Diagnosing quantum chaos
using entanglement
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Classical chaos

* Exponential sensitivity of classical
trajectories to small changes in initial
conditions.

o Butterfly effect, breakdown of predictability
In deterministic systems

* Many examples of classically chaotic
systems exist in mathematics, physics and
natural phenomena

Lorenz attractor

jerk circuit

Double-rod pendulum
simulation
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Quantum chaos

* There are no classical trajectories in quantum systems.

* Quantum chaos is therefore quantified using the idea of

operator growth.

Consider an expectation value

C(r) = — ([W(), V(0)]°)

with two initially commuting hermitian operators [W, V] = 0.

Time evolution is according to
W(t) — elHtWe—lHt
and the expectation value is with

respect to a thermal ensemble at
temperature T.




Operator growth intuitive picture:

* As the initially “simple” operator W becomes more complex due to the time
evolution it eventually fails to commute with V.

t=0 t >0
¢ ®
® Vo M
V(0) V(0) W(1)
[V(0), W(0)] =0 [V(0), W(1)] # 0

» For quantum-chaotic systems the growth of C(¢) = — ([W(¢), V(0)]?) is
exponential at intermediate times,

C(t) ~ et

e Here /; is the quantum Lyapunov exponent




The chaos bound

 The Lyapunov exponent 4, characterizing the exponential growth of

C(f) = — {[W(?), V(0)]?) at intermediate times is subject to a fundamental
upper bound

Ay L 2xT

[Maldacena, Stanford, Shenker 2017]

e Quantum systems saturating the chaos bound (4; = 2z7T") are called
“maximally chaotic”

* Such systems are usually holographically dual to a quantum gravity
theory in a geometry with a black hole.

. are also maximally chaotic, i.e. they thermalize in shortest
possible time consistent with causality and unitarity.



Why is understanding of quantum chaos important?

Chaotic behaviour is essential to thermalization of closed qguantum
systems

It underlies our understanding of important concepts including many-
body localization and eigenstate thermalization hypothesis (ETH)

Quantum chaos is important in attempts to reconcile quantum
mechanics with general relativity: It points to a resolution of fundamental
open guestions such as the Hawking black hole information paradox




Out-of-time-order correlators

Expand the commutator squared:
naturally time ordered (NTOC)

C(t) = (WEHOVVW@©)) + (VIWEOW(EHV) —

—(VWOVW(©) — WOVWOV) ~—_ 4 1t-of-time-ordered” (OTOC)

* NTOC — correspond to measurable (at least in principle) quantities

Consider (V(O)W(HW(EHV(0)) = (¥,V(0) | W(E)W(E) | V(0)¥,)

/N

(ii) evolve the perturbed state (i) create a
forward in time and pertyrbat|on at
time t=0

(ii) perform a measurement of
the quantity represented by

W(1)?



e OTOCs— correspond to quantities that require backward time
evolution to measure

Consider (W(@)V(O)W()V(0)) = (Y W()V(0) | W(H)V(0)P,)

This inner product can be interpreted as comparing two quantum states:

| W, (7)) = | W(©)V(0)¥) and | W5(0)) = |V(O)TW(I)TLP0>

Creating | Y,(#)) clearly requires evolving the system backward in time!

 Backward time evolution can be achieved by reversing the sign of the
Hamiltonian

W(f) — ethWe—th N e—thWeth

* |In most systems however this is difficult or impossible to achieve
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Conventional quantum chaos diagnosis requires backward time

evolution and is therefore hard.

Is there an alternative that could be used in complex
many-body systems?
S ———= e ———




Quantum chaos diagnosis

using entangled states

Consider two identical copies of a quantum system

ken’canglement

Specifically, we want the “thermofield double state” defined as

1
I TFDy) = —= D e 77| ), ® |n)y
\/Z
s n

where |n);,» is an eigenstate with energy E, of Hyr and |71) = O | n).



Properties of TFD state | TEDy) =ﬁ2e-ﬂEn’2|ﬁ>L® )k
ﬂ n

aka “traversable wormhole”

1. Expectation value of any one-sided operator is given by a thermal average:

(Op)eD = Zﬁ—l Z e [ (n] O |nyy .

2. TFDis not an eigenstate of the total Hamiltonian H = H; + Hp, but it is an
eigenstate with eigenvalue zero of H_ = H;, — H),.

ltem 2 above has important consequence for the
time-translation invariance in the TFD state:

Time effectively flows in the opposite direction

In two subsystems forming the TFD pair!

F(ti, 1) = (O (1) Op(t))1pp = (O;(t; + )Op(ts — ) ppp = F (4, + 1)



Probing OTOCs by means of conventional

measurement in the TFD state



Consider the following 4-point NTOC correlator evaluated in the TFD state:

F(t,t) = (T[V,() WOV OYW () 1D

By using the definition of | TFDﬂ) it is straightforward to show (about one
page of calculation, details in arXiv:1907.01628) that

F(t, — 1) = [ WRHV(0)y*W(2£H)V(0)y?]

Here y* = e PH /Z4 and the trace is with respect to

the eigenstates |n) ; of single subsystem.

The expression for F (¢, — t) above with density matrix insertions y2 Is called

“thermally regularized OTOC”
and has been argued in the literature to most directly diagnose quantum chaos.



