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Figure 3: (a) 2D QSH model with finite tunneling probability
between the edges. (b) A closed path in parameters space en-
circling the gapless region (cones) corresponding to a fermion
parity pump. The path is not contractible due to the persis-
tence of the gapless region for B ̸= 0.

spin pump discussed in Ref. [39, 40]. The spin pumping
property can be used as an experimental signature of the
anomalous edge states. At φ = π each edge supports two
degenerate (many-body) states with an opposite expec-
tation value of Sz. Since the two states differ by adding a
single electron or hole, they must have ⟨Sz⟩ = ±1/4 [35].
When φ is changed adiabatically by 2π, the local spin of
the edge switches. If Sz is not conserved, the unit of spin
transferred between the edges during the adiabatic cycle
is not quantized; however, we still expect ⟨Sz⟩ of each
edge to flip its sign over one cycle.

The pumping property becomes particularly transpar-
ent if one considers an alternative model, illustrated in
Fig. 3a. Consider a strip of a 2D quantum spin Hall
(QSH) material with 1D helical edge states. If the width
of the strip is finite, the tunneling amplitude t⊥ between
the edge states is non-zero. The opposite sides of the
strip are proximity-coupled to two s-wave SCs with a
phase difference of φ.

In absence of a magnetic field and in the t⊥ → 0 limit,
a cycle in which φ changes by 2π can be realized by pass-
ing a superconducting vortex through the QSH strip (be-
tween the two SCs), along the x direction. Such a vortex
induces a voltage along the y direction, which in its turn
will lead to a spin current along the x direction. The
total spin transferred between the ends of the QSH strip
in this process is 1/2, corresponding to a single fermion.
Hence, such a cycle exactly serves as a fermion parity
pump. Note that the use of a QSH is not essential for
the pumping phenomena. In the QSH model, however,
the origin of the pumping is evident.

Denoting the two edges of the QSH state by σz = ±1,
we can write the following low energy effective Hamilto-
nian:

H = (vkszσz − t⊥σx − µ) τz+Bsz+∆ cos
φ

2
τx+∆ sin

φ

2
σzτy.

(6)
Here, v is the velocity of the edge modes, µ is their chem-
ical potential, B is an applied Zeeman field, and ∆ is the

induced pairing potential. We examine the phase dia-
gram of the system in the parameter space spanned by
∆, φ and B, Fig. 3b. For B = 0 and φ = 0,π, the system
is TRI. For µ > t⊥, the gapless point ∆ = 0 separates
between the trivial and the topological phases. When a
magnetic field is turned on, the gapless point does not
disappear but turns into a finite region |∆| ≤ |B|. As we
change φ by 2π, the path in parameter space encircles
a gapless region and can not be contracted to a point
without crossing it. This is a consequence of the fermion
parity pumping property of this cycle[41].

Discussion.−We have presented a general setup to re-
alize a time reversal invariant TSC by proximity cou-
pling a quantum wire with strong SOC to conventional
superconductors. The TSC phase can be identified by
the presence of a pair of zero-energy Majorana bound
states at each edge, protected by time-reversal symme-
try. Thus, we expect a zero-bias peak to appear in the
tunneling conductance into the edge of the system when
the phase difference between the two superconductors is
φ = π. Intriguingly, varying φ adiabatically by 2π pumps
both fermion parity and spin between the edges.
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Figure 3: (a) 2D QSH model with finite tunneling probability
between the edges. (b) A closed path in parameters space en-
circling the gapless region (cones) corresponding to a fermion
parity pump. The path is not contractible due to the persis-
tence of the gapless region for B ̸= 0.

spin pump discussed in Ref. [39, 40]. The spin pumping
property can be used as an experimental signature of the
anomalous edge states. At φ = π each edge supports two
degenerate (many-body) states with an opposite expec-
tation value of Sz. Since the two states differ by adding a
single electron or hole, they must have ⟨Sz⟩ = ±1/4 [35].
When φ is changed adiabatically by 2π, the local spin of
the edge switches. If Sz is not conserved, the unit of spin
transferred between the edges during the adiabatic cycle
is not quantized; however, we still expect ⟨Sz⟩ of each
edge to flip its sign over one cycle.

The pumping property becomes particularly transpar-
ent if one considers an alternative model, illustrated in
Fig. 3a. Consider a strip of a 2D quantum spin Hall
(QSH) material with 1D helical edge states. If the width
of the strip is finite, the tunneling amplitude t⊥ between
the edge states is non-zero. The opposite sides of the
strip are proximity-coupled to two s-wave SCs with a
phase difference of φ.

In absence of a magnetic field and in the t⊥ → 0 limit,
a cycle in which φ changes by 2π can be realized by pass-
ing a superconducting vortex through the QSH strip (be-
tween the two SCs), along the x direction. Such a vortex
induces a voltage along the y direction, which in its turn
will lead to a spin current along the x direction. The
total spin transferred between the ends of the QSH strip
in this process is 1/2, corresponding to a single fermion.
Hence, such a cycle exactly serves as a fermion parity
pump. Note that the use of a QSH is not essential for
the pumping phenomena. In the QSH model, however,
the origin of the pumping is evident.

Denoting the two edges of the QSH state by σz = ±1,
we can write the following low energy effective Hamilto-
nian:

H = (vkszσz − t⊥σx − µ) τz+Bsz+∆ cos
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Here, v is the velocity of the edge modes, µ is their chem-
ical potential, B is an applied Zeeman field, and ∆ is the

induced pairing potential. We examine the phase dia-
gram of the system in the parameter space spanned by
∆, φ and B, Fig. 3b. For B = 0 and φ = 0,π, the system
is TRI. For µ > t⊥, the gapless point ∆ = 0 separates
between the trivial and the topological phases. When a
magnetic field is turned on, the gapless point does not
disappear but turns into a finite region |∆| ≤ |B|. As we
change φ by 2π, the path in parameter space encircles
a gapless region and can not be contracted to a point
without crossing it. This is a consequence of the fermion
parity pumping property of this cycle[41].

Discussion.−We have presented a general setup to re-
alize a time reversal invariant TSC by proximity cou-
pling a quantum wire with strong SOC to conventional
superconductors. The TSC phase can be identified by
the presence of a pair of zero-energy Majorana bound
states at each edge, protected by time-reversal symme-
try. Thus, we expect a zero-bias peak to appear in the
tunneling conductance into the edge of the system when
the phase difference between the two superconductors is
φ = π. Intriguingly, varying φ adiabatically by 2π pumps
both fermion parity and spin between the edges.
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NOTA DE TAPA

La pista argentina
Bajo un manto de dudas subyace la historia, la parábola sobre la biografía
de Ettore Majorana; quizás (quizás, quizás, eso al menos decía Fermi) uno
de los grandes científicos de nuestra época (se anticipó al esbozo de la
Teoría del Núcleo Atómico de Heisenberg que dio lugar al descubrimiento
del neutrón) y que un buen día se esfumó por completo. Y bueno, hay malas
o buenas lenguas que dicen que anduvo por aquí, allá por 1950.

 Por Matías Alinovi

Ettore Majorana siempre vuelve. En el suplemento Radar del 23 de marzo
pasado, Juan Forn comentó la reedición de Tusquets de La desaparición de
Majorana, libro de Leonardo Sciascia. Se refería también a la pista argentina
sobre la desaparición del físico italiano, aunque de un modo lateral,
atribuyéndola al sensacionalismo colorido de la RAI y a la falta de escrúpulos
de algunos personajes oscuros, infaltables entre nosotros, que habrían
declarado lo que no habían visto.

Entre esos personajes, Forn mencionaba a la viuda de “un tal Carlos Rivera”.
Lo cierto es que la RAI llegó tarde, y quizá mal, a una pista que interesó
antes a físicos argentinos e italianos, que la retomaron. La historia, inédita,
proyecta su luz indirecta sobre un episodio memorable de la ciencia
argentina: la invitación a Heisenberg.

Futuro conversó con Erasmo Recami, físico italiano, autor de Il caso
Majorana: epistolario, documenti, testimonianze (Mondadori, 1987), de
próxima aparición en castellano, y con Luis Bassani, investigador argentino
que recogió testimonios en el país. El Majorana mundano como contracara
de la fábula moral de Sciascia.

INSTANTANEA DE ETTORE MAJORANA

Versión telegráfica de la vida de Ettore Majorana. En 1929 se doctora en
física bajo la dirección de Enrico Fermi, en Roma. Se habían visto por
primera vez el año anterior. Desde el primer día, Majorana dio muestras
desconcertantes de una comprensión cabal de la física, definitiva, original,
que no sabe reconocer antecedentes. Pero también de una excentricidad
cuyo signo es el desinterés. La impresión general del grupo de
investigadores que rodea a Fermi –Pontecorvo, Amaldi, Segré– es que
Majorana lo sabe todo, pero no le importa nada. Desdén por publicar, por
discutir incluso sus ideas.

En el recuerdo sinóptico de la mujer de Fermi, Majorana camina cada
mañana hacia el instituto; lo asalta, en el camino, una idea nueva, la
explicación teórica de un resultado experimental; saca un lápiz y escribe en
el papel del paquete de cigarrillos algunas fórmulas; llega al instituto, busca
a Fermi, expone las ideas. Fermi lo insta a la publicación. Majorana
considera que no vale la pena. Cuando fuma el último cigarrillo, hace
desaparecer el paquete.

Con ese desdén irritante, que convoca y desaira como un pase de manos,
Majorana se anticipa a la Teoría del Núcleo Atómico, que Heisenberg publica
en Leipzig algunos meses después de que él la atisbara en Roma, y a la
exacta interpretación de los resultados experimentales que condujeron al
descubrimiento del neutrón.

Fermi, que no logra encarrilar el genio de Majorana, logra sin embargo,
como en una tregua del desdén, que acepte una beca para ir a trabajar a
Leipzig, junto a Heisenberg. Majorana redacta las quince líneas curriculares
más estudiadamente lacónicas de la historia de la burocracia académica y
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Time-reversal-invariant topological superconductivity

Arbel Haima, and Yuval Oregb

aWalter Burke Institute for Theoretical Physics and Institute for Quantum Information and Matter, California Institute of
Technology, Pasadena, CA 91125, USA

bDepartment of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel

Abstract

A topological superconductor is characterized by having a pairing gap in the bulk and gapless self-hermitian
Majorana modes at its boundary. In one dimension, these are zero-energy modes bound to the ends, while in
two dimensions these are chiral gapless modes traveling along the edge. Majorana modes have attracted a lot
of interest due to their exotic properties, which include non-abelian exchange statistics. Progress in realizing
topological superconductivity has been made by combining spin-orbit coupling, conventional superconduc-
tivity, and magnetism. The existence of protected Majorana modes, however, does not inherently require
the breaking of time-reversal symmetry by magnetic fields. Indeed, pairs of Majorana modes can reside at
the boundary of a time-reversal-invariant topological superconductor (TRITOPS). It is the time-reversal
symmetry which then protects this so-called Majorana Kramers’ pair from gapping out. This is analogous
to the case of the two-dimensional topological insulator, with its pair of helical gapless boundary modes,
protected by time-reversal symmetry. Realizing the TRITOPS phase will be a major step in the study of
topological phases of matter. In this paper we describe the physical properties of the TRITOPS phase, and
review recent proposals for engineering and detecting them in condensed matter systems, in one and two
spatial dimensions. We mostly focus on extrinsic superconductors, where superconductivity is introduced
through the proximity e↵ect. We emphasize the role of interplay between attractive and repulsive electron-
electron interaction as an underlying mechanism. When discussing the detection of the TRITOPS phase, we
focus on the physical imprint of Majorana Kramers’ pairs, and review proposals of transport measurement
which can reveal their existence.

Keywords: Topological Superconductivity, Topological states of matter, time-reversal symmetry,
Majorana zero modes, Proximity e↵ect.
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(a) (b)

Figure 2: (a) Dispersion of the one-dimensional low-energy Hamiltonian H0, having two right-moving modes and two left-
moving modes [see Eq. (1)]. The Hamiltonian H� describes induced superconductivity. The pairing potential �+ couples the
modes of positive helicity, while �� couples the modes of negative helicity. The system is in its topologically nontrivial phase
when sgn(�+)sgn(��) = �1 [see Eq. (3)]. (b) Generalization of the low-energy model to two dimensions. The black contours
represents the Fermi surfaces (or Fermi contours) of the normal part of the Hamiltonian in Eq. (6). The states near each Fermi
surface are parameterized using ✓ and k. The dashed green lines shows the electronic states connected by the pairing term of
the Hamiltonian. None of the pairing potentials, �+(✓) and ��(✓), can change sign as a function of ✓ without closing the
superconducting gap. The topological criterion then stays the same as in the 1d case, sgn(�+)sgn(��) = �1. The blue and
red dots represent the Fermi points in the 1d system obtained by taking only ✓ = 0,⇡.

Let us concentrate on an electron in the normal stub which propagates to the right, towards the NS
interface. For energies smaller than the induced pairing potentials (and in particular for zero energy), the
electron goes through a series of scattering processes before returning to its original state: (i) Andreev
reflection, e ! h, at the NS interface, (ii) normal reflection, h ! h, at the vacuum interface on the left,
(iii) Andreev reflection, h ! e at the NS interface, and finally (iv) normal reflection, e ! e, at the vacuum
interface. This is depicted in Fig. 3. For a bound state to exist, the overall phase acquired by the electron
during this process should be a multiple of 2⇡.

To calculate the overall phase, we begin by considering a spin-" electron moving to the right and being
Andreev reflected at the NS interface into a spin-# left-moving hole. The Andreev-reflection amplitude for
this process is given by e

i'I = sgn(�+)e�i cos�1
("/|�+|) [74]. Notice that since this process involves positive-

helicity modes, the expression for the amplitude contains �+. Next, the spin-# hole propagates towards
the x = �dN boundary where it is normally reflected as a spin-# hole and then propagates back towards
the NS interface. In this process it acquires a phase e

i'II = �e
�i(k+

F�"/v+)dNe
�i(k�

F �"/v�)dN . The right-
moving spin-# hole is then Andreev reflected into a left-moving spin-" electron, this time with an amplitude
e
i'III = sgn(��)e�i cos�1

("/|�+|). Finally, it propagates to the left interface and back acquiring a phase

e
i'IV = �e

i(k�
F +"/v�)dNe

i(k+
F+"/v+)dN . At zero energy, the overall phase gained during the process is simply

e
i('I+'II+'III+'IV) = �sgn(�+)sgn(��), which means that for a zero-energy bound state to exist the signs
of the pairing potentials need to be opposite.

