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The Stage: McMaster University 
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• McMaster Nuclear Reactor Critical April 1959  
(First RR at a Commonwealth University) (CERN:1952) 

• Bertram Brockhouse shared the 1994 Nobel Prize in 
Physics with American Clifford Shull for developing neutron 
scattering techniques for studying condensed matter. 

 
 
 

Today: McMaster Research Funding 
about  $400M – one of Canada’s 
most research intensive Universities 
 
MNR:  
• Intense positron beam 
• Small-angle neutron scattering 
• Neutron activation analysis 
• Neutron radiography 

MNR: Commercial production of radio-isotopes for medical purposes  
(I-125, Lu-177, Re-186, …) 
Accelerators (F-18), Hot cells, Sources. 
https://nuclear.mcmaster.ca/  

2018 Nobel Prize Donna Strickland  
was student at McMaster 

https://nuclear.mcmaster.ca/
https://nuclear.mcmaster.ca/


Outline 

• The idea behind molten salt reactors 
• History of molten salt reactors 
• Introduction to (relevant) neutronics 
• Neutronics of molten salt reactors 
• Current designs of molten salt reactors 
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Burnup distribution 

• Fluxshape (power profile): 
– Axial ? 
– Radial ? 

• Need to shape the flux 
– Graded enrichment 
– Control devices 
– (burnable absorbers) 
– Fuel shuffling between reloads: 

• Radially (PWR, BWR) 
• Axially (PHWR) 

• Always uneven burn-up 
– But jobs for engineers! 
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Liquid fuel  

• Imagine you could use liquid fuel, flowing through the core: 
– Flux shape (power profile) would still be the same: 

• Axially: ~sin (𝜋
𝐻
𝑧) H  is height of cylinder 

• Radially: ~𝐽0
2.405 𝑟

𝑅
  R  is radius of cylinder 

– Burnup would be completely uniform!   
(provided there is perfect mixing) 

• Other immediate advantages: 
– No core-meltdown! (semantics, it’s molten already…) 
– No fuel failure 
– Fission gases can be vented off. 
– Fuel is the coolant, no coolant needed (in primary circuit). 
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Choice of Liquid (Fluid) Fuel 

• Salt 
 

• Wikipedia: a salt is an ionic compound that can be formed by 
the neutralization reaction of an acid and a base.  
Salts are composed of related numbers of cations (positively 
charged ions) and anions (negative ions) so that the product is 
electrically neutral (without a net charge). 

• Salts characteristically have high melting points. 
• Long list of requirements for fuel: 
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Liquid Fuel Requirements 

• Low capture x-sec for neutrons (*) 
• Stable against radiation (*) 
• Needs to be able to dissolve enough fissile/fertile 

material to achieve criticality (*) 
• Thermally stable (Eutectic) 
• Low vapor pressure 
• Good heat transfer 
• Non-aggressive to structural components 
(*) means relevant to neutronics 
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Choice of Liquid Fuel 

• Only low-Z materials remain for neutronic reasons:  
Be, Bi, B-11, C, D, F, Li-7, N-15, O.    ( NNDC) 

• Chemistry places additional requirements rejecting  
Bi, B-11, C, D, N-15, O; 

• We are left with: F, Li-7, Be, commonly referred to as Flibe. 
• Beryllium also acts as a neutron-doubler: 

Be4
9 + 𝑛 → 2 He2

2 + 2𝑛 
• Also high elastic cross section  good moderator. 
• But beryllium is poisonous. 
• Other elements such as Zr, Na, K are sometimes added for 

different purposes. 

Oct 14, 2019 IAEA-ICTP Workshop 8 

http://www.nndc.bnl.gov/
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http://www.nndc.bnl.gov/chart/reCenter.jsp?z=31&n=35


Li-6 Cross Section 
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Tritium (triton),  
T1/2 12 Years 
Beta decay 

Thermal energy 



Be-9 Cross Section 
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Neutron multiplier 



Fuel Salt 
• Nuclear fuel is U, Pu, Th.   

(fissile, fissionable and fertile) 
• Included in the salt as fluorides: 

– UF4, not to be confused with UF6, used in uranium 
enrichment process. 

• Uranium is enriched (typically 20%, LEU) 

– ThF4, breeding material,  
• either in fuel or blanket. 

