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ﬁThe Stage: McMaster University

McMaster Nuclear Reactor Critical April 1959
(First RR at a Commonwealth University) (CERN:1952)

Bertram Brockhouse shared the 1994 Nobel Prize in
Physics with American Clifford Shull for developing neutron §
scattering techniques for studying condensed matter.

Today: McMaster Research Funding
about $400M — one of Canada’s
most research intensive Universities

MNR:

* Intense positron beam

« Small-angle neutron scattering
* Neutron activation analysis

* Neutron radiography

MNR: Commercial production of radio-isotopes for medical purposes

(I-125, Lu-177, Re-186, ...)

Accelerators (F-18), Hot cells, Sources. 2018 Nobel Prize Donna. Strickland
https://nuclear.mcmaster.ca/ was student at McMaster
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Outline

The idea behind molten salt reactors
History of molten salt reactors
Introduction to (relevant) neutronics
Neutronics of molten salt reactors
Current designs of molten salt reactors

IAEA-ICTP Workshop
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i Burnup distribution

Inzpiring Inmovation and Discovery

Rod cluster
control assembly N\,

e Fluxshape (power profile):
— Axial ?
— Radial ?

 Need to shape the flux , L
— Graded enrichment _ jf' Top nozzle
— Control devices
— (burnable absorbers)

— Fuel shuffling between reloads:
e Radially (PWR, BWR)
e Axially (PHWR)

¥ Pellet
Fuel tube

[ Fuel rod
e Always uneven burn-up

— But jobs for engineers!

Oct 14, 2019 IAEA-ICTP Workshop 4



v Liquid fuel

* Imagine you could use liquid fuel, flowing through the core:

— Flux shape (power profile) would still be the same:

www.mcecmaster.ca

e Axially: ~sin (gz) H is height of cylinder

2.405r

e Radially: ~J, ( ) R is radius of cylinder

— Burnup would be completely uniform!
(provided there is perfect mixing)
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e Other immediate advantages:
— No core-meltdown! (semantics, it’s molten already...)
— No fuel failure
— Fission gases can be vented off.
— Fuel is the coolant, no coolant needed (in primary circuit).

Oct 14, 2019 IAEA-ICTP Workshop
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¥ Choice of Liquid (Fluid) Fuel
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 Wikipedia: a salt is an ionic compound that can be formed by
the neutralization reaction of an acid and a base.
Salts are composed of related numbers of cations (positively
charged ions) and anions (negative ions) so that the product is
electrically neutral (without a net charge).

e Salt

www.mcecmaster.ca

McMaster University

e Salts characteristically have high melting points.
 Long list of requirements for fuel:

Oct 14, 2019 IAEA-ICTP Workshop 6
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b Liguid Fuel Requirements

* Low capture x-sec for neutrons (*)
e Stable against radiation (*)

www.mcecmaster.ca

 Needs to be able to dissolve enough fissile/fertile
material to achieve criticality (*)

e Thermally stable (Eutectic)

* Low vapor pressure
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e Good heat transfer
 Non-aggressive to structural components
(*) means relevant to neutronics

Oct 14, 2019 IAEA-ICTP Workshop
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s Choice of Liquid Fuel

 Only low-Z materials remain for neutronic reasons:
Be, Bi, B-11, C, D, F, Li-7, N-15, O. (= NNDC)

e Chemistry places additional requirements rejecting
Bi, B-11, C, D, N-15, O;

e We are left with: F, Li-7, Be, commonly referred to as Flibe.

www.mcecmaster.ca

e Beryllium also acts as a neutron-doubler:
2Be + n - 25He + 2n

e Also high elastic cross section = good moderator.
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e But beryllium is poisonous.

e Other elements such as Zr, Na, K are sometimes added for
different purposes.

Oct 14, 2019 IAEA-ICTP Workshop
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W Fuel Salt

 Nuclear fuelis U, Pu, Th.
(fissile, fissionable and fertile)

* |Included in the salt as fluorides:

— UF,, not to be confused with UF,, used in uranium
enrichment process.
e Uranium is enriched (typically 20%, LEU)

— ThF,, breeding material,

 either in fuel or blanket.
— PuF,
e Typical salt would be (MSRE):
— 65% ’LiF —29.1% BeF, — 5% ZrF, — 0.9% UF,
— With 35% enriched uranium

Oct 14, 2019 IAEA-ICTP Workshop
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McMaster

e g Fuel Salt Properties
MSRE Fuel
65-29.1-5.0-0.9
Melting point (°C) 434
J Boiling point (°C) 100 880 1342 1435
{l Density (kg/m3)(*) 712 830 483 2300
f Thermal conductivity  0.54 67 53 1.43
4 (W/K/m) (*)
# Specific heat capacity 5.7 1.26 4.23 2.0
(J/8/K) (*)
Viscosity (10® Pas) (*) 89 250 360 8050

(*) typical reactor conditions

Oct 14, 2019 IAEA-ICTP Workshop 13
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i Strong Point of MSR

Inherent safety:

— No meltdown;

— Negative power coefficient (*);
— Dump tank with freeze plug;

Fission products can be removed easily.
Fission products form stable fluorides.
Operation is at low pressure.