In reaching this criterion for a zero-energy bound state, we have chosen to track the path of a right-
moving spin-". Exactly the same criterion is obtained by considering the time-reversed process, starting
with a spin-# electron moving to the left. Namely, In the topological phase there are actually two zero
energy MBSs at the system’s boundary, in accordance with Kramers’ degeneracy theorem. These are the
so-called Majorana Kramers pair.

Notice that, since �+ and �� are real numbers, their sign can only change if they go through zero,
namely if the energy gap closes. We can thus define a topological invariant for the Hamiltonian at hand [72],

⌫ = sgn(�+)sgn(��), (3)

which takes the value 1 when the system is trivial, and �1 when the system is topological.
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Figure 2: (a) Dispersion of the one-dimensional low-energy Hamiltonian H0, having two right-moving modes and two left-
moving modes [see Eq. (1)]. The Hamiltonian H� describes induced superconductivity. The pairing potential �+ couples the
modes of positive helicity, while �� couples the modes of negative helicity. The system is in its topologically nontrivial phase
when sgn(�+)sgn(��) = �1 [see Eq. (3)]. (b) Generalization of the low-energy model to two dimensions. The black contours
represents the Fermi surfaces (or Fermi contours) of the normal part of the Hamiltonian in Eq. (6). The states near each Fermi
surface are parameterized using ✓ and k. The dashed green lines shows the electronic states connected by the pairing term of
the Hamiltonian. None of the pairing potentials, �+(✓) and ��(✓), can change sign as a function of ✓ without closing the
superconducting gap. The topological criterion then stays the same as in the 1d case, sgn(�+)sgn(��) = �1. The blue and
red dots represent the Fermi points in the 1d system obtained by taking only ✓ = 0,⇡.

Let us concentrate on an electron in the normal stub which propagates to the right, towards the NS
interface. For energies smaller than the induced pairing potentials (and in particular for zero energy), the
electron goes through a series of scattering processes before returning to its original state: (i) Andreev
reflection, e ! h, at the NS interface, (ii) normal reflection, h ! h, at the vacuum interface on the left,
(iii) Andreev reflection, h ! e at the NS interface, and finally (iv) normal reflection, e ! e, at the vacuum
interface. This is depicted in Fig. 3. For a bound state to exist, the overall phase acquired by the electron
during this process should be a multiple of 2⇡.

To calculate the overall phase, we begin by considering a spin-" electron moving to the right and being
Andreev reflected at the NS interface into a spin-# left-moving hole. The Andreev-reflection amplitude for
this process is given by e

i'I = sgn(�+)e�i cos�1
("/|�+|) [74]. Notice that since this process involves positive-

helicity modes, the expression for the amplitude contains �+. Next, the spin-# hole propagates towards
the x = �dN boundary where it is normally reflected as a spin-# hole and then propagates back towards
the NS interface. In this process it acquires a phase e

i'II = �e
�i(k+

F�"/v+)dNe
�i(k�

F �"/v�)dN . The right-
moving spin-# hole is then Andreev reflected into a left-moving spin-" electron, this time with an amplitude
e
i'III = sgn(��)e�i cos�1

("/|�+|). Finally, it propagates to the left interface and back acquiring a phase

e
i'IV = �e

i(k�
F +"/v�)dNe

i(k+
F+"/v+)dN . At zero energy, the overall phase gained during the process is simply

e
i('I+'II+'III+'IV) = �sgn(�+)sgn(��), which means that for a zero-energy bound state to exist the signs
of the pairing potentials need to be opposite.

In reaching this criterion for a zero-energy bound state, we have chosen to track the path of a right-
moving spin-". Exactly the same criterion is obtained by considering the time-reversed process, starting
with a spin-# electron moving to the left. Namely, In the topological phase there are actually two zero
energy MBSs at the system’s boundary, in accordance with Kramers’ degeneracy theorem. These are the
so-called Majorana Kramers pair.

Notice that, since �+ and �� are real numbers, their sign can only change if they go through zero,
namely if the energy gap closes. We can thus define a topological invariant for the Hamiltonian at hand [72],

⌫ = sgn(�+)sgn(��), (3)

which takes the value 1 when the system is trivial, and �1 when the system is topological.

6

⌫ = �1 Topological 

⌫ = 1 TrivialTopological invariant
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Time-Reversal-Invariant Topological Superconductivity and Majorana Kramers Pairs

Fan Zhang,⇤ C. L. Kane, and E. J. Mele
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

We propose a feasible route to engineer one and two dimensional time reversal invariant (TRI)
topological superconductors (SC) via proximity e↵ects between nodeless s± wave iron-based SC and
semiconductors with large Rashba spin-orbit interactions. At the boundary of a TRI topological
SC, there emerges a Kramers pair of Majorana edge (bound) states. For a Josephson ⇡-junction
we predict a Majorana quartet that is protected by mirror symmetry and leads to a mirror frac-
tional Josephson e↵ect. We analyze the evolution of the Majorana pair in Zeeman fields, as the SC
undergoes a symmetry class change as well as topological phase transitions, providing an experi-
mental signature in tunneling spectroscopy. We briefly discuss the realization of this mechanism in
candidate materials and the possibility of using s and d wave SCs and weak topological insulators.

PACS numbers: 74.45.+c, 71.70.Ej, 71.10.Pm, 74.78.Na

Introduction.— Broken symmetry and topological or-
der are two fundamental themes of condensed matter
physics. The search for topological superconductors
(SC) [1–3] is fascinating, as gauge symmetries are spon-
taneously broken in the bulk and gapless Andreev bound
states (ABS) can be topologically protected at order pa-
rameter defects, hosting Majorana fermions. Majorana
fermions are immune to local noise by virtue of their
nonlocal topological nature and thus give hope for fault-
tolerant quantum computing [4]. The rise of topological
superconductivity has been expedited by recent propos-
als [5–10] that hybridize ordinary SCs with helical ma-
terials, with the help of magnetic perturbations. Using
proximity e↵ects, electrons in a single helical band at the
Fermi energy form conventional Cooper pairs, whose con-
densation realizes a spinless chiral p wave SC in its weak
pairing regime, i.e., a topological SC with broken time
reversal symmetry (class D). Unique signatures, includ-
ing zero bias conductance peaks, anomalous Fraunhofer
patterns, and fractional Josephson e↵ects, are starting to
be observed in these systems [11–15]. A completely dis-
tinct family (class DIII) of time reversal invariant (TRI)
topological SCs was proposed based on a mathematical
classification of Bogoliubov-de Gennes (BdG) Hamiltoni-
ans [16–23]. CuxBi2Se3 [21] and Rashba bilayers [24, 25]
are possible candidates, however, it seems very challeng-
ing since exotic interactions are required and experimen-
tal observations remain controversial [26–33].

A more ambitious goal is to realize TRI topological SC
without exotic electron-electron interactions in absence of
Zeeman fields. Here we propose a feasible route to uti-
lize proximity e↵ect devices which combine Rashba semi-
conductors (RS) and nodeless iron-based SCs. Below its
transition temperature the SC provides the RS a s± wave
spin-singlet pairing potential that switches sign between
the � and M points [34–36]. TRI topological SC is re-
alized when the chemical potential is adjusted to make
the inner and outer Fermi surfaces feel pairing potentials
with opposite signs. At a boundary of the 2D (1D) TRI
topological SC, a Kramers pair of Majorana edge (bound)

states emerge as localized midgap states. For a Joseph-
son ⇡-junction a Majorana quartet is protected by mirror
symmetry [37], leading to a mirror fractional Josephson
e↵ect. We analyze how the Majorana pair evolves in
Zeeman fields, as the SC undergoes a symmetry class
change and topological phase transitions, providing an
experimental signature in tunneling spectroscopy.
2D TRI topological SC.— We first introduce a minimal

model on a square lattice to characterize 2D TRI SC:

H = �t

X

<ij>,�

c
†
i�cj� � i�R

X

<ij>

c
†
i↵(�↵� ⇥ d̂ij)zcj�

+ �0

X

i

(c†i"c
†
i# + h.c.) +�1

X

<ij>

(c†i"c
†
j# + h.c.) .(1)

Here t is the nearest neighbor hopping and � are the
Pauli matrices of electron spin. The second term arises
from the Rashba spin-orbit interactions. Note that d̂ij is
a unit vector pointing from site j to site i and we assume
�R > 0. �0 and �1, induced by the proximity e↵ect,
lead to a combined s± wave pairing potential. It is more
convenient to write the BdG Hamiltonian:

H
BdG
k = [�2t(cos kx + cos ky) + h

R
k � µ] ⌧z +�k ⌧x

h
R
k = 2�R(sin kx �y � sin ky �x)

�k = �0 + 2�1(cos kx + cos ky) , (2)

where µ is the chemical potential and ⌧ are the Pauli

1D
 R

as
hba w

ire

2D
 R

as
hba l

ay
er

(a)                                                                              

s±nodeless      wave SC

Kramers pair of 
Majoranas: �1�2

1D Rashba wire

!

s±nodeless      wave SC(b)                                                                              

FIG. 1. (a) Sketch of the proximity devices proposed in
the text. A Majorana Kramers pair emerges at the boundary
when the TRI SC becomes topological. (b) Sketch of the
Josephson junction described in the text.
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Figure 1: (a) The general setup proposed for the realization
of a TRI TSC. The TRI topological phase is obtained for
φ = π. (b) Specific model considered for the nanowire. The
spin orbit coupling on the two chains comprising the wire has
an opposite sign as indicated by the energy dispersion curves.
A finite tunneling amplitude t⊥ between the two chains opens
a gap at the crossing points.

C2 = 1, where T , C are the time reversal and particle-
hole operators, respectively (class DIII[33]). The phases
in such systems are classified by a Z2 invariant in spatial
dimensions d = 1, 2 and by a Z (integer) invariant in d =
3. A sufficient condition for TRI TSC in centrosymmetric
systems in d = 2 and 3 was derived in Refs. [21, 31, 34].
The condition states that if (1) the pairing is odd under
inversion and opens a full SC gap and (2) the number
of TRI momenta enclosed by the Fermi surface in the
normal (non-SC) state is odd, then the system is in a TSC
state. We have extended the condition to 1D systems
[35], for which (2) above is replaced by the requirement
that in the normal state the number of (spin-degenerate)
Fermi points between k = 0 and k = π is odd. In 1D
centrosymmetric systems, the condition is both sufficient
and necessary.

Applying this condition to the setup of Fig. 1a, we
see that for φ = π the induced pairing is odd under a
spatial inversion r⃗ → −r⃗, which interchanges the two
superconductors. Suppose that the wire is made of a
material with a centrosymmetric crystal structure. Then,
if the number of spin-degenerate bands crossing the Fermi
level of the wire is odd, and if the bulk of the wire is fully
gapped by the proximity effect, then the resulting state
is necessarily a TRI TSC.

Note that, although our condition makes no reference
to the necessity of spin-orbit coupling (SOC) in the wire,
SOC is essential to realize a TSC [35]. Therefore, we ex-
pect that in the absence of SOC the bulk remains gapless
for φ = π, invalidating one of the requirements for TSC.

Model.−As an illustration, we consider a simple model
of a centrosymmetric quantum wire with SOC. Our
model consists of two coupled chains, with a SOC term
originating from Rashba nearest neighbor hopping and
consistent with inversion symmetry. The Hamiltonian is
given by

H =
∑

k

ψ†
kHkψk. (1)

Here, ψ†
k =

(

c†k,−isyc−k

)

is a spinor in Nambu space,

where cTk = (c1↑k, c1,↓,k, c2,↑,k, c2,↓,k), and c†lsk creates an
electron with momentum k and spin s at chain l = 1, 2.
We use s⃗ to denote Pauli matrices in spin space and σz =
±1 for the upper/lower chain, respectively; see Fig. 1b.
The Hamiltonian matrix is written as Hk = H0kτz +
H∆τx, where τ⃗ are Pauli matrices that act on the Nambu
(particle-hole) space, and the matrices H0k, H∆ are given
by

H0k = ξk + λkszσz − t⊥σx, (2)

H∆ = ∆σz , (3)

where ξk = 2t (1− cos k) − µ and λk = 2λ sin k. The
parameters t and t⊥ are nearest neighbour hopping am-
plitudes along the chains and between the chains respec-
tively, λ is the SOC strength, and µ is the chemical poten-
tial. H∆ describes the proximity coupling to two super-
conductors with opposite phases. Inversion symmetry is
implemented by the operator P = σx, that interchanges
the two chains, followed by k → −k.

The Hamiltonian (1) can be diagonalized by a Bogoli-
ubov transformation. The spectrum is given by

E (k) = ±
[

ξ2k + λ2k + t2⊥ +∆2 ± 2
√

ξ2kt
2
⊥ + ξ2kλ

2
k + t2⊥∆

2

]1/2

.

(4)
Each band is doubly degenerate, as expected from the
symmetry of the system under time reversal and in-
version. For |t⊥| > |µ| and ∆ = 0, there is a sin-
gle spin-degenerate band crossing the Fermi level. For
0 < |∆| ≪ t⊥, the spectrum becomes fully gapped with

a minimum gap ∆min ≈ |∆| |λkF
|/
√

t2⊥ + λ2kF
at the

Fermi points. (kF is the Fermi momentum.) In this
case, the condition above is satisfied, and the system is
in the TRI TSC phase. The gap remains open as long as
t2⊥ > µ2 +∆2. For λ = 0 the system remains gapless.

At the edge of a system in the TRI TSC phase, we
expect to find a single Kramers’ pair of Majorana zero
modes. To see that this is indeed the case, we note that
the model (1) can be thought of as two copies of the
model considered in Refs.[8, 10],

H̃k =
(

ξk + λ̃kσz
)

τz −Bσx +∆τx, (5)

describing a semi-conducting wire with Rashba spin-orbit
coupling in an external magnetic field given by B = t⊥.
Note that in (1), sz is conserved, and can be replaced
by its eigenvalue ±1. Then, the unitary transformation
U = ei

π
4
(1−σz)(1−τz) maps Hk to H̃k with λ̃k = szλk.

The model (5) has been shown[8, 10] to support a single
Majorana zero mode at the edge for t2⊥ > µ2+∆2. Hence,
the two-chain model (1) has a pair of zero modes at the
edge, one for each value of sz . These zero modes form
a single Kramers’ pair. We have verified this explicitly
(see Fig. 2a).
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Odd-Parity Topological Superconductors: Theory and Application to CuxBi2Se3
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Topological superconductors have been theoretically predicted as a new class of time-reversal-

invariant superconductors which are fully gapped in the bulk but have protected gapless surface

Andreev bound states. In this work, we provide a simple criterion that directly identifies this

topological phase in odd-parity superconductors. We next propose a two-orbital U � V pairing

model for the newly discovered superconductor CuxBi2Se3. Due to its peculiar three-dimensional

Dirac band structure, we find that an inter-orbital triplet pairing with odd-parity is favored in a

significant part of the phase diagram, and therefore gives rise to a topological superconductor phase.