– PuF3 

• Typical salt would be (MSRE): 
– 65% 7LiF – 29.1% BeF2 – 5% ZrF4 – 0.9% UF4 
– With 35% enriched uranium 
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Fuel Salt Properties 
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Property H2O Na Li 7LiF-BeF2-ZrF4-UF4 
65-29.1-5.0-0.9 

Melting point (°C) 0 98 181 434 
Boiling point (°C) 100 880 1342 1435 
Density  (kg/m3) (*) 712 830 483 2300 
Thermal conductivity 
(W/K/m) (*) 

0.54 67 53 1.43 

Specific heat capacity 
(J/g/K) (*) 

5.7 1.26 4.23 2.0 

Viscosity (10-6 Pa s) (*) 89 250 360 8050 

MSRE Fuel 

(*) typical reactor conditions 



Flibe 
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Strong Point of MSR 

• Inherent safety: 
– No meltdown; 
– Negative power coefficient (*); 
– Dump tank with freeze plug; 

• Fission products can be removed easily. 
• Fission products form stable fluorides. 
• Operation is at low pressure. 
• Xe can be skimmed off. (*) 
• Fuel can be added at will. (*) 
• No water or sodium present, less risk of steam 

explosions or hydrogen production. 
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History 
• MSRs were pioneered at Oak Ridge National Labs, 

Tennessee in the 1940`s 
• First experiments were Aircraft Reactor Experiments: 
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Aircraft Reactor Experiment  
• Operated for 9 days in 1954 (ORNL) 

– Salt:  53% NaF – 41% ZrF4 – 6% UF4 (HEU 93.4%) 
 

– Moderator: BeO, Temperature: 860 °C 
– Power: 2.5 MWth 
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Molten Salt Reactor Experiment 

• Operated from 1965 – 1969 (ORNL) 
– Salt: 7LiF - BeF2 - ZrF4 - UF4 (65- 29.1- 5 - 0.9) 
– 33% Enrichment.  (233U and 239Pu also used) 
– Secondary circuit: LiF-BeF2 (66–34 mole %) 
– Power 8 MWth, Temperature: 650 °C 
– Operated 9005 fph with U-235 
– Operated 4157 fph with U-233 

 

• It was a successful proof of concept 
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MSRE 
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1 Reactor vessel 
2 Heat exchanger 
3 Fuel pump 
4 Freeze flange 
5 Thermal shield 
6 Coolant pump 
7 Radiator 
8 Coolant drain tank 
9 Fans 
10 Fuel drain tank 
11 Flush tank 
12 Containment 
13 Freeze valve 



MSRE 
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Summary of ORNL Experiments 

Parameter Aircraft Reactor 
Experiment (ARE) 

Molten Salt Reactor 
Experiment (MSRE) 

Date of operation 1954 1965-1970 
Max. Power (MWth) 2.5 8.0 
Max. Temperature (°C) 860 650 
Moderator BeO (solid) Graphite (solid) 
Fuel-Salt composition 
(%mol) 

NaF-ZrF4-UF4 
(53-41-6) 

7LiF-BeF2-ZrF4-UF4 
(65-29.1-5-0.9) 

Secondary loop Na 7LiF-BeF2 
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Neutronics: Point Kinetics 

Assume the flux distribution does not change, 
only the amplitude: point kinetics 
Define average neutron generation time: 

Λ =
neutron population

production rate
 

And reactivity  

𝜌 =
production rate − loss rate

production rate
= 1 −

1
𝑘eff
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Point Kinetics 

Now 
 
With obvious solution 
 
 
All of this only considers neutrons from fission. 
Fortunately, there are delayed neutrons. 
(Unfortunately, there are delayed neutrons.) 
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Delayed Neutrons 
• Fission products are always  

– Radioactive  
– South of the line of stability (too many neutrons) 

• Decay towards line of stability by β-decay 
(electron), followed possibly by emission of a 
neutron. 

• β-decay is slow: ms, s, min,  … 
• Emitters are called precursors 
• Emitted neutrons are delayed neutrons. 
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DN distribution 
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β = ∑ β𝑘
6
𝑘=1  is a crucial parameter in a reactor 

Q: How much is it worth? 



Point Kinetics with DN 
• Interesting thought: every neutron in a reactor 

is in a chain that originated in a delayed 
neutron precursor. 