Xe can be skimmed off. (*)

Fuel can be added at will. (*)

No water or sodium present, less risk of steam
explosions or hydrogen production.

Oct 14, 2019 IAEA-ICTP Workshop
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History

Inzpiring Inmovation and Discovery

* MSRs were pioneered at Oak Ridge National Labs,
Tennessee in the 1940's

* First experiments were Aircraft Reactor Experiments:
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¥ Aircraft Reactor Experiment

e Operated for 9 days in 1954 (ORNL)
— Salt: 53% NaF —41% ZrF, — 6% UF, (HEU 93.4%)
— Moderator: BeO, Temperature: 860 °C
— Power: 2.5 MWth
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FIGURE 1: Cnteal Assembly of ARE
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¥ Molten Salt Reactor Experiment

e Operated from 1965 — 1969 (ORNL)
— Salt: ‘LiF - BeF, - ZrF, - UF, (65- 29.1- 5 - 0.9)
— 33% Enrichment. (%33U and %3°Pu also used)
— Secondary circuit: LiF-BeF, (66—34 mole %)
— Power 8 MWth, Temperature: 650 °C
— Operated 9005 fph with U-235
— Operated 4157 fph with U-233
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e |t was a successful proof of concept

Oct 14, 2019 IAEA-ICTP Workshop 18



f“““"% MSRE

1 Reactor vessel Ll Lo e 8
2 Heat exchanger

3 Fuel pump

4 Freeze flange

5 Thermal shield

6 Coolant pump

7 Radiator

8 Coolant drain tank
9 Fans Ve
10 Fuel drain tank 1 s
11 Flush tank N

12 Containment
13 Freeze valve

www.mcecmaster.ca

McMaster University

Oct 14, 2019 IAEA-ICTP Workshop 19
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Summary of ORNL Experiments

Parameter Aircraft Reactor Molten Salt Reactor
Experiment (ARE) Experiment (MSRE)

Date of operation
Max. Power (MWth)
Max. Temperature (°C)
Moderator

Fuel-Salt composition
(%mol)

Secondary loop

Oct 14, 2019

1954
2.5
860

BeO (solid)

NaF-ZrF,-UF,
(53-41-6)

Na

IAEA-ICTP Workshop

1965-1970
8.0
650
Graphite (solid)

7LiF-BeF,-ZrF,-UF,
(65-29.1-5-0.9)

7LiF-BeF,

21
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¥ Neutronics: Point Kinetics

Assume the flux distribution does not change,
only the amplitude: point kinetics

Define average neutron generation time:
neutron population

production rate
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And reactivity

production rate — loss rate 1

= =1
P production rate Koff

Oct 14, 2019 IAEA-ICTP Workshop 22
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\1( \Y, ;r; |Ster

Cniversiy g Point Kinetics
dn(t
Now ?ZZS; ) _ %n(t)

With obvious solution

n(t) = n(0)ert

All of this only considers neutrons from fission.

Fortunately, there are delayed neutrons.
(Unfortunately, there are delayed neutrons.)

Oct 14, 2019 IAEA-ICTP Workshop
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yr Delayed Neutrons

e Fission products are always

— Radioactive
— South of the line of stability (too many neutrons)

 Decay towards line of stability by B-decay
(electron), followed possibly by emission of a
neutron.
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e B-decay is slow: ms, s, min, =2 ...
 Emitters are called precursors
e Emitted neutrons are delayed neutrons.

Oct 14, 2019 IAEA-ICTP Workshop 24
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B

DN distribution

Table 1 Delayed-neutron data for thermal fission in 2By ([Rosel1991])

McMaster University

Decay Constant, A, (s1) | Delayed Yield, v, (n/fiss.) Delayed Fraction, (5,
0.01334 0.000585 0.000240
2 0.03274 0.003018 0.001238
3 0.1208 0.002881 0.001182
4 0.3028 0.006459 0.002651
5 0.8495 0.002648 0.001087
b 2.853 0.001109 0.000455
Total | - 0.016700 (m
/\_/
B=Y°%_, B, Is a crucial parameter in a reactor
Oct 14, 2019 Q: How much I?Aéz-ggv(/gmzop 25
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9 Point Kinetics with DN

* Interesting thought: every neutron in a reactor
is in a chain that originated in a delayed
neutron precursor.

e With DN, the point kinetics equation becomes

dn(t) _p—p
= = E=n(t) +A0)

o
=
L
4
P
=
=
=
:

=
)
=
B
T
=
=
=

with C(t) the average precursor
concentration.