Finally we propose sharp experimental tests of such a pairing symmetry.

PACS numbers:

The search of topological phases of matter with time-
reversal symmetry has been an active field in condensed
matter physics[1]. In the last few years, a new phase
of matter called topological insulators[2, 3] has been
predicted[4] and soon experimentally observed in a num-
ber of materials[5, 6]. More recently, a new class of
time-reversal-invariant (TRI) superconductors has been
predicted by a topological classification of Bogoliubov-de
Gennes (BdG) Hamiltonians[7, 8]. As a close cousin of
topological insulators, the so-called “topological super-
conductor” is fully gapped in the bulk but has gapless
surface Andreev bound states hosting Bogoliubov quasi-
particles[7, 9, 10]. Now the challenge is to theoretically
propose candidate materials for this new phase.

In this work, we first provide a simple criterion which
can be directly used to establish the topological super-
conductor phase in centrosymmetric materials with odd-
parity pairing symmetry. This criterion applies to super-
conductors with spin-orbit coupling. We next study the
possibility of odd-parity pairing in the newly discovered
superconductor CuxBi2Se3[11], which has a 3D Dirac
band structure due to strong SOC. We propose a phe-
nomenological model for CuxBi2Se3 with short-range in-
teractions. Thanks to the peculiar Dirac band structure,
we find a specific odd-parity triplet pairing is favored in a
wide parameter range, giving rise to a topological super-
conductor. We propose an unusual flux quantization in
Josephson interferometry as a sharp test of such a pairing
symmetry. We also explicitly demonstrate the existence
of gapless surface Andreev bound states in the resulting
topological phase.

We start by introducing Nambu notation ⇠
†
k ⌘

[c†k,a↵, c
T
�k,a�(isy)�↵], where ↵,� =", # label electron’s

spin and a labels the orbital basis for cell-periodic Bloch
wave-functions. The BCS mean-field Hamiltonian H =R

BZ dk ⇠
†
kH(k)⇠k uniquely defines a BdG Hamiltonian

H(k) = [H0(k)� µ]⌧z + �̂(k)⌧x, (1)

where H0 describes the band structure of normal metal, µ

is chemical potential, and �̂ is pairing potential. For TRI

superconductors, ⇥H(k)⇥�1 = H(�k) where ⇥ = isyK

is time reversal operation.
The BdG Hamiltonian H(k) of a fully gapped su-

perconductor, which describes Bogoliubov quasi-particle
spectrum, formally resembles the Bloch Hamiltonian
of an insulator. An important di↵erence, however, is
that H(k) has particle-hole symmetry inherited from
the doubling of degrees of freedom in Nambu space:
⌅H(k)⌅ = �H(�k) with ⌅ ⌘ sy⌧yK. Because of this
extra symmetry, Schnyder, Ryu, Furusaki and Ludwig[7]
and Kitaev[8] have shown that 3D TRI superconductors
are mathematically classified by an integer invariant n

instead of Z2 invariants for insulators[2, 3]. Despite this
di↵erence, since H(k) belongs to a subset of TRI Hamil-
tonians, we observe that ⌫ ⌘ n mod 2 is nothing but
its own Z2 invariant as explicitly defined in Ref.[13]. It
then follows that ⌫ = 1 implies a nonzero n and is suf-
ficient (though not necessary) to establish a topological
superconductor phase.

A powerful “parity criterion” has been advanced by
Fu and Kane to evaluate ⌫ e�ciently for materials with
inversion symmetry[4]. This motivates us to study topo-
logical superconductors in centrosymmetric materials,
for which the pairing symmetry can be either even or
odd under inversion. It follows from the explicit for-
mula for n[7] that even-parity ones cannot be topolog-
ical superconductors. In this work we focus on odd-
parity superconductors satisfying PH0(k)P = H0(�k)
and P �̂(k)P = ��̂(�k), where P is inversion opera-
tor. We now provide a simple criterion for odd-parity
topological superconductors:

Criterion: a fully gapped TRI superconductor with
odd-parity pairing is a topological superconductor, if its
Fermi surface encloses an odd number of TRI momenta
in the Brillouin zone.

A special case of this criterion has been proved[12]
for certain triplet superconductors in which H0(k) =
H0(�k) and �̂(k) = ��̂(�k), i.e., inversion simplifies
to an identity operator P = I. Here we generalize the
proof to all odd-parity superconductors, as needed later.
Proof : Since PH(k)P 6= H(�k), the parity criterion of
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�̂: �1I + �
0
1�0 �2�50 �3�30 �4(�10, �20)

⇥ + + + (+, +)

P + � � (�,�)

C3 z z z (x, y)

M + � + (�, +)

TABLE I: Pairing potential in mean-field BdG Hamiltonian

of U � V model, and their transformation rules.

an irreducible representation of crystal point group; b)
the mean-field pairing potential is local in x and thus
k-independent. The form of all such pairing potentials
�̂ are listed in Table II, where �5 ⌘ �0�1�2�3 = �zsz

and �jk ⌘ i�j�k. Also shown are transformation rules of
�̂’s under the following symmetry operations of Bi2Se3:
inversion P = ��0 = ��x, threefold rotation around
the c axis C3 = exp(i�12⇡/3) = exp(�isz⇡/3), and
mirror about yz plane M = �i�15 = �isx. We
find that �̂1, ..., �̂4 correspond to A1g, A1u, A2u and Eu

representations of point group D3d respectively. The
three A representations are one-dimensional so that
the corresponding phases are non-degenerate. Among
them, c

T �̂1(isy)c / �1c1"c1# + �0
1c1"c2# + (1 $ 2)

is spin-singlet pairing with mixed intra- and inter-
orbital (orbital triplet) components, which is invariant
under all crystal symmetries; c

T �̂2(isy)c / (c1"c2# +
c1#c2") is inter-orbital (orbital singlet) spin-triplet pair-
ing; c

T �̂3(isy)c / (c1"c1# � c2"c2#) is intra-orbital
spin-singlet pairing. The Eu representation is two-
dimensional with c

T �̂4(isy)c / ↵c1"c2" + �c1#c2#, where
↵ and � are arbitrary coe�cients, leading to a SU(2)
degenerate manifold at Tc. Of these phases, the �̂2 pair-
ing phase is odd-parity, TRI, and fully gapped, with a
Bugoliubov spectrum given by

E±,k =

vuut
"
2
k + µ2 + �2

2 ± 2µ

s

"
2
k +

✓
m

µ

◆2

�2
2, (7)

where "k =
q

m2 + v2
�
k2

x + k2
y

�
+ v2

zk2
z . Since the Fermi

surface only encloses the � point, according to our earlier
criterion �̂2 pairing gives rise to a topological supercon-
ductor phase in the U � V model for CuxBi2Se3.

We now solve the linearized gap equation for Tc of the
various pairing channels to obtain the phase diagram.
For purely inter-obital pairing �̂2 and �̂4, the gap equa-
tion reads V �2,4(Tc) = 1. For purely intra-orbital pairing
�̂3, it reads U�3(Tc) = 1. Here �i(T ) is the finite tem-
perature superconducting susceptibility in pairing chan-
nel �̂i. A straight-forward calculation shows that

�2 = �0

Z
dk�("k � µ)Tr[�50Pk]2/(2D0). (8)

Here �0 ⌘ D0

RW
0 d" tanh

�
"

2T

�
/", where D0 is density of

states at Fermi energy and W is high-energy cuto↵. The

-2 -1 0 1 2
0
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0.6

0.8
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U/V

m/µ

+
1

2

FIG. 1: Phase diagram of the U�V model, showing the high-

est Tc phase as a function of m/µ and U/V (assuming V > 0).

The arrow shows the experimental estimate for m/µ, which is

about
1
3 [18]. Two phases �̂1 and �̂2 appear, which are even

and odd under parity respectively (see Table I). The insets

shows schematically the structure of the Cooper pair wave-

function in the �̂2 phase, consisting of two electrons localized

on the top (1) and bottom (2) of the five-atom unit cell.

projection operator Pk ⌘
P

�=1,2 |��,kih��,k| is defined
by the two degenerate Bloch states at k. As we will see,
the integral over the Fermi surface in (8), which takes into
account the interplay between pairing potential and band
structure e↵ects in a multi-orbital system, will play a key
role in favoring �̂2 pairing. The other two susceptibilities
�3 and �4 can be obtained simply by replacing �50 in
(8) with �30 and �10 respectively. Using Pk = 1

2 (1 +P3
⌫=0 n

⌫
k�⌫) and nk = (m, vkx, vky, vzkz)/"k for Dirac

Hamiltonian H0, we obtain �2 = �0(1 � m
2
/µ

2), �3 =
�4 = 2�2/3. The gap equation for the intra- and inter-
orbital mixed pairing �̂1 is:

det

" 
U�0 U�0C1

V �0C1 V �0C2

!
� I

#
= 0, (9)

where Cn = (m/µ)n for n = 1, 2. From (8) and (9),
we now deduce the phase diagram. Since �3 < �0 and
�4 < �2, �̂3 and �̂4 always have a lower Tc than their
counterparts �̂1 and �̂2, respectively. Only the latter
two phases appear in the phase diagram. By equating
their Tc’s, we obtain the phase boundary:

U/V = 1� 2m
2
/µ

2
. (10)

Fig.1 shows the highest Tc phase as a function of U/V

and m/µ, for positive (attractive) V . The �̂2 pairing
phase dominates in a significant part of the phase dia-
gram. Note that experimentally, it has been estimated
that m/µ ⇡

1
3 [18]. When V < 0 the �̂1 phase is stable

for U > m
2
/µ

2
|V |, whereas for smaller U the system is

non-superconducting. The fact that the phase boundary
starts at the point U = V and m = 0 is not accidental:
at this point the Hamiltonian (6) has an enlarged U(1)

J. Wang, Y. Xu, S-C Zhang, Phys. Rev. B 90, 054503 (2014)
S.Nakosai, Y. Tanaka, N.Nagaosa, PRL 108, 147003 (2012)
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FIG. 1. (color online) (a) Crystal structure for SnI film with Ag adatom from the side (top) view [upper (lower)]. Inversion
symmetry is broken due to Ag doping. (b) First-principles calculations of band structure for SnI with one Ag adatom on a
4⇥ 4 surface supercell. The Fermi level is indicated by the dashed line. Inset shows the spin splitting. (c) Fermi energy vs Ag
doping concentration.

was one of the first superconductors to be studied experi-
mentally, with the critical transition temperature 3.72 K.
Therefore, it is likely that doped SnX film is also a su-
perconductor. In the following, we assume that 2D SnX
is superconducting, and study under what condition it
would also be a 2d TRI topological superconductor. We
leave the discussion on pairing mechanism to the end.

A low-buckled geometry for 2D SnI is shown in
Fig. 1(a), where they have a stable sp

3 configuration
analogous to graphane. The lattice symmetry is D3d.
As shown in Fig. 1(b) by first-principles calculations, the
band structure of AgxSnI is similar to its parent com-
pound SnI. The low-energy bands of SnI consist of an
antibonding state of s orbital and a bonding state of px,y
orbitals, labeled by |s

�
, " (#)i and |p

+
x,y, " (#)i, respec-

tively, which is similar as for HgTe quantum well5. The
e↵ective Hamiltonian describing these four bands near
the � point is given by the model of Bernevig, Hughes
and Zhang5:

H0(k) = "(k)+M(k)1⌦�3+A(kxs3⌦�1�ky1⌦�2), (1)

here, si and �i (i = 1, 2, 3) are Pauli matrices acting
spin and orbital, respectively. To the lowest order in k,
M(k) = M0 +M1(k2x + k

2
y) and "(k) = D0 +D1(k2x + k

2
y)

account for the particle-hole asymmetry29. M0 > 0 and
M1 < 0 guarantee that the system is in the inverted
regime. The basis of Eq. (1) is |s

�
, "i, |p+x,y, "i, |s

�
, #i,

|p
+
x,y, #i, and the ± in the basis stand for the even and

odd parity and ", # represent spin up and down states,
respectively.

With the chemical doping by Ag adatom or electrical
gating, the lattice symmetry is reduced to D3. There-
fore, additional Rashba terms will be added into e↵ective
Hamiltonian due to inversion symmetry breaking30. To
the lowest order, the only possible term is

HR(k) = ↵ (s2kx � s1ky)⌦ (�3 + 1), (2)

where ↵ determines the strength of spin splitting. The
e↵ective model for AgxSnI is given by H = H0 + HR.
The band structure is plotted in Fig. 1(b), and the bands
show small spin splitting which can be tuned to be large
by gating. Because of Ag doping, the Fermi energy µ lies
in the conduction band approximately 0.31 eV above the
band edge, which leads to a small Fermi surface respect-
ing full rotation symmetry around the z axis. Fig. 1(c)
shows the linear relation between chemical potential and
doping concentration, matches well with the parabolic
band structure in 2D.
As for the fermion pairing, we consider the following

short-range density-density interactions,

Hint(x) = �U
⇥
n
2
1(x) + n

2
2(x)

⇤
� 2V n1(x)n2(x), (3)

where n�=1,2(x) =
P

s=",# c
†
�s(x)c�s(x) is the electron

density in orbital �. � = 1, 2 represent s
� and p

+
x,y,

respectively. U and V are e↵ective intraorbital and in-
terorbital interaction, respectively. We assume that at
least one of them is attractive, say due to phonons as in
the case of superconductivity of 3D tin. The two-orbital
U -V model for 2D AgxSnI is

H =

Z
dkc†k [H(k)� µ] ck +

Z
drHint(r). (4)

In the following, we shall apply the criterion of Ref. 16
to investigate topological superconductivity in this non-
centrosymmetric model.

III. RESULTS

A. Pairing symmetry

To determine the superconducting phase diagram of
the U -V model, we construct the Bogoliubov-de Gennes

3

TABLE I. Three possible nonvanishing pairing potentials of
the two-orbital U -V model, �1, �2, and �3. Matrix repre-
sentation are o↵-diagonal elements of BdG Hamiltonian.

� Matrix Rz T
�1 1⌦ 1, 1⌦ �3 0 +

�2 (s3 ⌦ �2, 1⌦ �1) 1 +

�3 (s1 ⌦ �2, s2 ⌦ �2) 2 +

(BdG) Hamiltonian with mean-field approximation

HBdG =

Z
dk⌅†

k [(H(k)� µ) ⌧3 +�(k)⌧1]⌅k. (5)

Here ⌧x,z are Pauli matrices in Nambu space and the basis

⌅†
k ⌘(c†1k", c

†
2k", c

†
1k#, c

†
2k#, c1�k#, c2�k#,�c1�k",�c2�k").