• With DN, the point kinetics equation becomes  
 
 
 
with 𝐶(𝑡) the average precursor 
concentration. 
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Precursor Concentration 
• Precursors originate in fission, then decay: 

 
 
• Taking the six precursor groups: 
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Point Kinetics in MSR 

Recall: 
 
 
Now (group k=1 only):  
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Point Kinetics cont’ed 

Bad news: 
• Delayed neutron precursors decay outside of 

core. 
– Reduces beta (β) 
– Affects the controllability of the reactor 
– Activates the outer circuit 
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MSRE Experience (1969) 
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MSRE: Zero-Power Exp. 
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MSRE Calculation 
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Multiphysics analysis by Danny Lathouwer (TU Delft) 
Longest-living precursor group only. 



Apply to MSRs 
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Apply to MSRs 
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H 

H 



Primary Circuit Outside Core 
• Good for letting Pa decay 

• Ratio:  R = time in core
time out of core for a given 

sample of fuel salt. 

• Equal to the ratio of volumes: 
𝑉in

𝑉out� . 

• Small R = good for Pa decay. 
• Small R = bad for delayed neutrons. 

time in core(𝜏in) =  
height of core (𝐻)
liquid velocity (𝑢)
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Chemical Processing Plant 

• Remove fission products  
– One of the main design features of original ORNL 

design. 
– In thorium operation, remove protactinium-233 to 

let it decay to U-233, avoiding the n-capture. 
– Topping up the fuel, to compensate for burnup. 
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Apply to MSRs 
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Vessel Head  
• Low pressure operation 
• “Vent off”, extract fission gases 

– Krypton 
– Xenon, strong n-absorber: no more poisoning 

out after shutdown, can restart immediately. 
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Apply to MSRs 
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Dump Tanks 

• Freeze plug: melts when temperature gets too 
high, fuel is dumped in tanks. 

• Still need cooling from decay heat, passive 
cooling system. 

• Worry about flooding. 
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Simulating MSRs 
• Static (design calculations): 

– Neutronics code; most are satisfactory: 
• MCNP 
• SCALE suite 
• Serpent 
• DRAGON/DONJON 
• …. 

– Depletion code: 
• Serpent 
• TRITON (SCALE) 
• DRAGON 
• …. Oct 14, 2019 IAEA-ICTP Workshop 41 



Simulating MSRs 
• Difficulties: 

– Very strong feedback with T/H. 
• Need iteration to get static solution, e.g. with a code 

such as RELAP. 
• May need CFD code. 
• Fortunately, only single phase flow. 

– Simulation of delayed neutrons. 
– Effect of Xe removal. 
– Simulation of abnormal conditions 

• Flow blockage 
• Travelling “slugs”, higher/lower density 
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Simulating MSRs 

• Much development is being done in this area, 
notably the Chinese COUPLE code: a time-space-
dependent coupled neutronic and thermalhydraulics 
code. 

• An important aspect of all these calculations is the 
determination of sensitivities and uncertainties: 
• E.g. the fuel temperature is negative, but what is the 

uncertainty? (in other words, how sure are we that it is 
negative?) 

• Focus has been on S/U due to nuclear data. 
• TSUNAMI, part of SCALE was developed for S/U studies. 
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IMSR-400 by Terrestrial Energy 
• Based on MSRE experience; 
• Modular design (SMR): 

– Two units, one operational, one cooling down 
– Containment is never opened 
– Seven year life-cycle 

• Fission gas venting, but 
– No fission product removal 
– No online reprocessing 
– Top up with 20% LEU 

• Fuel salt composition proprietary (no Be) 
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iMSR-400 Design 
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IMSR-400 Core Lay-out 

• No dunk-tank! 
• Instead always-on 

passive cooling 
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IMSR-400 Passive cooling 
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Control 
Cool 
Contain 



Last Word: the Regulator 
• Each country has its own regulator.  Often 

working with and/or supported by IAEA. 
• E.g. Canadian Nuclear Safety Commission 

– Not prescriptive, onus is on vendor 
– Need to prove design is safe 
– Diverse (support) staff, e.g. 

• Rumina Velshi (President) 
• Dumitru Serghiuta 
• Ramzi Jammal 
• Parvaiz Akhtar 
• Nana-Owusua Kwamena 
• Mok Cher Fong 
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Conclusion 

• MSRs have a long history. 
• Early designs seem to have been successful. 
• Renewed interest in the technology: 

– Private industry 
– Gen IV 
– International  collaborations 
– Conservative designs likely to succeed 

• MSRs are a safe, reliable and sustainable 
source of low-carbon electricity. 
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