on M4 which sums classes in
HFmono
∗

(
q,Σ× S1), equals the partition function of the A-model on

S1 × R+ which sums classes in HF∗symp
(
Mq

vort (Σ)
)
, we can identify

HFmono
∗

(
q,Σ× S1) with HF∗symp

(
Mq

vort (Σ)
)
.

Furthermore, note that from [1], QH∗(Mq
vort (Σ)) ∼= HF∗symp

(
Mq

vort (Σ)
)
.

Altogether, these relations can be written as

QH∗(Mq
vort (Σ)) ∼= HF∗symp

(
Mq

vort (Σ)
) ∼= HF∗mono

(
q,Σ× S1

)
(53)

This furnishes a mathematically novel, monopole version of Muñoz’s
theorem, which is consistent with the suggestion in [11]. Moreover, the
grading of the LHS and RHS correspond, since 2d and 4d instanton
numbers are equivalent.
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Higher Rank Generalizations: DW theory

Let us consider DW theory with higher rank gauge group G . All
arguments about the relevant Floer homologies hold, since we may simply
replace SU(2) with G , and the rest of the analysis remains the same.

This suggests that the Atiyah-Floer conjecture can be generalized to G ,
whereby we obtain an isomorphism between instanton Floer homology and
Lagrangian Floer homology for G .

Likewise, we should also be able to generalize Muñoz’s theorem to G , by
starting with higher rank DW theory, whilst noting that Sadov’s results in
[1] are valid for any G .

Meng-Chwan Tan (NUS)
Gauge Theories and Differential Invariants, ICTP, 2019 39

/ 58



Higher Rank Generalizations: SW theory
We can also consider a nonabelian SW theory, for which the BPS
solutions lead to nonabelian monopoles [12].

Taking M4 = Σ× C , and if a modified nonabelian field strength F can
be written, shrinking C will require Fab = 0 to keep the action finite.

This condition should correspond to the nonabelian vortex equations, for
which solutions will span the moduli space of nonabelian vortices. Then,
the kinetic term F ∧ ∗F will descend to the action of a sigma model on Σ
with target moduli space of nonabelian vortices.

The equivalence of states of the A-model and nonabelian SW theory, then
further allows us to obtain the relevant mathematical identities.

There should also be a nonabelian monopole Floer homology on Y3,
which will allow us to derive nonabelian versions of the monopole analogs
of Atiyah-Floer conjecture and Muñoz’s theorem.
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Relating Instanton Floer Homology of Σ× S1 to Affine
Algebras
Consider DW theory on M4 = Σ× D ∼= Σ× S1 × R+, and take
G = SU(2). The partition function sums classes in HFinst∗

(
Σ× S1).

Shrinking D, we obtain an A-model on Σ with targetMflat (D) ∼= ΩG , the
based loop group of G [7, 13].

Such an A-model possesses an affine Lie algebra gaff [2]. In addition,
A-model states form modules of gaff.

Thus, since the partition functions of the A-model and DW theory can be
equated, we obtain the mathematically novel isomorphism

HFinst∗
(

Σ× S1
)
∼= Gmod(Σ) (54)

where Gmod(Σ) is the space of gaff-modules on Σ. Moreover, the grading
of the LHS indeed corresponds to that of the RHS since 4d and 2d
instanton numbers are equivalent.
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Relating Instanton Floer Homology of Seifert Manifolds to
Affine Algebras

Note that Y3 = Σ× S1 is the trivially-fibered Seifert manifold Mg ,0,
where ‘g , 0’ refers to a Σ of genus g and an S1-bundle with Chern number
equal to 0.

Let us generalize our previous discussion to M4 = Σ×f D ∼= Σ×f S1 × R+,
which has a nontrivial Seifert manifold Σ×f S1 = Mg ,p.

By inserting p copies of the fibering operator [3], P, into the DW partition
function on Mg ,0 × R+, where P shifts the Chern number p0 → p0 + 1, the
DW partition function on Mg ,p × R+ may be written as

〈1〉Mg,p = 〈P · · · P〉Mg,0 . (55)

Hence, a sum over classes in HFinst∗ (Mg ,p) must be given by a sum over
classes in HFinst∗ (Mg ,0) which each has been acted upon by P . . .P.
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Relating Instanton Floer Homology of Seifert Manifolds to
Affine Algebras

In turn, from (54), which we repeat here

HFinst∗
(

Σ× S1
)
∼= Gmod(Σ),

we have the mathematically novel isomorphism

HFinst∗ (Mg ,p) ∼= Gmod,p(Σ) (56)

where p on the right hand side denotes that each basis component of the
original space Gmod(Σ) of gaff-modules on Σ has been acted upon p times
by a suitable representation of P.
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Relating Quantum Cohomology to Affine Algebras
Recall from (52) and (54), that we have the isomorphisms

QH∗(Mflat (Σ)) ∼= HF∗symp (Mflat (Σ)) ∼= HF∗inst
(

Σ× S1
)
.

and
HFinst∗

(
Σ× S1

)
∼= Gmod(Σ).