The low energy physics with a small Fermi surface has
full rotation symmetry around the z axis Rz instead of
3-fold rotation symmetry C3 of the point group D3 in the
lattice. We classify all possible pairing potential �(k)
according to time-reversal symmetry T ⌘ (is2 ⌦ 1)K
with K complex conjugation, and Rz = e

i(✓/2)⌃z with
⌃z = s3 ⌦ (2 � �3). In the weak coupling limit with
purely short-range interaction, the mean-field pairing
potential is k independent. In Table I, only 6 forms can
have nonzero values among the 16 possible products of
(1, s1, s2, s3) and (1,�1,�2,�3). We find three di↵erent
pairing symmetries with angular momentum lz = 0, 1, 2
under Rz. The form of the corresponding pairing order
parameter �i, i = 1, 2, 3 is shown explicitly

�1 : c1"c1# + c2"c2#, c1"c1# � c2"c2#,

�2 : (i(c1"c2# + c1#c2"), c1"c2# � c1#c2") , (6)

�3 : (c1"c2" + c1#c2#, i(c1"c2" � c1#c2#)) .

�1 is a spin-singlet, whereas �2 and �3 are interorbital
spin-triplets. The symmetry properties of �i are shown
in Table I.

B. Phase diagram

The excitation energy of quasiparticle are obtained
by diagonalizing the BdG Hamiltonian Eq. (5) with
fixing the pairing potential to each �i. We find su-
perconducting gap for �2 has point nodes (in the kx-
direction when one choose s3 ⌦ �2), and the others have
full gap. To obtain the phase diagram, we estimate
the superconducting critical temperature Tc by analyz-
ing superconducting susceptibility for each pairing po-
tentials. The standard pairing susceptibility �0 is de-
fined as �0 = �T

P
k,n Tr[⌧1G(k, i!n)⌧1G(k, i!n)], with

G(k, i!n) = [i!n�(H(k)�µ)⌧3]�1 the Matsubara Green
function. All other susceptibilities �1, �2, and �3 can be
obtained by replacing ⌧1 with their corresponding pairing
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FIG. 2. (color online) Phase diagram of superconductivity
in the two-orbital U -V model, showing highest Tc phase as a
function of M0/µ and U/V . �2 cannot be leading instability
in this phase diagram, for all the pairing states in �1,3 are
fully gapped. Solid (blue) and dashed (red) line are phase
boundary for ↵ 6= 0 and ↵ = 0, respectively.

potential ⌧11⌦ �3, ⌧1s3 ⌦ �2 (or ⌧11⌦ �1), and ⌧1s1 ⌦ �2

(or ⌧1s2 ⌦ �2) in Table I. A straightforward calculation
shows that they can be expressed by �0, which contains
the logarithmic divergence at the Fermi surface. The lin-
earized gap equations for Tc in each pairing channel are
as

�1 : det


U

✓
�0(Tc) �01(Tc)
�10(Tc) �1(Tc)

◆
� 1

�
= 0,

�2,3 : V �2,3(Tc) = 1.

(7)

Using the band structure ofH, we can calculate the phase
diagram numerically. In the limit of ↵ ! 0, we obtain the
values of �’s analytically: �0 =

R
d⇠D(⇠) tanh(⇠/2T )/2⇠,

D(⇠) is the density of states. �01 = �10 = (M0/µ)�0,
�1 = (M0/µ)2�0, �3 = 2�2 = [1� (M0/µ)2]�0. Because
�2 < �3, we find that �2 always has a lower Tc than �3.
From the highest Tc, only �1 and �3 appear in the phase
diagram. By calculating their Tc’s from (7), we obtain
the phase boundary

U

V
=

1� (M0/µ)2

1 + (M0/µ)2
. (8)

Fig. 2 shows the phase diagram as a function U/V and
M0/µ, for positive (attractive) V . A significant part of
the phase diagram is the �3 phase, especially for the
inversion symmetry breaking ↵ 6= 0.

C. Criterion

Next we consider the topological nature of the pairing
state. The present system belongs to the symmetry class
DIII in 2D13,14, which is characterized by a Z2 topologi-
cal invariant in contrast to Z in 3D. Since the system has

2
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FIG. 1: The proposed system consists of a single quasi-1D
wire (modeled by two chains) with SOC, coupled to a con-
ventional s-wave superconductor. Integrating out the degrees
of freedom of the superconductor generates a pairing potential
�ind on the chain adjacent to the superconductor. Repulsive
interactions in the wire which resist local pairing of electrons,
induce a pairing potential �̃b on the ”b” chain with an oppo-
site sign to �ind.

ing two chains labeled a and b [32] , such that  †
k

=

(c†
a,k" c†

b,k" c†
a,k# c†

b,k#). Diagonalizing H0,k gives rise to
two transverse subbands. ~⌧ ,~�, and ~s are Pauli matrices
operating on particle-hole (PH), chain and spin degrees
of freedom, respectively. Here, ⇠̄k, �⇠k, ↵̄ and �↵ are de-
fined as (⇠k,a± ⇠k,b)/2 and (↵a±↵b)/2, respectively, and
⇠k,� = 2t� (1� cos k) � µ�, � = a, b. The parameters
t�,↵�, µ� and U� represent the hopping, SOC, chemi-
cal potential and on-site repulsion on each of the chains,
while tab is the hopping between the chains. The operator
n̂i,�,s represents the number of particles with spin s on
site i of chain �. We note that H0,k by itself cannot give
rise to TRITOPS [26], making the repulsive interaction
term essential.

Hartree-Fock analysis. We consider a set of trial
wave functions which are ground states of the following
quadratic Hamiltonian:

HHF =
1

2

X

k

 †
k
H

HF
k
 k,

H
HF
k

=H̃0,k + �̃b/2 (1� �z) ⌧x,

(2)

where H̃0,k has the same form as H0,k, with e↵ective pa-
rameters µ̃a, µ̃b and �̃ind, while �̃b is an e↵ective pairing
potential on chain b. Due to the repulsive interactions in
the wire, �̃b will turn out to have an opposite sign with
respect to �ind. We choose the four e↵ective parameters
such that they minimize the expectation value of the full
Hamiltonian,

hHiHF = E0 +
1

L

X

�

U�

⇣
N�,"N�,# + |P�|

2
⌘

N�,s =
P

k
hc†

�,k,s
c�,k,siHF , P� =

P
k
hc†

�,k,"c
†
�,�k#iHF

E0 =
1

2

X

k,m,n

H0,k,mnh 
†
k,m
 k,niHF

(3)

where L is the number of sites in each chain, and we have
used Wick’s theorem, noting the exchange term vanishes

due to the sz conservation of H
HF
k
. For details of the

calculation see the Supplemental Material (SM) [33].
We are interested in the conditions under which H

HF
k

is in the topological phase. This Hamiltonian pos-
sesses both TR symmetry ⇥ = isyK and PH sym-
metry ⌅ = ⌧ysyK, expressed by ⇥HHF

k
⇥�1 = H

HF
�k

and ⌅HHF
k
⌅�1 = �H

HF
�k

, making it in symmetry class
DIII [34] with a Z2 topological invariant in 1D [35, 36].
To obtain an expression for the Z2 invariant [37, 38] for
our system, we use the chiral symmetry {H

HF, ⌧y} = 0,
to divide H

HF into two o↵-diagonal blocks

ei(⇡/4)⌧
x

H
HF
k
e�i(⇡/4)⌧

x

=

✓
0 Bk

B
†
k

0

◆
. (4)

Due to the additional sz symmetry of the Hamiltonian,
Bk can be further separated into two diagonal blocks,
B
"
k
and B

#
k
= B

"
�k

. The Z2 invariant is then given [33]
by the parity of the winding number of ✓k, defined by
exp (i✓k) = detB"

k
/| detB"

k
|. For our model one has

detB"
k
= t2

ab
+ �̃ind�̃b � "̃a,k"̃b,k � i(�̃ind"̃b,k + �̃b"̃a,k),

(5)
where "̃�,k = 2t�(1 � cos k) � 2↵� sin k � µ̃�. It can be
shown from Eq. (5) that in order to have a non trivial
winding number (i.e. odd), one must have di↵erent SOC
on the two chains, ↵a/ta 6= ↵b/tb. We note, however,
that this requirement can be relaxed by adding a SOC
term associated with hopping between the chains. We
can now solve the Hartree-Fock problem for the e↵ective
parameters, and then calculate the Z2 invariant using
Eq. (5) to obtain the phase diagram of the system.

In addition to the trivial and the topological super-
conducting phases other competing phases may appear,
which are not accounted for in our trial wave func-
tions. In particular, absent from Eq. (2) are terms
which break the lattice translational invariance and drive
the system to a spin-density wave (SDW) state [39].
To examine this possibility, after obtaining the e↵ec-
tive parameters in Eq. (2), we add to HHF the term
�
P

�,q,s
���qs⇢̂�qs, where ⇢̂�qs is the Fourier transform

of n̂i,�s. We then use linear response to calculate the Hes-
sian matrix @2hHiHF/@��0,q,s0@��,�q,s. For the Hartree-
Fock solution to be locally stable to formation of SDW
we demand the Hessian to be positive definite [33].

In Fig. 2 we present the Hartree-Fock phase diagram as
a function of chemical potential and interaction strength
for a specific set of wire parameters. In the SM [33] we
present results for di↵erent sets of parameters.

DMRG analysis. We next verify the appearance of the
topological phase using DMRG analysis of the model in
Eq. (1). As was already mentioned, the TRITOPS hosts
two Majorana modes, related by time-reversal operation,
at each end of the wire. We denote by �L(R) one Majo-
rana operator localized on the left (right) end of the wire,
and by �̃L(R) its time-reversed partner. These four Ma-
jorana operators give rise to two zero-energy fermionic
operators fL,R = �L,R + i�̃L,R. Denote by | i the many

A. Haim, A. Keselman, Y. Oreg, 
Phys. Rev. B. 89, 220504 (2014)
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Proximity induced time-reversal topological superconductivity in Bi2Se3 films without

phase tuning

Oscar E. Casas,1, 2 Liliana Arrachea,3 William J. Herrera,1 and Alfredo Levy Yeyati2
1Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia

2Departamento de Física Teórica de la Materia Condensada C-V,
Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera,

Universidad Autónoma de Madrid, E-28049 Madrid, Spain
3International Center for Advanced Studies, Escuela de Ciencia y Tecnología,

Universidad Nacional de San Martín-UNSAM, Av 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
(Dated: December 4, 2018)

Many proposals to generate a time-reversal invariant topological superconducting phase are based
on imposing a ⇡ phase difference between the superconducting leads proximitizing a nanostructure.
We show that this phase can be induced on a thin film of a topological insulator like Bi2Se3 in
proximity to a single s-wave superconductor. In our analysis we take into account the parity degree
of freedom of the electronic states which is not included in effective Dirac-like surface theories. We
find that the topological phase can be reached when the induced interparity pairing dominates over
the intraparity one. Application of an electric field perpendicular to the film extends the range of
parameters where the topological phase occurs.

I. INTRODUCTION

The interest in topological phases of matter and, in
particular, in topological superconductors (TSs) has not
ceased to grow [1]. In addition to their fundamental in-
terest, TSs are predicted to host topologically protected
Majorana zero modes (MZM) at the edges with potential
applications in future quantum technologies [2].

Although topological superconductivity is expected to
occur spontaneously in certain compounds like Sr2RuO4

[3]; actual vigorous experimental progress is coming
from the side of artificial nanostructures. In par-
ticular, clear signatures of MZMs have been demon-
strated in hybrid nanostructures combining semiconduct-
ing nanowires with strong spin orbit (like InAs or InSb)
and conventional superconductors [4–8].

As in the case of other proposals based on arrays
of magnetic impurities [9] these platforms constitute a
realization of broken-time reversal (symmetry class D)
1D topological superconductivity. Although the time-
reversal counterpart or class DIII superconductivity has
attracted great theoretical interest [10], its actual realiza-
tion is still an experimental challenge. The zero energy
excitations in this class of TSs are Kramers pairs of Ma-
jorana modes. While their braiding properties appear
to be path dependent [11, 12], they exhibit other exotic
transport [13, 14] and spin [4, 16–18] properties which
render them objects of fundamental interest.

Intrinsic DIII superconductivity in two and three di-
mensional systems has been discussed in the literature
(see for instance Refs. [19–21]) but also in this case
most theoretical proposals have been focused on prox-
imitized nanostructures. These, in general, require two
basic ingredients: a multichannel or multiband electronic
structure and a mechanism for inducing opposite pairing
amplitudes on these channels [22]. These include Rashba
nanowires proximitized by a d-wave [23] or an Iron-based

Figure 1: a) Surface states bands in a thin Bi2Se3 film in the
presence of an electric field, controlled by the biasing poten-
tial V between the top and bottom surfaces. The bands are
helicity degenerate for V = 0 (dashed lines in left panel) but
the degeneracy is broken for finite V . The signs in the middle
panel indicate the bands helicity and the color scale of the
lines is set by the normalized relative weight, ⇡̄�, of the sur-
face states on the two parity sectors (with ⇡̄� = 2⇡�/(1+⇡2

�),
where ⇡� is the relative weight defined in the main text). The
gray areas indicate the regions for the bulk states and the
dashed horizontal line indicates the position of the chemical
potential. b) Geometry considered for analyzing the prox-
imity effect. c) Schematic representation of the interparity
pairing which can be induced from the s-wave superconduc-
tor.

superconductor with s± pairing symmetry [24]; or two
parallel nanowires with interwire pairing [25–27] or sub-
ject to opposite Zeeman fields [28]. Another scenario
is spin orbit and many body interactions in proximity
with ordinary superconductivity [29, 30]. Induction of
the DIII phase on the edge or surface states of a 2D or
a 3D topological insulator (TI) has also been considered
[26, 31–35]. Refs. [33, 35] suggest that for the case of a
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Many proposals to generate a time-reversal invariant topological superconducting phase are based
on imposing a ⇡ phase difference between the superconducting leads proximitizing a nanostructure.
We show that this phase can be induced on a thin film of a topological insulator like Bi2Se3 in
proximity to a single s-wave superconductor. In our analysis we take into account the parity degree
of freedom of the electronic states which is not included in effective Dirac-like surface theories. We
find that the topological phase can be reached when the induced interparity pairing dominates over
the intraparity one. Application of an electric field perpendicular to the film extends the range of
parameters where the topological phase occurs.