Summary of the main result:

Certain naturally ordered 4-point correlators evaluated in the

TFD entangled state map onto regularized OTOCs.

(T IV OWRO V(=W (=D])1pp = tr[ W2 V(0)y*W(21) V(0)y?]

H;

Hpg ' ;

L :
entanglement




New protocol for probing OTOCs

NTOC

=0

entanglement

1. Construct a pair of identical systems

2. Prepare them in the TFD state

3. Perform an ordinary measurement

R — ————

The challenge of backward time evolution
has been replaced by the challenge to
prepare a TFD entangled state.

Is it possible to efficiently prepare the TFD state?




TFD state preparation

Recent theoretical work showed how to construct a Hamiltonan Hs which
admits | TFDy) as its ground state.

[W. Cottrell, B. Freivogel, D.M. Hofman, and S.F. Lokhande, J. High Energy Phys. 2019, 58 (2019)]

A simple Hamiltonian [J. Maldacena and X.-L. Qi,
arXiv:1804.00491]

Hg=H, + Hp+H, with Hy=iu) 00

J
has a ground state that is very close to | TFDy), thatis (¥ | TFDy) ~ 1.

Strategy to prepare TFD state:

1. Engineer a system with Hamiltonian o %
2. Cool the system to its ground state

. | g




Measurement strategy

1. Construct a pair of identical systems
2. Prepare them in the TFD state
3. Perform an ordinary measurement €¢—

R — R

It turns out to be sufficient to measure an ordinary two-sided correlator
1G5, 1) = 0t — t)({V, (1), Vi(t)}), in the TFD ground state.

One can show that, at intermediate times t < ! it hOIdAS/OTOC

4
Gt — 1) = 2 ) J ds Re tr [07(t + 5)V(0)y>0'(t — 5)V(0)y*| + NTOC.
; 0
J

We thus expect  iG[%(t, — ) ~ A + Be*!!
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Sachdev-Ye-Kitaev (SYK) &

Model review: & ) b \\
A toy model that is both a black M k) AN

hole and a “s’rrange metal.” A system of N

(Majorana) fermions

Hevie — 0 Z Jii kX X5 X kX1 / with random all-fo-all
ik, interactions

Hev e Z JijskicLelcrey
1,J,k,1

AdS-

BH horizon

S. Sachdev and J. Ye, PRL 70, 3339 (1993),
O. Parcollet and A. Georges, PRB 59, 5341 (1999), A. Kitaev (unpublished, 2015).



Maldacena-Qi model and the TFD

_ pySYK | pSYK | L
H=Hp =+ Hp ™+ Z)(i)({g
J

HY® = N Jauxixixkxl

I<j<k<l

[J. Maldacena and X.-L. Qi,
arXiv:1804.00491]

Two identical SYK models coupled via simple bilinear term realize
holographically an “eternal traversable wormhole” and are therefore of
great current interest in the quantum gravity community.




For our purposes it is important that the ground state of the Maldacena-Qi
model is very close to the TFD:
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OTOC and Lyapunov exponent

We argued previously that LR correlator in TFD ground state contains OTOC
contribution, i.e. iG[{(t, — 1) ~ A + Be*"'. For Maldacena-Qi we find:

iGEA(t, — 1) = —— Z CHCRUCHY)

4” ZJ ds Re tr[ /(1 + s)y"(0)y* /(1 — 5)y*(0)y*] + NTOC

jik =0
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Possible experimental realizations

We want to realize the Maldacena-Qi model H = H>YX + HYYX + iy 2 1 x
J
SYK model proposed realizations:

(a) 4 ) Yi Vi
..... “ x
B 2D disordered | ”M : : ®
3 guantumdot | . ajorana wire arrayx
A :
..... ” x
\_ J
b) . (c) [Pikulin and Franz, PRX 2017]
Dot ~— 1 _
levels —/——
5€ty_p1t_ )\
_M_ajorana_ Majorana
—_— zero modes zero modes
—_— Y S

[Chew, Essin and Alicea, PRB 2017]
[Chen, llan, de Juan, Pikulin and Franz, PRL 2018]



«— tunnel probes —,

Two identical quantum dots bridged
by Majorana wires could approximate
the Maldacena-Qi model

'

SYK-R

_ SYK SYK . ] disordered array disordered
H = HL + HR + 1 E )d,)d? quantum o quantum
; dot J dot

J

gates

e Tunnel probes can be used to probe electron spectral function p (@) in
each wire which is related to the LR Majorana correlator. We find:

iGIrj,;(t) ~ Kxﬁ(t)J dw p.(w)sin wt .

Tunneling conductance experiment in this setup therefore gives access to
the Lyapunov chaos exponent through iGSi(f) ~ A + Be™!




Conclusions

Diagnosing quantum chaos traditionally
requires backward time evolution which
IS hard or impossible in complex many-
body systems

We proposed a new protocol for chaos
detection which replaces a complicated
measurement scheme by a simple
measurement on a specific entangled
state

The challenge now is to fabricate two
identical copies of an interesting system
that are weakly coupled to one another

A simple spectroscopic measurement
then yields the chaos exponent 4,

arxiv:1907.01628

J) disordered