Oct 14, 2019 IAEA-ICTP Workshop 26
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Precursor Concentration

* Precursors originate in fission, then decay:

det) _ B

o= Kn(t) — AC'(t)

e Taking the six precursor groups:
dc;llt(t) _ %n(t) — MG ()
dC

ol % (1)~ XeCo(1)
6
T = 2B + 3 ()

Oct 14, 2019 dt A aEAlcTP
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Universty g Point Kinetics in MSR

L
B -
Recall: dlt(t) - %n(t) —MGi)
oD — B (1) — 2ol

. u, is the velocity of
Now (group k=1 Only)' the salt flowing in
the z direction.

Ly

McMaster Universi

dcl(th) - 86’1(2,75)
dt Ot

= %n(z,t) — M C4(z,1)

\

IAEA-ICTP Workshop 28
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¥  Point Kinetics cont’ed

Cr(0,t) = Cp(H,t — Touy e kTout
Vout

Tout — Tin Vi
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1

2 Bad news:
2 * Delayed neutron precursors decay outside of
; core.

— Reduces beta (B)
— Affects the controllability of the reactor

— Activates the outer circuit

Oct 14, 2019 IAEA-ICTP Workshop 29
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IJnn-m-six.}:ﬁ MSRE Experience (1969)

Inzpiring Inmovation and Discovery

Summary of MSRE Nuclear Parameters with 11 and ***7 Fuels

=
=
g 235 [ 233
= "I Fuel i U Fael
z _ |
£ Parameter Units Calculated Measured Caleulated | Measured
Initial eritical R Ty ToUE TS et-aea 1530k [15.15 + 9.1b
Reactivity loss due to eireuiation
of delayed-neuiron precursors T Gk k 0.222 | 0.212 2 0.004 0.093 <
& Control-rod worth al Tmnar eritioat-tomdime—ir—rdek | '
0
< 1 Rod 2.11 2.26 - 2.75 2.58
5 3 Rods, banked T —f— | & 6.9
f mnt of reactivity - okE L
= at operating loading m——
= Total -8.1 ~7.3 £0.2 -5.8 ~8.5
-. Fuel 4.1 -4.9 4 2.8 -5.7 .
e ~— : % k[ k .
Concentration coefficient o1 FE tay Toelc e 2 B LA 0,354 | 0.369
T
L
A
=y only.

BUranium of the isotopic composition of the material added during the eritical experiment (31% =41,
“Measurement obscured by eifect of circulating voids.

“Normal full travel of rod(s).

®Not separately evaluated.

Oct 14, 2019 IAEA-ICTP Workshop 30
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"W MSRE: Zero-Power Exp.
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Height [em]

Height [cm]

IVISRE Calculatlon

t=0= t=10=

t=15s I=20s =303

‘I.n".'h:lth [cm] 'u"uldth [r:.rn] Wldth [cm] W|dﬂ1 [crn]

200
1EOQ
1E0
140
120
100
ED
EO
40
20

200
10
160
140
120
100
EO
EOD
40
20

Multiphysics analysis by Danny Lathouwer (TU Delft)
Longest-living precursor group only.

IAEA-ICTP Workshop 32
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Umarcrsityf*f Apply tO MSRS

Inzpiring Inmovation and Discovery

I %| Control
enSaltReactor "

Coolant salt

Generato Electrical

Reactor power

Purified
salt

i
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Heat
exchanger

Recuperator

Heat
exchanger

Chemical
processing

\ plant - *

Freeze
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Pump

Compressg

McMaster University
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-

Pre
cooler

Heat sink

Compressd

Emergency dump tanks
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¥ Primary Circuit Outside Core

 Good for letting Pa decay

time 1In core

e Ratio: R ==
time out of core
sample of fuel salt.

for a given

: Yin
e Equal to the ratio of volumes: /Vout'

e Small R = good for Pa decay.

* Small R = bad for delayed neutrons.
height of core (H)

liquid velocity (u)

Oct 14, 2019 IAEA-ICTP Workshop 35
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% Chemical Processing Plant

e Remove fission products

— One of the main design features of original ORNL
design.

— In thorium operation, remove protactinium-233 to
let it decay to U-233, avoiding the n-capture.

— Topping up the fuel, to compensate for burnup.

Oct 14, 2019 IAEA-ICTP Workshop 36
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Umarcrsityf*f Apply tO MSRS

Inzpiring Inmovation and Discovery
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Vessel Head

e Low pressure operation

www.mcecmaster.ca

e “Vent off”, extract fission gases
— Krypton

— Xenon, strong n-absorber: no more poisoning
out after shutdown, can restart immediately.