I. INTRODUCTION

The interest in topological phases of matter and, in
particular, in topological superconductors (TSs) has not
ceased to grow [1]. In addition to their fundamental in-
terest, TSs are predicted to host topologically protected
Majorana zero modes (MZM) at the edges with potential
applications in future quantum technologies [2].

Although topological superconductivity is expected to
occur spontaneously in certain compounds like Sr2RuO4

[3]; actual vigorous experimental progress is coming
from the side of artificial nanostructures. In par-
ticular, clear signatures of MZMs have been demon-
strated in hybrid nanostructures combining semiconduct-
ing nanowires with strong spin orbit (like InAs or InSb)
and conventional superconductors [4–8].

As in the case of other proposals based on arrays
of magnetic impurities [9] these platforms constitute a
realization of broken-time reversal (symmetry class D)
1D topological superconductivity. Although the time-
reversal counterpart or class DIII superconductivity has
attracted great theoretical interest [10], its actual realiza-
tion is still an experimental challenge. The zero energy
excitations in this class of TSs are Kramers pairs of Ma-
jorana modes. While their braiding properties appear
to be path dependent [11, 12], they exhibit other exotic
transport [13, 14] and spin [4, 16–18] properties which
render them objects of fundamental interest.

Intrinsic DIII superconductivity in two and three di-
mensional systems has been discussed in the literature
(see for instance Refs. [19–21]) but also in this case
most theoretical proposals have been focused on prox-
imitized nanostructures. These, in general, require two
basic ingredients: a multichannel or multiband electronic
structure and a mechanism for inducing opposite pairing
amplitudes on these channels [22]. These include Rashba
nanowires proximitized by a d-wave [23] or an Iron-based
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Figure 1: a) Surface states bands in a thin Bi2Se3 film in the
presence of an electric field, controlled by the biasing poten-
tial V between the top and bottom surfaces. The bands are
helicity degenerate for V = 0 (dashed lines in left panel) but
the degeneracy is broken for finite V . The signs in the middle
panel indicate the bands helicity and the color scale of the
lines is set by the normalized relative weight, ⇡̄�, of the sur-
face states on the two parity sectors (with ⇡̄� = 2⇡�/(1+⇡2

�),
where ⇡� is the relative weight defined in the main text). The
gray areas indicate the regions for the bulk states and the
dashed horizontal line indicates the position of the chemical
potential. b) Geometry considered for analyzing the prox-
imity effect. c) Schematic representation of the interparity
pairing which can be induced from the s-wave superconduc-
tor.

superconductor with s± pairing symmetry [24]; or two
parallel nanowires with interwire pairing [25–27] or sub-
ject to opposite Zeeman fields [28]. Another scenario
is spin orbit and many body interactions in proximity
with ordinary superconductivity [29, 30]. Induction of
the DIII phase on the edge or surface states of a 2D or
a 3D topological insulator (TI) has also been considered
[26, 31–35]. Refs. [33, 35] suggest that for the case of a
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Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3
with a single Dirac cone on the surface
Haijun Zhang1, Chao-Xing Liu2, Xiao-Liang Qi3, Xi Dai1, Zhong Fang1 and Shou-Cheng Zhang3*
Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such
systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to
scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of
topologically protected states in two-dimensional and three-dimensional band insulators with large spin–orbit coupling. So
far, the only known three-dimensional topological insulator is BixSb1�x, which is an alloy with complex surface states. Here, we
present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3,
Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not.
These topological insulators have robust and simple surface states consisting of a single Dirac cone at the 0 point. In addition,
we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3 eV, which is larger than the energy scale of room
temperature. We further present a simple and unified continuum model that captures the salient topological features of this
class of materials.

Recently, the subject of time-reversal-invariant topological
insulators has attracted great attention in condensed-matter
physics1–12. Topological insulators in two or three dimensions

have insulating energy gaps in the bulk, and gapless edge or
surface states on the sample boundary that are protected by
time-reversal symmetry. The surface states of a three-dimensional
(3D) topological insulator consist of an odd number of massless
Dirac cones, with a single Dirac cone being the simplest case.
The existence of an odd number of massless Dirac cones on the
surface is ensured by the Z2 topological invariant7–9 of the bulk.
Furthermore, owing to the Kramers theorem, no time-reversal-
invariant perturbation can open up an insulating gap at the Dirac
point on the surface. However, a topological insulator can become
fully insulating both in the bulk and on the surface if a time-
reversal-breaking perturbation is introduced on the surface. In
this case, the electromagnetic response of three-dimensional (3D)
topological insulators is described by the topological ✓ term of
the form S✓ = (✓/2⇡)(↵/2⇡)

R
d3x dt E ·B, where E and B are

the conventional electromagnetic fields and ↵ is the fine-structure
constant10. ✓ = 0 describes a conventional insulator, whereas ✓ =⇡
describes topological insulators. Such a physically measurable and
topologically non-trivial response originates from the odd number
of Dirac fermions on the surface of a topological insulator.

Soon after the theoretical prediction5, the 2D topological
insulator exhibiting the quantum spin Hall effect was experimen-
tally observed in HgTe quantum wells6. The electronic states of the
2D HgTe quantum wells are well described by a 2+1-dimensional
Dirac equation where the mass term is continuously tunable by
the thickness of the quantum well. Beyond a critical thickness,
the Dirac mass term of the 2D quantum well changes sign from
being positive to negative, and a pair of gapless helical edge states
appears inside the bulk energy gap. This microscopic mechanism
for obtaining topological insulators by inverting the bulk Dirac
gap spectrum can also be generalized to other 2D and 3D sys-
tems. The guiding principle is to search for insulators where the

1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China, 2Center for
Advanced Study, Tsinghua University, Beijing 100084, China, 3Department of Physics, McCullough Building, Stanford University, Stanford, California
94305-4045, USA. *e-mail: sczhang@stanford.edu.
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Figure 1 | Crystal structure. a, Crystal structure of Bi2Se3 with three
primitive lattice vectors denoted as t1,2,3. A quintuple layer with
Se1–Bi1–Se2–Bi10–Se10 is indicated by the red square. b, Top view along
the z-direction. The triangle lattice in one quintuple layer has three different
positions, denoted as A, B and C. c, Side view of the quintuple layer
structure. Along the z-direction, the stacking order of Se and Bi atomic
layers is ···–C(Se10)–A(Se1)–B(Bi1)–C(Se2)–A(Bi10)–B(Se10)–C(Se1)–···.
The Se1 (Bi1) layer can be related to the Se10 (Bi10) layer by an inversion
operation in which the Se2 atoms have the role of inversion centres.

conduction and the valence bands have the opposite parity, and
a ‘band inversion’ occurs when the strength of some parameter,
say the spin–orbit coupling (SOC), is tuned. For systems with
inversion symmetry, a method based on the parity eigenvalues of
band states at time-reversal-invariant points can be applied13. On
the basis of this analysis, the BixSb1�x alloy has been predicted
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Model Hamiltonian for Topological Insulators
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In this paper we give the full microscopic derivation of the model Hamiltonian for the three
dimensional topological insulators in the Bi2Se3 family of materials (Bi2Se3, Bi2Te3 and Sb2Te3).
We first give a physical picture to understand the electronic structure by analyzing atomic orbitals
and applying symmetry principles. Subsequently, we give the full microscopic derivation of the
model Hamiltonian introduced by Zhang et al [1] based both on symmetry principles and the k ·
p perturbation theory. Two different types of k3 terms, which break the in-plane full rotation
symmetry down to three fold rotation symmetry, are taken into account. Effective Hamiltonian is
derived for the topological surface states. Both the bulk and the surface models are investigated in
the presence of an external magnetic field, and the associated Landau level structure is presented. For
more quantitative fitting to the first principle calculations, we also present a new model Hamiltonian
including eight energy bands.

PACS numbers: 71.15.-m, 71.18.+y, 73.20.-r, 73.61.Le

I. INTRODUCTION

Recently, topological insulators (TI) have been in-
vestigated intensively both theoretically and experimen-
tally. [2–4] These insulators are fully gapped in the
bulk, but have gapless edge or surface states which are
topologically protected by the time reversal symmetry.
Topological insulator was first theoretically predicted[5]
and experimentally observed[6] in the HgTe quantum
wells. Transport measurements[6, 7] show the existence
of the gapless edge channel, which demonstrates that
HgTe/CdTe quantum well is a two-dimensional (2D) TI
with quantum spin Hall effect. Later, BixSb1−x was sug-
gested to be a three-dimensional (3D) TI[8] with topolog-
ically non-trivial surface states, which were observed by
angle-resolved photoemission spectroscopy (ARPES)[9].
However, BixSb1−x has a small energy gap, alloy disor-
der and rather complicated surface states. More recently,
new TIs with large bulk gaps ∼ 0.3eV and single Dirac
cone surface states have been theoretically predicted
for Bi2Te3[1], Sb2Te3[1] and Bi2Se3 [1, 10]. ARPES
measurement[10, 11] indeed shows the single Dirac cone
with linear dispersion around the Γ point in both Bi2Se3
and Bi2Te3. Current research on these materials is de-
veloping rapidly. [12–30]

For deeper understanding and quantitative predictions
of novel phenomena associated with the TIs, it is highly
desirable to construct standard models for both 2D and
3D TIs. Bernevig, Hughes and Zhang (BHZ)[5] con-
structed the model Hamiltonian for the 2D TI in HgTe
quantum wells. This model Hamiltonian demonstrates
the basic mechanism of TI behavior through band inver-
sion induced by spin-orbit coupling (SOC). It has been
applied successfully for quantitative predictions of the he-
lical edge states and properties under magnetic fields.[31]

Zhang et al[1] derived a model Hamiltonian for the 3D
TI Bi2Se3, Bi2Te3 and Sb2Te3, and obtained topolog-
ical surface states consisting of a single Dirac cone. In-
terestingly, in the thin film limit, the 3D TI model re-
duces exactly to the 2D TI model by BHZ[32–34]. In
this paper, we give the full microscopic derivation of
our model Hamiltonian, first by constraining its form by
symmetry principles and a careful analysis of the rele-
vant atomic orbitals. Subsequently, we determine the
parameters of our model Hamiltonian by a systematic
k · p expansion near the Γ point, and comparison with
the ab initio calculations[1]. Furthermore the higher or-
der k3 terms neglected in Ref. [1], are also included in
the derivation in order to recover the crystal C3 rotation
symmetry[35]. Compared to the symmetry arguments
given in Ref.[1], the new derivation given in this paper
determines all the parameters of our model Hamiltonian
by the wavefunctions from ab initio calculation, so that
no fitting is required and no ambiguity is introduced.
As an application of our model Hamiltonian, we study
the bulk and surface Landau level spectra in a magnetic
field. The surface Landau levels have

√
B field depen-

dence, as is expected from the Dirac-type dispersion of
the surface states. The gap of 0th Landau level can be
as large as 50meV for 10T magnetic field, which suggests
that the topological magneto-electric effect[36, 37] can be
observable at such energy scales. Furthermore, we pro-
pose a more quantitative description of the Bi2Se3 fam-
ily of TIs by going beyond the four bands and present
a new model Hamiltonian with eight bands. Recently,
our model Hamiltonian has been applied successfully for
understand a number of experiments, including the STM
study of the topological surface states[14, 20], STM study
of the surface bound states[30], STM study of the quasi-
particle interference[14, 20, 38], crossover from 3D to 2D
topological insulators[21, 32–34], and the Landau level of
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Proximity induced time-reversal topological superconductivity in Bi2Se3 films without
phase tuning
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Many proposals to generate a time-reversal invariant topological superconducting phase are based
on imposing a ⇡ phase difference between the superconducting leads proximitizing a nanostructure.
We show that this phase can be induced on a thin film of a topological insulator like Bi2Se3 in
proximity to a single s-wave superconductor. In our analysis we take into account the parity degree
of freedom of the electronic states which is not included in effective Dirac-like surface theories. We
find that the topological phase can be reached when the induced interparity pairing dominates over
the intraparity one. Application of an electric field perpendicular to the film extends the range of
parameters where the topological phase occurs.

I. INTRODUCTION

The interest in topological phases of matter and, in
particular, in topological superconductors (TSs) has not
ceased to grow [1]. In addition to their fundamental in-
terest, TSs are predicted to host topologically protected
Majorana zero modes (MZM) at the edges with potential
applications in future quantum technologies [2].

Although topological superconductivity is expected to
occur spontaneously in certain compounds like Sr2RuO4

[3]; actual vigorous experimental progress is coming
from the side of artificial nanostructures. In par-
ticular, clear signatures of MZMs have been demon-
strated in hybrid nanostructures combining semiconduct-
ing nanowires with strong spin orbit (like InAs or InSb)
and conventional superconductors [4–8].

As in the case of other proposals based on arrays
of magnetic impurities [9] these platforms constitute a
realization of broken-time reversal (symmetry class D)
1D topological superconductivity. Although the time-
reversal counterpart or class DIII superconductivity has
attracted great theoretical interest [10], its actual realiza-
tion is still an experimental challenge. The zero energy
excitations in this class of TSs are Kramers pairs of Ma-
jorana modes. While their braiding properties appear
to be path dependent [11, 12], they exhibit other exotic
transport [13, 14] and spin [4, 16–18] properties which
render them objects of fundamental interest.

Intrinsic DIII superconductivity in two and three di-
mensional systems has been discussed in the literature
(see for instance Refs. [19–21]) but also in this case
most theoretical proposals have been focused on prox-
imitized nanostructures. These, in general, require two
basic ingredients: a multichannel or multiband electronic
structure and a mechanism for inducing opposite pairing
amplitudes on these channels [22]. These include Rashba
nanowires proximitized by a d-wave [23] or an Iron-based
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Figure 1: a) Surface states bands in a thin Bi2Se3 film in the
presence of an electric field, controlled by the biasing poten-
tial V between the top and bottom surfaces. The bands are
helicity degenerate for V = 0 (dashed lines in left panel) but
the degeneracy is broken for finite V . The signs in the middle
panel indicate the bands helicity and the color scale of the
lines is set by the normalized relative weight, ⇡̄�, of the sur-
face states on the two parity sectors (with ⇡̄� = 2⇡�/(1+⇡2

�),
where ⇡� is the relative weight defined in the main text). The
gray areas indicate the regions for the bulk states and the
dashed horizontal line indicates the position of the chemical
potential. b) Geometry considered for analyzing the prox-
imity effect. c) Schematic representation of the interparity
pairing which can be induced from the s-wave superconduc-
tor.

superconductor with s± pairing symmetry [24]; or two
parallel nanowires with interwire pairing [25–27] or sub-
ject to opposite Zeeman fields [28]. Another scenario
is spin orbit and many body interactions in proximity
with ordinary superconductivity [29, 30]. Induction of
the DIII phase on the edge or surface states of a 2D or
a 3D topological insulator (TI) has also been considered
[26, 31–35]. Refs. [33, 35] suggest that for the case of a
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It should be stressed that the above expressions are
fully compatible with time-reversal symmetry. Regard-
ing the size of ⇤, while a non-interacting model suggests
⇤ ⇠

p
�+��, the presence of moderate local Coulomb

repulsion on the Bi and Se sites would yield the condi-
tion ⇤ >

p
�+�� which is necessary for stabilizing the

DIII-TS phase as we show below.