It is then straightforward to write down yet another mathematically novel
identity

QH∗(Mflat (Σ)) ∼= Gmod(Σ) (57)
where the grading on the LHS by degree of maps corresponds to the grading
on the RHS by energy level.

In hindsight, this result is not surprising.

For every 4d instanton of charge k on M4 = Σ× D ∼= Σ× S1 × R+, there
is a corresponding 2d holomorphic map X : S1 × R+ →Mflat (Σ) of
degree k [13, 14].
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Relating Symplectic Floer Homology of Σ× S1 to Affine
Algebras

This means thatMk
inst (M4) ∼=Mk

maps
(
S1 × R+ →Mflat (Σ)

)
.

The homology cycles of Mk
inst (M4) ought to furnish a module for gaff

[arXiv:1701.03298].

This is thus true of homology cycles of Mk
maps

(
S1 × R+ →Mflat (Σ)

)
.

By Poincaré duality, homology cycles ofMk
maps

(
S1 × R+ →Mflat (Σ)

)
,

must correspond to differential forms onMk
maps

(
S1 × R+ →Mflat (Σ)

)
,

which in turn generate the quantum cohomology QH∗(Mflat (Σ)).

Hence, QH∗(Mflat (Σ)) ought to furnish a module for gaff.

This gives an independent verification of the result in (57), which was
deduced using purely physical arguments.
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SQM on the Moduli Space of Flat Connections
As a preliminary step to deriving the Verlinde formula, consider the A-model
on D ∼= R+ × S1 with targetMflat (Σ). We further shrink S1 so that SQM
is obtained.

Taking NI = 0, the bosonic part of the SQM model can be viewed as a QM
model onMflat (Σ), which has the action

SQM = 1
~

∫
dτ 1

2 Ẋ
I ẊI (58)

where the Planck’s constant of the QM model is identified as 1
~ = 2

e2 . We
may define the conjugate momenta by P I = ∂LQM/∂ẊI = Ẋ I .

Replacing (X ,P) with operators (X̂ , P̂), we obtain the commutator relations

[X̂ I , P̂J ] = ~δIJ (59)

The operators X̂ I describe quantized coordinates, which amounts to
quantizing Mflat (Σ).
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Deriving the Verlinde Formula

The Verlinde formula computes the dimension of the space of
conformal blocks, which can be defined in any 2d conformal field theory
(CFT) with affine symmetry.

We shall use the definition by Faltings [4, 5], in which the dimension of the
space of conformal blocks on Σ is the same as the number of holomorphic
sections of (an integer power of) the determinant line bundle over
Mflat (Σ).

To obtain a physical proof, consider DW theory on M4 = Σ× D, so that we
can shrink Σ or D to obtain an A-model on D ∼= S1 × R+ or Σ with target
Mflat (Σ) or ΩG , which are equivalent.
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Physical Proof of the Verlinde Formula – LHS
Let us first shrink D, so that an A-model on Σ with target ΩG can be
obtained, which has gaff at level `.

Its states, κ, will be modules of gaff on Σ, while the partition function is

〈1〉 =
∑
v
κvκv , (60)

where v labels the energy eigenstates.

Since we are dealing with modules of gaff on Σ, we can also write (60) in
terms of conformal blocks F [15] as∑

v
κvκv =

∑
v

FvF v . (61)

Thus, κv can be identified with the holomorphic conformal block Fv , that
spans the space of zero-point conformal blocks on Σ, which we denote
by V`(Σ).
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Physical Proof of the Verlinde Formula – RHS

Shrinking Σ, we obtain an A-model on D ∼= R+ × S1 with targetMflat (Σ).

Further dimensionally reducing on S1, as seen earlier, a QM model on
Mflat (Σ) is obtained.