¥
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Umarcrsityf*f Apply tO MSRS

Inzpiring Inmovation and Discovery
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Reactor

Coolant salt Electrical

power

Generato
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Purified

Fuel salt

00000

Heat
exchanger

Recuperator

McMaster University

Chemical Hheat
processing exchanger -
& plant * Compressg
l
Freeze | |——
. Pre Heat sink
Pump cooler
Compressd
= Y
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= Dump Tanks

* Freeze plug: melts when temperature gets too
high, fuel is dumped in tanks.

e Still need cooling from decay heat, passive
cooling system.

 Worry about flooding.

Oct 14, 2019 IAEA-ICTP Workshop 40
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w Simulating MSRs

e Static (design calculations):

— Neutronics code; most are satisfactory:
* MCNP
e SCALE suite
e Serpent
e DRAGON/DONIJON

— Depletion code:
e Serpent
e TRITON (SCALE)
* DRAGON

Oct 14, 2019 N IAEA-ICTP Workshop
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w Simulating MSRs

e Difficulties:
— Very strong feedback with T/H.

* Need iteration to get static solution, e.g. with a code
such as RELAP.

 May need CFD code.
e Fortunately, only single phase flow.

— Simulation of delayed neutrons.
— Effect of Xe removal.

— Simulation of abnormal conditions
* Flow blockage
e Travelling “slugs”, higher/lower density

Oct 14, 2019 IAEA-ICTP Workshop 42
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e Simulating MSRs

* Much development is being done in this area,
notably the Chinese COUPLE code: a time-space-
dependent coupled neutronic and thermalhydraulics
code.

www.mcmasler.ca

 An important aspect of all these calculations is the
determination of sensitivities and uncertainties:
e E.g.the fuel temperature is negative, but what is the

uncertainty? (in other words, how sure are we that it is
negative?)
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* Focus has been on S/U due to nuclear data.
e TSUNAMI, part of SCALE was developed for S/U studies.

Oct 14, 2019 IAEA-ICTP Workshop 43



w IMSR-400 by Terrestrial Energy

 Based on MSRE experience;
e Modular design (SMR):

— Two units, one operational, one cooling down
— Containment is never opened
— Seven year life-cycle

e Fission gas venting, but
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— No fission product removal
— No online reprocessing
— Top up with 20% LEU

* Fuel salt composition proprietary (no Be)

Oct 14, 2019 IAEA-ICTP Workshop 44




. IMSR-400 Design

Inzpiring Inmovation and Discovery

— Secondary Coolant Salt (non-radioactive) —
i O
Srcandary Coclar

salt Pump

Secondary Coolant Heat

Fuel-Salt Pump 1' Exchanger

Dirive Motors

m——

-—

www.mcemaster.ca

HilL Al

600 °C Imndustrial Solar Salt Loops

IrII
;, - * l‘ u F‘-nwerﬁeneratiun-‘
Hd [ ==
z ‘ @wm
eactor Core | — Grid Services __
po—————————

| ——

Solar
)
Chemical Synthesis
| Process Heat * 2
- & MH3
ee—— * Syn-Fuels

Q. |~ iE.

IMSR Core-unit
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"% IMSR-400 Core Lay-out

Inzpiring Inmovation and Discovery

_. Primary Pumps

e No dunk-tank!

* Instead always-on
passive cooling

www.mcecmaster.ca

- Primary Heat Exchangers

i _ Graphite Moderator
f IMS5R Core-Unit
= ___— Guard Vessel

— Silo

Core-unit and guard vessel in one of the fwo reactor silos

Oct 14, 2019 IAEA-ICTP Workshop 46
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McMaster University

McMaster

[]nix-’tﬁrﬁit}“’;*: “VISR-4OO PaSSive COOling

Inzpiring Inmovation and Discovery

Metal roof is

heat sink Roof inclination angle

promotes stable natural
/ circulation

Hot riser wall

Cold downcomer wall

Hot nitrogen exit ducts Control

Cool
Contain

. Guard Vessel
Cold nitrogen

return ducts

Baffle guides nitrogen
down over outside
annulus

Oct 14, 2019 IAEA-ICTP Workshop
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Univrsity G Last Word: the Regulator

o Each country has its own regulator. Often
working with and/or supported by IAEA.

e E.g. Canadian Nuclear Safety Commission

— Not prescriptive, onus is on vendor
— Need to prove design is safe
— Diverse (support) staff, e.g.

e Rumina Velshi (President)

McMaster University

e Dumitru Serghiuta

e Ramzi Jammal

e Parvaiz Akhtar

* Nana-Owusua Kwamena
e Mok Cher Fong
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W Conclusion

* MSRs have a long history.
e Early designs seem to have been successful.
e Renewed interest in the technology:

— Private industry

— Gen |V

— International collaborations

— Conservative designs likely to succeed

e MSRs are a safe, reliable and sustainable
source of low-carbon electricity.
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