III. TOPOLOGICAL INVARIANT

In the limit of weak coupling, the topological character
of the proximitized TI film can be fully determined by the
normal electronic properties at the Fermi level [44]. The
Z2 topological invariant introduced in Ref. [44] is given
by

N =
Y

n

⇣
signh n(kF,n)|T �̂†

| n(kF,n)i
⌘mn

, (5)

where T = ⌧0 ⌦ i�yK with K denoting complex con-
jugation, is the time-reversal operator, n runs over all
bands crossing the Fermi energy, mn is the number of
TRI points enclosed by a band n and | n(kF,n)i is the
eigenstate on band n at the Fermi surface. In TIs of the
Bi2Se3 family the only TRI point enclosed by the surface
bands is the � point so that mn = 1. On the other hand,
due to the gap isotropy Eq. (5) can be evaluated along
any direction in the kx � ky plane.

As a paradigmatic example we shall examine the case
Nz = 2. Details on the calculations are presented in the
SM [41], where we also discuss the peculiar Nz = 1 case.
The spectrum for Nz = 2 consists of four bands with
positive energy which, expanded in k ⌘ kk, are given by

E↵,�(k) =
q

E
2
1 + 2↵F� +A2

� + V 2. (6)

↵ = ±1 is a band index, E
2
1 = ✏

2
k + A

2
k
2 + B

2 + C
2,

F� =
q
(BC � �A2 |k|V )2 + ✏

2
k(V

2 +B2), ✏k = M0 �

2B1/a
2+B2k

2, with k = |k| and we have defined the pa-
rameters as A = A1/a, B = B1/a

2 and C = A2/2a. The
bands and their evolution with voltage V are shown in
Fig 1(a). We focus on a chemical potential µ as indicated
in Fig. 1(a), intersecting the bands with ↵ = �1. A non-
trivial value of the Z2 invariant in the present case (i.e.
N = �1) implies simply different signs of the projected
pairing in the two helicity channels,
D
 �|T �̂†

| �

E
= 2|D+|

2
�
�+ +��⇡

2
�

�
(1� ��⇤) . (7)

In this expression we have introduced the quantities D+,
⇡� = D�/D+ and �� = 2⇡�/(�+ + ��⇡

2
�), which are

defined from the components of the eigenstates of ĤTB

on the bottom surface, i.e. we have | �i =
⇣
D̂�, Û�

⌘T
,

where Û� = (U+, U�)T ⌦ �̂� and D̂� = (D+, D�)T ⌦ �̂�,
and �̂� are the eigenstates of the helicity operator, so
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Figure 2: Phase diagrams in the V , µ plane at fixed r = 0.2
and d = 0.8 (upper panels) and in the r = �+/��, d = ⇤/��
plane at fixed µ = 10V (middle panels) and at µ = V (lower
panels) for the cases Nz = 2 and Nz = 6. The dark (white)
color indicates the topological (trivial) regions. As can be
observed, larger values of V help to stabilize the topological
phase for in a broader parameter region. The red lines in the
d�r diagrams for the Nz = 2 case are the analytical prediction
for the phase boundary as described in the SM [41].

that �� measures the relative weight of the two parity
sector components on the bottom surface. We then see
that for having a non-trivial value of the Z2 topological
invariant, the necessary (however not sufficient) condi-
tion is ⇡� (or equivalently ��) having different signs for
the two helicities. An analytic expression for ⇡� is given
in [41].

As can be observed in Fig. 1(a), the ⇡� parameter
evolves differently along the lowest bands with opposite
helicities, which are split due to the action of the electric
field. While it remains negative for the � = �1 band for
all values of the chemical potential within the TI gap,
in the � = +1 band it evolves from negative to positive
above a certain critical value of the momentum. As a
consequence, for a chemical potential within this energy
range and depending on the bias potential V , the effective
pairing of Eq. (24) may have different signs on the two
helicity bands leading to a non-trivial value of the Z2

invariant, provided that, in addition, �+ > 1/⇤. (see SM
[41] for further details). In the following we study the
occurence of the TS phase as a function of the parameters
r = �+/�� and d = ⇤/�� which determine the relative
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Many proposals to generate a time-reversal invariant topological superconducting phase are based
on imposing a ⇡ phase difference between the superconducting leads proximitizing a nanostructure.
We show that this phase can be induced on a thin film of a topological insulator like Bi2Se3 in
proximity to a single s-wave superconductor. In our analysis we take into account the parity degree
of freedom of the electronic states which is not included in effective Dirac-like surface theories. We
find that the topological phase can be reached when the induced interparity pairing dominates over
the intraparity one. Application of an electric field perpendicular to the film extends the range of
parameters where the topological phase occurs.

I. INTRODUCTION

The interest in topological phases of matter and, in
particular, in topological superconductors (TSs) has not
ceased to grow [1]. In addition to their fundamental in-
terest, TSs are predicted to host topologically protected
Majorana zero modes (MZM) at the edges with potential
applications in future quantum technologies [2].

Although topological superconductivity is expected to
occur spontaneously in certain compounds like Sr2RuO4

[3]; actual vigorous experimental progress is coming
from the side of artificial nanostructures. In par-
ticular, clear signatures of MZMs have been demon-
strated in hybrid nanostructures combining semiconduct-
ing nanowires with strong spin orbit (like InAs or InSb)
and conventional superconductors [4–8].

As in the case of other proposals based on arrays
of magnetic impurities [9] these platforms constitute a
realization of broken-time reversal (symmetry class D)
1D topological superconductivity. Although the time-
reversal counterpart or class DIII superconductivity has
attracted great theoretical interest [10], its actual realiza-
tion is still an experimental challenge. The zero energy
excitations in this class of TSs are Kramers pairs of Ma-
jorana modes. While their braiding properties appear
to be path dependent [11, 12], they exhibit other exotic
transport [13, 14] and spin [4, 16–18] properties which
render them objects of fundamental interest.

Intrinsic DIII superconductivity in two and three di-
mensional systems has been discussed in the literature
(see for instance Refs. [19–21]) but also in this case
most theoretical proposals have been focused on prox-
imitized nanostructures. These, in general, require two
basic ingredients: a multichannel or multiband electronic
structure and a mechanism for inducing opposite pairing
amplitudes on these channels [22]. These include Rashba
nanowires proximitized by a d-wave [23] or an Iron-based
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Figure 1: a) Surface states bands in a thin Bi2Se3 film in the
presence of an electric field, controlled by the biasing poten-
tial V between the top and bottom surfaces. The bands are
helicity degenerate for V = 0 (dashed lines in left panel) but
the degeneracy is broken for finite V . The signs in the middle
panel indicate the bands helicity and the color scale of the
lines is set by the normalized relative weight, ⇡̄�, of the sur-
face states on the two parity sectors (with ⇡̄� = 2⇡�/(1+⇡2

�),
where ⇡� is the relative weight defined in the main text). The
gray areas indicate the regions for the bulk states and the
dashed horizontal line indicates the position of the chemical
potential. b) Geometry considered for analyzing the prox-
imity effect. c) Schematic representation of the interparity
pairing which can be induced from the s-wave superconduc-
tor.

superconductor with s± pairing symmetry [24]; or two
parallel nanowires with interwire pairing [25–27] or sub-
ject to opposite Zeeman fields [28]. Another scenario
is spin orbit and many body interactions in proximity
with ordinary superconductivity [29, 30]. Induction of
the DIII phase on the edge or surface states of a 2D or
a 3D topological insulator (TI) has also been considered
[26, 31–35]. Refs. [33, 35] suggest that for the case of a

ar
X

iv
:1

81
2.

00
93

1v
1 

 [c
on

d-
m

at
.su

pr
-c

on
]  

3 
D

ec
 2

01
8



PHASE DIAGRAM

3

It should be stressed that the above expressions are
fully compatible with time-reversal symmetry. Regard-
ing the size of ⇤, while a non-interacting model suggests
⇤ ⇠

p
�+��, the presence of moderate local Coulomb

repulsion on the Bi and Se sites would yield the condi-
tion ⇤ >

p
�+�� which is necessary for stabilizing the

DIII-TS phase as we show below.

III. TOPOLOGICAL INVARIANT

In the limit of weak coupling, the topological character
of the proximitized TI film can be fully determined by the
normal electronic properties at the Fermi level [44]. The
Z2 topological invariant introduced in Ref. [44] is given
by

N =
Y

n

⇣
signh n(kF,n)|T �̂†

| n(kF,n)i
⌘mn

, (5)

where T = ⌧0 ⌦ i�yK with K denoting complex con-
jugation, is the time-reversal operator, n runs over all
bands crossing the Fermi energy, mn is the number of
TRI points enclosed by a band n and | n(kF,n)i is the
eigenstate on band n at the Fermi surface. In TIs of the
Bi2Se3 family the only TRI point enclosed by the surface
bands is the � point so that mn = 1. On the other hand,
due to the gap isotropy Eq. (5) can be evaluated along
any direction in the kx � ky plane.

As a paradigmatic example we shall examine the case
Nz = 2. Details on the calculations are presented in the
SM [41], where we also discuss the peculiar Nz = 1 case.
The spectrum for Nz = 2 consists of four bands with
positive energy which, expanded in k ⌘ kk, are given by

E↵,�(k) =
q

E
2
1 + 2↵F� +A2

� + V 2. (6)

↵ = ±1 is a band index, E
2
1 = ✏

2
k + A

2
k
2 + B

2 + C
2,

F� =
q
(BC � �A2 |k|V )2 + ✏

2
k(V

2 +B2), ✏k = M0 �

2B1/a
2+B2k

2, with k = |k| and we have defined the pa-
rameters as A = A1/a, B = B1/a

2 and C = A2/2a. The
bands and their evolution with voltage V are shown in
Fig 1(a). We focus on a chemical potential µ as indicated
in Fig. 1(a), intersecting the bands with ↵ = �1. A non-
trivial value of the Z2 invariant in the present case (i.e.
N = �1) implies simply different signs of the projected
pairing in the two helicity channels,
D
 �|T �̂†

| �

E
= 2|D+|

2
�
�+ +��⇡

2
�

�
(1� ��⇤) . (7)

In this expression we have introduced the quantities D+,
⇡� = D�/D+ and �� = 2⇡�/(�+ + ��⇡

2
�), which are

defined from the components of the eigenstates of ĤTB

on the bottom surface, i.e. we have | �i =
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D̂�, Û�
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,

where Û� = (U+, U�)T ⌦ �̂� and D̂� = (D+, D�)T ⌦ �̂�,
and �̂� are the eigenstates of the helicity operator, so
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Figure 2: Phase diagrams in the V , µ plane at fixed r = 0.2
and d = 0.8 (upper panels) and in the r = �+/��, d = ⇤/��
plane at fixed µ = 10V (middle panels) and at µ = V (lower
panels) for the cases Nz = 2 and Nz = 6. The dark (white)
color indicates the topological (trivial) regions. As can be
observed, larger values of V help to stabilize the topological
phase for in a broader parameter region. The red lines in the
d�r diagrams for the Nz = 2 case are the analytical prediction
for the phase boundary as described in the SM [41].

that �� measures the relative weight of the two parity
sector components on the bottom surface. We then see
that for having a non-trivial value of the Z2 topological
invariant, the necessary (however not sufficient) condi-
tion is ⇡� (or equivalently ��) having different signs for
the two helicities. An analytic expression for ⇡� is given
in [41].

As can be observed in Fig. 1(a), the ⇡� parameter
evolves differently along the lowest bands with opposite
helicities, which are split due to the action of the electric
field. While it remains negative for the � = �1 band for
all values of the chemical potential within the TI gap,
in the � = +1 band it evolves from negative to positive
above a certain critical value of the momentum. As a
consequence, for a chemical potential within this energy
range and depending on the bias potential V , the effective
pairing of Eq. (24) may have different signs on the two
helicity bands leading to a non-trivial value of the Z2

invariant, provided that, in addition, �+ > 1/⇤. (see SM
[41] for further details). In the following we study the
occurence of the TS phase as a function of the parameters
r = �+/�� and d = ⇤/�� which determine the relative

3

It should be stressed that the above expressions are
fully compatible with time-reversal symmetry. Regard-
ing the size of ⇤, while a non-interacting model suggests
⇤ ⇠

p
�+��, the presence of moderate local Coulomb

repulsion on the Bi and Se sites would yield the condi-
tion ⇤ >

p
�+�� which is necessary for stabilizing the

DIII-TS phase as we show below.

III. TOPOLOGICAL INVARIANT
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of the proximitized TI film can be fully determined by the
normal electronic properties at the Fermi level [44]. The
Z2 topological invariant introduced in Ref. [44] is given
by

N =
Y

n

⇣
signh n(kF,n)|T �̂†

| n(kF,n)i
⌘mn

, (5)

where T = ⌧0 ⌦ i�yK with K denoting complex con-
jugation, is the time-reversal operator, n runs over all
bands crossing the Fermi energy, mn is the number of
TRI points enclosed by a band n and | n(kF,n)i is the
eigenstate on band n at the Fermi surface. In TIs of the
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2
k(V

2 +B2), ✏k = M0 �

2B1/a
2+B2k

2, with k = |k| and we have defined the pa-
rameters as A = A1/a, B = B1/a

2 and C = A2/2a. The
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Figure 2: Phase diagrams in the V , µ plane at fixed r = 0.2
and d = 0.8 (upper panels) and in the r = �+/��, d = ⇤/��
plane at fixed µ = 10V (middle panels) and at µ = V (lower
panels) for the cases Nz = 2 and Nz = 6. The dark (white)
color indicates the topological (trivial) regions. As can be
observed, larger values of V help to stabilize the topological
phase for in a broader parameter region. The red lines in the
d�r diagrams for the Nz = 2 case are the analytical prediction
for the phase boundary as described in the SM [41].
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that for having a non-trivial value of the Z2 topological
invariant, the necessary (however not sufficient) condi-
tion is ⇡� (or equivalently ��) having different signs for
the two helicities. An analytic expression for ⇡� is given
in [41].