The QM space of states can be identified as the space of holomorphic
sections of L, raised to a power k ∈ Z+ [16, 17], where L is the
determinant line bundle overMflat (Σ). We shall denote this space by
H0(Mflat (Σ) ,Lk).

Define k = 1
~ = 2

e2 , so that the QM action can be rewritten as

SQM = k
∫

dτ Ẋ I ẊI , (62)

so that k can now be interpreted as the coupling of the QM model.
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The Verlinde Formula

One can argue that tuning the value of 1
e2 also tunes ` of gaff from the the

A-model on Σ. Since ~ also descended from the 4d coupling, ` and k can
indeed be shown to be related.

Since the two spaces of states are equivalent, we obtain the relation

V`(Σ) ∼= H0(Mflat (Σ) ,L`) (63)

which is Faltings’s result [4, 5], from which the Verlinde formula is
obtained by dimV` = dimH0(Mflat (Σ) ,L`).
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With Extra Operator Insertions

There is also a more general result found by Pauly [6], in which n operators
insertions at ~p = (p1, · · · , pn), where p1, · · · , pn ∈ Σ.

There is an isomorphism between the space V`(Σ, ~p) of n-point conformal
blocks on Σ, and holomorphic sections of L over the moduli space of
parabolic vector bundles on Σ, which we denote byMpara (Σ, ~p).

To show this relation physically, let us now insert n scalar operators in DW
theory on M4 = Σ× D, taking NI = 0 and insisting that O1, · · · ,On are
inserted at ~p ∈ Σ.

Further note that a CFT on Σ with operator insertions at ~p, is the same as
a CFT without insertions, albeit on Σ− ~p.

We may then carry out the same shrinking procedure on D ∼= R+ × S1 or
Σ− ~p to obtain a 2d sigma model on Σ or R+ × S1, respectively.
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With Extra Operator Insertions

Shrinking D, an A-model on Σ with target ΩG is obtained, which gives rise
to correlation functions 〈

∏n
r=1Or (zr , z r )〉, where z , z ∈ Σ.

The position-independence of operator insertions ~p in a TQFT, means a
pair of operators can be merged into a single operator via fusion rules. This
can be repeated until all n operators coalesce into a single operator O′.

Furthermore, the position-independence of operator insertions also implies
that the scalar operator O′ is a constant, which means
〈
∏n

r=1Or (zr , z r )〉 = 〈O′〉 = 〈1〉 =
∑

v κv ;nκv ;n, where κv ;n are A-model
eigenstates, that can be identified with conformal blocks [15], wherein∑

v
κv ;nκv ;n =

∑
v

Fv ;nF v ;n. (64)
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With Extra Operator Insertions
Shrinking Σ− ~p, an A-model on D ∼= R+ × S1 with targetMflat (Σ− ~p) is
obtained, which can be quantized upon further shrinking S1.

Note thatMflat (Σ− ~p), is the same as the moduli space of parabolic
bundles on Σ,Mpara (Σ, ~p) – i.e. Mflat (Σ− ~p) ∼=Mpara (Σ, ~p).

Like before, L is raised to a power k, whereby k is identified with the
coupling constant of the QM model onMpara (Σ, ~p). The space of QM
states can be identified with H0(Mpara (Σ, ~p) ,Lk).

It can also be argued that k = `, and since we can identify both spaces of
states, we can write down the relation

V`(Σ, ~p) ∼= H0(Mpara (Σ, ~p) ,L`) (65)

which is just Pauly’s result, from which the Verlinde formula is obtained
by dimV`(Σ, ~p) = dimH0(Mpara (Σ, ~p) ,L`).
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Conclusion

• We exploited properties of 4d N = 2 TQFT in the manner described
above, so that physical proofs of known mathematical conjectures and
theorems as well as derivations of mathematically novel identities
between 3d and 2d invariants, and more, can be obtained.

• Notably, we furnished purely physical proofs of the Atiyah-Floer
conjecture and its monopole analog, and Muñoz’s theorem relating
quantum and instanton Floer cohomology.

• We also physically derived the monopole analog of Muñoz’s theorem,
and described the higher rank generalizations of relevant mathematical
identities.
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Conclusion

• For a Seifert manifold, one can also relate its instanton Floer homology
to modules of an affine algebra.

• In turn, we uncovered an action of the affine algebra on the quantum
cohomology of the moduli space of flat connections on a Riemann
surface.

• We also derived the Verlinde formula as defined by Faltings and Pauly,
respectively.
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THANKS FOR LISTENING!
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