Measurements of cross-section data for fusion-fission residues in light and heavy ion induced reactions

<u>Manoj Kumar Sharma^{1,*}</u> Mahesh Kumar¹, Mohd. Shuaib², Vijay R. Sharma³, Abhishek Yadav⁴, Pushpendra P. Singh⁵, Devendra P. Singh⁶, Unnati⁶,

¹Department of Physics, Shri Varshney College, Aligarh-202 001, INDIA ²Department of Physics, Aligarh Muslim University, Aligarh (UP)-202 002, INDIA ³Departamento de Aceleradores, Instituto Nacional Investigaciones Nucleares, Apartado Postal 18-1027, C.P. 11801 Ciudad de Mexico, Mexico ⁴NP-Group, Inter University Accelerator Centre, New Delhi- 110 067, INDIA ⁵Department of Physics, Indian Institute of Technology Ropar, Panjab-140 001, INDIA ⁶Department of Physics, University of Petroleum and Energy Studies, Dehradun, 248007, INDIA ⁶Department of Physics, Delhi University, Delhi, INDIA

Systems studied

 $p + {}^{51}V, p + {}^{113}ln, a + {}^{51}V,$ a+⁵⁵Mn, a+⁹³Nb, $a + {}^{121,123}Sb$ $a + {}^{191}Au$, ¹²**C**+¹²⁸**Te**, ¹²C+¹⁶⁵Ho, ^{12,13}**C**+¹⁵⁹**Tb**. $^{12,13}C + ^{169}Tm$ ¹⁴N+¹⁵⁹Tb, $^{14}N + ^{169}Tm_{,,}$ $^{14}N + ^{171}Lu$, ^{16,18}**O**+¹⁵⁹**Tb** ^{16,18}**O**+¹⁶⁹**Tm**, ¹⁹**F**+¹⁵⁹**Tb** $^{19}F + ^{169}Tm$, $^{19}F + ^{171}Lu$ and ¹⁹**F**+¹⁸¹**Ta**.

(qm)

Φ

····ACT ⁶⁰Ni(p.n)

10

Energy (MeV)

12

Objectives of present study

- * In order to study fusion-fission dynamics, the cross-sections for several residues produced both by evaporation and fission processes have been measured for many systems in light (p, α) and heavy ion (^{12,13}C, ¹⁴N, ^{16,18}O, ¹⁹F) induced reactions.
- ***** The cross-section data is not only of prime importance in nuclear applications such as reactor core design calculations, shielding problem etc., but also in reaction mechanism studies, such as compound, pre-compound emission and fission processes
- * A very large numbers of experiments was performed to obtain cross-section data to understand the reaction dynamics but no systematic study has been performed
- * In order to utilize cross-section data, a systematic study of pre-compound emission process has been performed in light and heavy induced reactions.

Pictorial representation of compound nuclear reactions

Experimental Signatures of PCN over CN

□ The enhancement in the flux of emitted PCN particles in forward direction over the backward direction □ Forward peaked angular distribution of emitted particles,

Slowly descending tails of excitation functions

Method to Probe PCN reactions

Measurement and analysis of Excitation Functions

Experimental Details & Data Analysis Procedure

Experiments have been carried out using Cyclotron Accelerator facility of at the VECC, Kolkata, and IUAC, New Delhi INDIA.

Typical stack arrangement for EF measurements

Figure 4. (Color Online) The plots of experimentally determined production cross-sections of various fission fragments at four different energies. The solid red line is the Gaussian fitting. The size of the filled circles includes the uncertainty in the yield values.

Mass distribution of fission events in the ¹⁴N+¹⁸¹Ta

Conclusions

*****The cross-sections for several residues produced both **o** by evaporation and fission processes have been measured for many systems in light (p, α) and heavy ion (^{12,13}C, ¹⁴N, ^{16,18}O, ¹⁹F) induced reactions.

 \bullet The developed systematics for α -induced reactions on target nuclei ⁵¹V, ⁵⁵Mn, ⁹³Nb, ¹²¹Sb, ¹²³Sb and ¹⁴¹Pr indicates that the pre-compound process is governed by the excitation energy available to the nucleons at the surface the composite systems.

*****Furthermore, mass number of the target nuclei may also play an important role in pre-compound process at low projectile energies.

2. Manoj K. Sharma et al., Ero Phys. J 31, 43 (2007).

3. B. P. Singh et al, Phys. Rev. C 47, 2055 (1993).

4. B. P. Singh, Manoj K. Sharma et al., Nucl. Instum. Meth. Phys. Res. A 562, 717 (2006).