As can be observed in Fig. 1(a), the ⇡� parameter
evolves differently along the lowest bands with opposite
helicities, which are split due to the action of the electric
field. While it remains negative for the � = �1 band for
all values of the chemical potential within the TI gap,
in the � = +1 band it evolves from negative to positive
above a certain critical value of the momentum. As a
consequence, for a chemical potential within this energy
range and depending on the bias potential V , the effective
pairing of Eq. (24) may have different signs on the two
helicity bands leading to a non-trivial value of the Z2

invariant, provided that, in addition, �+ > 1/⇤. (see SM
[41] for further details). In the following we study the
occurence of the TS phase as a function of the parameters
r = �+/�� and d = ⇤/�� which determine the relative
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I. INTRODUCTION

Topological materials including topological supercon-
ductors (TS) are a subject of great interest recently in
condensed matter physics. This field of research had
a burst after the observation by Kitaev that a one-
dimensional model of spinless fermions with p-wave BCS
pairing has a topological phase with zero-energy subgap
excitations that are described by Majorana fermions.1

The non-abelian statistics obeyed by these quasiparti-
cles is an appealing property for implementing quan-
tum computing protocols. Since then, several propos-
als for realizing this phase in concrete physical systems
were formulated. In particular, quantum superconduct-
ing wires with spin-orbit coupling and magnetic field,2–8

edge states of the quantum spin Hall state in proximity to
superconductors and in contact to magnetic moments,9

and Shiba states induced by magnetic adatoms on super-
conducting substrates.10 All these mechanisms to gener-
ate the topological superconducting phase contain ingre-
dients breaking time-reversal symmetry.

In contrast, there is another family of TS, the time-
reversal-invariant topological superconductors (TRI-
TOPS) where the zero-mode edge excitations appear in
Kramers pairs.11–20 This property has interesting impli-
cations which can be relevant for their detection and
manipulation.21–26 In particular, Zhang et al.12 pro-
posed to engineer one- and two-dimensional TRITOPS
via proximity e↵ect between nodeless extended s-wave
iron-based superconductors and semiconducting systems
with large Rashba spin-orbit interactions. A sketch of a
one-dimensional (1D) setup is shown in Fig. 1. At each
end of a long TRITOPS wire, there is a Kramers pair of
Majorana edge states at zero energy. For a finite wire,

MB

SZ =  1/4 SZ =  1/4+ -+-

FIG. 1: (Color online) Sketch of the setup. Top: Excited sub-
gap states with total spin projection Sz = 1/2 of a TRITOPS
wire with spin-orbit coupling, where superconductivity is in-
duced by proximity to a macroscopic superconductor with ex-
tended s-wave pairing. Spin projection is fractionalized with
Sz
e = 1/4 localized at the ends of the wire. Bottom: a weak

magnetic field B in the direction of the spin-orbit coupling is
applied at the right side of the setup, inducing polarization
of the subgap mode (Left). Alternatively, one of the subgap
modes interacts with a magnetic island with magnetic mo-
ment M (Right).

there is a mixing of the end states and the four states of
zero energy split in two pairs with energy ±E. One of
the interesting properties of this family is the fact that
subgap excitations were argued to have fractional spin
projection along the direction of the spin-orbit coupling
z.13 This has consequences in the physical behavior of
these systems when put in contact to magnetic systems.
An example is the quench of the 0 � ⇡ transition in the
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energy is higher by ⇠ 2⇥ 10�8 which can be ascribed to
terms of order E2 neglected in the analytical treatment.

Clearly half of the total spin projection is localized at
each end of the chain and hSz

i
i is practically zero in the

middle of the chain. Although the physics is di↵erent,
this is reminiscent of the spin 1/2 excitations at the ends
of the S = 1 antiferromagnetic chain.38–40 In addition,
there is a marked even-odd oscillation. While hSz

i
i decays

exponentially as the distance from the ends increase, hSz

i
i

vanishes exactly at distances equal to an odd number
of lattice constants from the ends. This is a particular
property of the case µ = 0, but the oscillations remain
for finite µ as shown in Figs. 5 and 6.
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FIG. 5: Same as Fig. 4 for µ = 0.2.

In Fig. 5 we show hSz

i
i as a function of the site, derived

form the numerical solution of the chain for the same pa-
rameters as before, except for the fact that µ is increased
but not too much, in order that the system is kept within
the topological region |µ| < 2|�|. In this case, according
to the calculations of the previous section, the localiza-
tion length of hSz

i
i at the ends of the chain increases from

�e ' 6.4 to 12.7. This is consistent with the increase in
the energy of the excitation by nearly an order of mag-
nitude to E = 5.51⇥ 10�3. In contrast to the case µ = 0
for which the energy vanishes for chains of odd length,
the energy is similar for one site less (E = 5.71⇥10�3) or
one site more (E = 5.28⇥10�3). For the chosen length of
the chain L = 80, with order of magnitude comparable to
�e ' 12.7, the spin excitations at the ends are not well
separated. However, the overall trend is similar to the
previous case, with larger hSz

i
i at the ends and even-odd

oscillations. Curiously, while for i  10, hSz

i
i is larger for

odd sites, the situation is reversed for 11  i  30. A
similar situation takes place at the other end replacing i
by L+ 1� i.
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FIG. 6: Same as Fig. 5 for L = 160.

As shown in Fig. 6 if the length of the chain is in-
creased while keeping the same energy parameters, hSz

i
i

near the ends is practically not a↵ected. However it
is now clear that the spin excitations at both ends are
well separated. In this case, the excitation energy is
E = 2.335⇥ 10�4.

VI. GENERAL PROPERTIES OF THE END
STATES

In this section, we would like to summarize some prop-
erties that are generally valid for the subgap excitations
of any 1D TRITOPS system. In particular Eqs. (27)
which we reproduce here for the ease of the reader

{�", �#} = p, {�̃", �̃#} = �p, (58)

where p is defined in Eq. (18) have been demonstrated
using a continuum formulation in Section II of the sup-
plemental material of Ref. 23) for � = 0. We expect
them to be generally valid. Extension for � 6= 0 is trivial
using a gauge transformation.
These operators obey the commutation rules with the

operator Sz (with z being the direction of the spin-orbit
interaction) that were given in Eq. (28).
In the case of a finite chain with length L, the exact

subgap eigenstate with energy E > 0 given by Eq. (38),
is a linear combination of the form given in Eq. (40),

�" =
1p
2

�
�" + ei✓�̃"

�
, (59)

which satisfies {�",�#} = 0. The time-reversal partner
is the operator defined in Eq. ( 42),

�# =
1p
2

�
�# + e�i✓�̃#

�
, (60)

Odd number of electrons
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[�B,�, Htot] = E��B,�, (64)

with E� > 0. Specifically

�B,� = ↵��� + ��eis✓�̃�,

E� = r � s
�Z

4
, (65)

being

r =
q

(�Z/4)2 + E2,

↵2
" = �2

# =
1

2
+

�Z

4r
,

↵2
�

+ �2
�

= 1, ↵�, �� > 0. (66)

Using Eqs. (27) and (66) one can verify that the op-
erators �B,� and �†

B,�
obey canonical anticommutation

rules.

B. Zeeman splitting

The previous equations make explicit the fact that
the finite energy E of the excitations in chains of finite
length has associated an hybridization of the localized
zero modes. This implies a degree of entanglement be-
tween modes localized at opposite ends. Our goal is to
analyze the impact of this entanglement in the magnetic
response.

The behavior of the quasiparticle excitations given by
Eq. (65) have two important limits, which correspond to
�Z � E and �Z ⌧ E.

1. �Z � E

This corresponds to strongly localized end states with
energy E ⇠ 0. This situation is achieved for very long
chains, where the end modes are almost completely de-
coupled. In this case we can expand r defined in Eq. (66)
as r ⇠ (�Z/4)

⇥
1 + (4E/�Z)2/2

⇤
and we get

E" =
2E2

�Z

,

E# =
2E2

�Z

+
�Z

2
. (67)

In this limit, the operator �B," that corresponds to the
one-particle excitation with energy E" [see Eq. (65)]
tends to the quasiparticle �" localized at the left end of
the chain [↵2

" ⇠ 1, see Eq. (66)], and is not a↵ected by
the magnetic field. In turn, the excitation with energy
E#, related to �B,# ⇠ �̃# with energy E# corresponds
to annihilating a quasiparticle at the right end of the
chain with spin down [or creating one with spin up since

�̃†
" = �p̄�̃#, see Eq- (26)]. This leads to a decrease of the

total energy in E# ⇠ �Z/2, for annihilating an ordinary
electron with spin down or creating one with spin up,
which is the expected result for an ordinary spin 1/2.

Naturally, the complete spectrum of one-particle ex-
citations also contains those corresponding to the Her-
mitian conjugate of the above described operators, in
particular �̃†

# ⇠ �̃") with an energy loss E#, so that an
ordinary Zeeman splitting is 2E# ⇠ �Z can be inferred
from the magnetic-field dependence of the total spectral
density of an ordinary electron observed in scanning tun-
neling spectroscopy, particularly if the STM tip is located
near the end of the chain where the magnetic field is ap-
plied.

2. �Z ⌧ E

This case corresponds to a sizable hybridization and
entanglement of the end modes. In this other limit we
consider r ⇠ E

⇥
1 + (�Z/4E)2/2

⇤
. Hence

E" = E

"
1 +

1

2

✓
�Z

4E

◆2
#

� �Z

4
,

E# = E

"
1 +

1

2

✓
�Z

4E

◆2
#

+
�Z

4
. (68)

All low-energy quasiparticles have nearly equal weight at
both ends [↵2

" ⇠ 1/2, �2
" ⇠ 1/2, see Eq. (66)]. As a

consequence, the e↵ect magnetic field at only one end is
reduced by a factor 1/2 with respect to the application
of the field in the whole sample. The Zeeman splitting
between the one-particle excitations of positive energy
(corresponding to annihilation of quasiparticles) is EZ =
E# � E" = �Z/2, which is half the Zeeman splitting of a
spin 1/2.

We believe that this splitting might be observed not
only by an STM which senses the one-particle spectral
density but also with microwave radiation which induces
transtions conserving the number of electrons.34,35 While
the light does not couple directly with the spin, the spin-
orbit coupling couples it with the orbital degrees of free-
dom and circularly polarized light induces transition be-
tween stats with angular momentum projection 1/2 and
-1/2. As before, the full spectrum of one-particle ex-
citations also contains negative energies with the same
moduli as the positive ones described above.

C. Spin polarization

In our model for µ = 0 and large enough chains such
that |z1|L ⌧ 1, using Eqs. (25) and (41) one obtains
that the low-energy part of the spin projection at the
right end Sz

R
=

P
L

i=L/2 Sz

i
can be written in the form
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The behavior of the quasiparticle excitations given by
Eq. (65) have two important limits, which correspond to
�Z � E and �Z ⌧ E.
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This corresponds to strongly localized end states with
energy E ⇠ 0. This situation is achieved for very long
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In this limit, the operator �B," that corresponds to the
one-particle excitation with energy E" [see Eq. (65)]
tends to the quasiparticle �" localized at the left end of
the chain [↵2

" ⇠ 1, see Eq. (66)], and is not a↵ected by
the magnetic field. In turn, the excitation with energy
E#, related to �B,# ⇠ �̃# with energy E# corresponds
to annihilating a quasiparticle at the right end of the
chain with spin down [or creating one with spin up since

�̃†
" = �p̄�̃#, see Eq- (26)]. This leads to a decrease of the

total energy in E# ⇠ �Z/2, for annihilating an ordinary
electron with spin down or creating one with spin up,
which is the expected result for an ordinary spin 1/2.

Naturally, the complete spectrum of one-particle ex-
citations also contains those corresponding to the Her-
mitian conjugate of the above described operators, in
particular �̃†

# ⇠ �̃") with an energy loss E#, so that an
ordinary Zeeman splitting is 2E# ⇠ �Z can be inferred
from the magnetic-field dependence of the total spectral
density of an ordinary electron observed in scanning tun-
neling spectroscopy, particularly if the STM tip is located
near the end of the chain where the magnetic field is ap-
plied.
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All low-energy quasiparticles have nearly equal weight at
both ends [↵2

" ⇠ 1/2, �2
" ⇠ 1/2, see Eq. (66)]. As a

consequence, the e↵ect magnetic field at only one end is
reduced by a factor 1/2 with respect to the application
of the field in the whole sample. The Zeeman splitting
between the one-particle excitations of positive energy
(corresponding to annihilation of quasiparticles) is EZ =
E# � E" = �Z/2, which is half the Zeeman splitting of a
spin 1/2.

We believe that this splitting might be observed not
only by an STM which senses the one-particle spectral
density but also with microwave radiation which induces
transtions conserving the number of electrons.34,35 While
the light does not couple directly with the spin, the spin-
orbit coupling couples it with the orbital degrees of free-
dom and circularly polarized light induces transition be-
tween stats with angular momentum projection 1/2 and
-1/2. As before, the full spectrum of one-particle ex-
citations also contains negative energies with the same
moduli as the positive ones described above.

C. Spin polarization

In our model for µ = 0 and large enough chains such
that |z1|L ⌧ 1, using Eqs. (25) and (41) one obtains
that the low-energy part of the spin projection at the
right end Sz
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Using Eqs. (27) and (66) one can verify that the op-
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In a superconductor, a significant fraction of the free electrons 
occupy the same quantum state at temperatures below the super-
conducting transition temperature, and the collective motion of 

the electrons in this state leads to a flow of charge without any dis-
sipation or resistance1. This state, which is called a condensate, is 
protected from other (dissipative) states by an energy gap. Note that 
the condensate in even an extremely small superconducting sample 
(volume ~μm3) contains millions of electrons — superconductivity 
is a truly macroscopic phenomenon.

The electrons in metals and semiconductors behave very differ-
ently to those in superconductors. For example, it is possible to trap 
small numbers of electrons in submicrometre-sized boxes known as 
quantum dots2,3, and to add or remove single electrons by applying 
voltages to gate electrodes. This approach is now routinely used to 
control the number of electrons (and hence the spin) on semiconduc-
tor quantum dots, carbon nanotubes and various small molecules.

This Review describes the new physics and device possibilities 
that are opened when superconductors (in which large numbers of 
electrons are free to move) are connected to quantum dots (which 
can be used to trap single electrons). In particular we will focus on 
devices in which two superconducting electrodes are connected to 
a single quantum dot.

Such devices are similar to Josephson junctions4, which are an 
important building block in devices such as superconducting quan-
tum interference devices (SQUIDs)5 and superconducting quantum 
bits (qubits)6. Josephson junctions are often made by sandwiching 
an insulator between two superconducting leads, but they can also 
be made by replacing the insulator with a nanoscale superconduct-
ing bridge or a metal in the normal (ie, non-superconducting) state7. 
The superconducting state ‘leaks’ across the junction, resulting in a 
quantum coherent coupling between the two superconductors that 
depends on the properties of the material in the region between 
them. As we shall discuss, by controlling the degrees of freedom of a 
quantum dot between two superconducting electrodes, it is possible 
to explore a wide range of physical phenomena including electron 
transport, Kondo physics, quantum entanglement and new types of 
fundamental particles.

Basic concepts
Figure 1 shows three examples of quantum dot junctions between 
superconductors. Figure 1a shows a device in which breaks in a ring 
of Ti/Al (which superconducts at low temperatures) are bridged by 
InAs nanowires8, and the strength of the coupling can be tuned by gate 
electrodes that cross the nanowires. In Figure 1b a nanoscale island of 

Hybrid superconductor–quantum dot devices
Silvano De Franceschi1*, Leo Kouwenhoven2, Christian Schönenberger3 and Wolfgang Wernsdorfer4

Advances in nanofabrication techniques have made it possible to make devices in which superconducting electrodes are 
connected to non-superconducting nanostructures such as quantum dots. The properties of these hybrid devices result from a 
combination of a macroscopic quantum phenomenon involving large numbers of electrons (superconductivity) and the ability 
to control single electrons, offered by quantum dots. Here we review research into electron transport and other fundamental 
processes that have been studied in these devices. We also describe potential applications, such as a transistor in which the 
direction of a supercurrent can be reversed by adding just one electron to a quantum dot.

SiGe forms the junction between two (much larger) Al superconduct-
ing electrodes9. Figure 1c shows the smallest such junction observed 
so far — in this example a single C60 molecule has been placed in a 
notch that has been created in an Al super conducting wire10.

Despite their differences, these three devices can all be modelled 
as two superconductors separated by a gate-controlled quantum dot 
that has distinct energy levels for electrons (or holes; Fig. 2). Here, 
the highest occupied state has an energy that is ε0 below the Fermi 
energy of the superconductors. The energy levels also have a width 
Γ that corresponds to their finite lifetime (which is caused by elec-
trons tunnelling out of the levels). When an extra electron is added 
to the dot it occupies an orbital with an energy that is U + Δε higher 
than the previous highest level, where U is the charging energy 
needed to overcome the increased Coulomb repulsion3 between the 
electrons, and Δε is the spacing between successive energy levels in 
the quantum dot. The superconducting condensates are at the Fermi 
energy, protected from the occupied quasiparticle states below and 
the empty states above by energy gaps of Δ. The quasiparticles are 
like electrons and have the same elementary charge, e. The basic ele-
ment in the superconducting condensate, on the other hand, is a 
pair of electrons, also known as a Cooper pair1.

To establish an electric current in a hybrid device, the singly 
charged quasiparticles and/or the doubly charged Cooper pairs have 
to tunnel from one electrode to the quantum dot and then from 
the quantum dot to the other electrode. An important concept in 
experiments with quantum dots is the Coulomb blockade: basically, 
a current will only flow through a quantum dot when the incoming 
electrons have enough energy to overcome the Coulomb repulsion 
due to the electrons that are already on the dot. The energy barrier 
caused by Coulomb repulsion can be lowered with the aid of a gate 
voltage, acting on ε0, or a sufficiently large source–drain bias voltage. 
When the current through the dot (or the differential conductance of 
the dot) is plotted against the gate voltage on one axis and the source–
drain bias voltage on another axis, the Coulomb blockade manifests 
itself as a series of diamonds inside which current cannot flow, sepa-
rated by regions of voltage space in which current does flow.

We can distinguish three different regimes, depending on the 
relative values of the width of the levels, Γ, the superconducting 
gap, Δ, and the charging energy, U. When Γ is the largest energy 
scale, the Cooper pairs can resonantly tunnel across the quantum 
dot, so supercurrent transport takes place in this strong-coupling 
regime (Fig. 2c).

When Γ is very small, the charging energy is too high for the 
Cooper pairs to tunnel across the dot (because they have charge 
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2e), so there is no supercurrent. Quasiparticle tunnelling is there-
fore the dominant transport mechanism in the weak-coupling 
regime (Fig. 2d).

When Γ, Δ and U are comparable to each other, as they are in 
the intermediate-coupling regime, the situation is more complex 
(Fig. 2e). Cooper pairs can split into quasiparticles with charge 1e 
that are able to tunnel individually across the quantum dot because 
the Coulomb-energy cost for particles with charge 1e is lower than 
for particles with charge 2e. If the time it takes the quasiparticles to 
tunnel across the dot (~h/Γ, where h is Planck’s constant) is shorter 
than the characteristic coherence time of the Cooper pairs (~h/Δ), 
it is possible for the Cooper pairs to reform in the second electrode. 
This condition (Δ < Γ) is not satisfied in the weak-coupling regime, 
but is in the intermediate-coupling regime, with the precise nature 
of the supercurrent depending on the electronic state of the quan-
tum dot.

There are also several types of tunnelling. Conventional tunnel-
ling is a first-order process in which the initial and final states have 
the same energy. Co-tunnelling is a second-order process in which 
the particle tunnels from the initial state to a virtual state, and then 
to the final state. The initial and final states have the same energy 
in elastic co-tunnelling, but the virtual state can have any energy, 
although the probability of co-tunnelling decreases as the energy 
difference between the virtual and real states increases.

For a long time, all experiments were in the weak-coupling 
regime, with tunnelling occurring only through 1e quasiparticles. 
The first evidence for superconductivity in the transport properties 
of hybrid superconductor–quantum dot systems was reported for 
experiments on metallic grains in 199511. This work was performed 
in the weak-coupling regime and although there was no supercur-
rent transport, these experiments did provide clear signatures of 
the superconducting gap and the modified quasiparticle density of 
states near the gap. Technically it has been very difficult to increase 
the coupling for material reasons. For instance, oxidation of the 
interface between a superconductor and conventional semiconduc-
tors completely suppresses the tunnelling of Cooper pairs. Only 

with the recent introduction of new materials, such as carbon nano-
tubes12–27, semiconducting nanowires8,28–33, self-assembled quantum 
dots9,34–36 and certain molecules10, have the regimes of intermediate 
and strong coupling become accessible.

Strongly coupled quantum dots
In the strong-coupling regime (Γ >> Δ and Γ >> U) the negligible 
charging energy U implies that the Coulomb blockade is absent, so 
it is equally likely that zero, one or two electrons (or holes) will be 
added to the quantum dot. This situation is similar to resonant tun-
nelling of non-interacting particles, except that the particles can be 
Cooper pairs as well as single electrons or holes. When supercon-
ductivity is suppressed (by applying a small magnetic field) we have 
the conventional resonant tunnelling2,3; that is, conductance reso-
nances with widths ~Γ are observed when ε0 = 0. We note that this 
normal-state conductance is dissipative. Typically a bias voltage is 
applied between the source and drain electrodes, and the resulting 
current is measured. Cooper-pair transport is measured as a super-
current: a current is biased to increasing values, and the value where 
the voltage across the quantum dot becomes non-zero is recorded 
as the switching current7. The switching current (or experimentally 
maximum supercurrent) also shows resonant peaks whenever an 
orbital level is aligned with the condensate of Cooper pairs at the 
Fermi energy εF (Fig. 3a). In the case of spin-degenerate discrete 
levels in the quantum dot, the spacing in gate voltage between both 
types of resonant peak corresponds to adding two electrons to the 
lowest unoccupied discrete level and is proportional to the level 
spacing Δε.

The concept of resonant Cooper-pair tunnelling was origi-
nally proposed in 1982 by theorists who considered the possibil-
ity that impurities in a semiconductor weak link between two 
superconductors could provide a resonant path for Cooper pairs37. 
Ten years later it was calculated38 that the maximum value of the 
resonant supercurrent for a single non-interacting quantum dot 
between two superconductors with equal tunnel barriers would be  
Ic = (πe/h)ΓΔ/(Δ + Γ/2). This simple expression for the critical 
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Figure 1 | Three hybrid superconductor–quantum dot devices. a, Scanning electron microscope (SEM) image of a SQUID device made of Ti/Al (grey), which 
becomes superconducting below ~1 K. Each arm of the superconducting ring contains a break that is bridged by an InAs nanowire (blue). A pair of Al gates 
(~65 nm apart) is used to define a quantum dot in one of the nanowires (top left and inset) by creating tunable tunnel barriers in the nanowire. The coupling 
between the superconducting leads on either side of the quantum dot is determined by the electronic characteristics of the dot. The other nanowire (bottom 
right) forms a simpler superconducting weak link, with just one gate to control the strength of the Josephson coupling. Scale bar: 2 μm. b, SEM image of a 
self-assembled SiGe quantum dot (indicated by an arrow) connected to two Al electrodes. The number of carriers (holes) confined on the quantum dot 
can be controlled with a back gate buried in the substrate. Scale bar: 100 nm. c, Atomic force microscope (AFM) image of an Al break junction containing a 
notch that is filled by a single C60 molecule (see schematic inset). The junction, which is formed by an electromigration process, rests on top of an oxidized 
Al electrode that is used as a back gate. This gate can tune the electronic state of the molecule between two charge states that differ by one electron. Vb and 
Vg are the applied source–drain bias and gate voltage, respectively. Figures reproduced from: b, ref. 9, © 2010 NPG; c, ref. 85, © 2008 NPG.
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1Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany

2Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague,
Ke Karlovu 5, 12116 Prague, Czech Republic

3Department of Physics, University of California, Berkeley, California 95720, USA
4Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA—Fundamentals of Future Information Technology,

52056 Aachen, Germany
(Received 25 January 2012; published 30 May 2012)

We study the Josephson current 0-! transition of a quantum dot tuned to the Kondo regime. The physics

can be quantitatively captured by the numerically exact continuous time quantum Monte Carlo method

applied to the single-impurity Anderson model with Bardeen-Cooper-Schrieffer superconducting leads.

For a comparison to an experiment, the tunnel couplings are determined by fitting the normal-state linear

conductance. Excellent agreement for the dependence of the critical Josephson current on the level energy

is achieved. For increased tunnel couplings the Kondo scale becomes comparable to the superconducting

gap, and the regime of the strongest competition between superconductivity and Kondo correlations is

reached; we predict the gate voltage dependence of the critical current in this regime.
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Introduction.—Recently, hybrid superconductor-
quantum dot devices have attracted much attention [1]
due to their peculiar physical behavior determined by the
interplay of superconductivity of the leads and the level
characteristics of the dot. Applications in nanoelectronics
or quantum-information processing are envisaged. Among
other properties, dc Josephson transport [2– 7] was inten-
sively studied. Similar to the Josephson effect of ordinary
tunnel junctions [8], a difference " ! 0, ! of the order
parameter phases of the two superconductors with gap !
leads to an equilibrium Josephson current J running
through the system [2– 7]. The focus was on carbon nano-
tube dots [2,4– 7] with well separated single-particle levels,
i.e., level broadening " and temperature T much smaller
than the level spacings, simplifying the modeling as a
single-level dot with energy # can be considered.

It is well established both theoretically [9] and experi-
mentally [3– 7] that the local Coulomb interaction, i.e., the
dot charging energy U, can lead to a 0-! transition of the
quantum dot Josephson junction, associated to a first-order
(level-crossing) quantum phase transition from a singlet (0)
to a doublet (!) ground state [10]. In fact, a variation of any
of the system parameters U, #, !, " as well as the tunnel
couplings "L=R (with " ¼ "L þ "R) can be used to tune
the system across the phase boundary, if the others are
taken from appropriate ranges. At T ¼ 0, the transition
leads to a jump in J from a large and positive (0 phase) to a
small and negative value (! phase). At finite temperatures,
it is smeared out and significantly diminished, yet the sign
change of J is clearly observed in SQUID setups [3,4,7].
The experimental challenge in observing the true magni-
tude of the Josephson current to be compared with theo-
retical predictions consists in suppressing uncontrolled

phase fluctuations, which can be achieved by using
designed on-chip circuits [5,6]. In such experiments, J is
tuned by a variation of a gate voltage Vg which translates
into a rather controlled change of # [11].
The physics becomes particularly interesting if the dot is

tuned to a parameter regime in which Kondo correlations
[12] become relevant for suppressed superconductivity. It
is characterized by the appearance of the Kondo scale

(at odd dot filling) kBTK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
"U=2

p
expð$!U=8"Þ [12].

Kondo physics is important if kBT & kBTK & ", with kB
denoting the Boltzmann constant. In this regime perturba-
tive methods in either U, such as self-consistent Hartree-
Fock (HF) [13], or " [9] become uncontrolled. Even for
! ' kBTK, at which superconductivity prevails, one ex-
pects Kondo correlations to have a significant impact on J.
These were partly incorporated using a method developed
for large ! values [14]. Other techniques successfully used
for Kondo-correlated quantum dots with normal leads,
such as the noncrossing approximation (NCA) [15], nu-
merical renormalization group (NRG) [16,17], (Hirsch-
Fye) quantum Monte Carlo (QMC) calculations [18], and
functional renormalization group (fRG) [17] were ex-
tended to the present setup. With superconducting leads,
they suffer from significant conceptual or practical limita-
tions such as half filling of the dot level (NRG) and high
(NCA, QMC) or zero (fRG) temperature and, therefore,
cannot be used for a quantitative comparison to experi-
ments performed at temperatures on the order of a few tens
of mK and with a wide span of gate voltages [5,6]. The
regime of the strongest competition between superconduc-
tivity and Kondo correlations is reached for! (kBTK. For
typical experimental gap sizes of ! (0:1 meV [5– 7], in
this regime kBTK & " is no longer fulfilled. Still, even for
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quantum dot devices have attracted much attention [1]
due to their peculiar physical behavior determined by the
interplay of superconductivity of the leads and the level
characteristics of the dot. Applications in nanoelectronics
or quantum-information processing are envisaged. Among
other properties, dc Josephson transport [2– 7] was inten-
sively studied. Similar to the Josephson effect of ordinary
tunnel junctions [8], a difference " ! 0, ! of the order
parameter phases of the two superconductors with gap !
leads to an equilibrium Josephson current J running
through the system [2– 7]. The focus was on carbon nano-
tube dots [2,4– 7] with well separated single-particle levels,
i.e., level broadening " and temperature T much smaller
than the level spacings, simplifying the modeling as a
single-level dot with energy # can be considered.
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tive methods in either U, such as self-consistent Hartree-
Fock (HF) [13], or " [9] become uncontrolled. Even for
! ' kBTK, at which superconductivity prevails, one ex-
pects Kondo correlations to have a significant impact on J.
These were partly incorporated using a method developed
for large ! values [14]. Other techniques successfully used
for Kondo-correlated quantum dots with normal leads,
such as the noncrossing approximation (NCA) [15], nu-
merical renormalization group (NRG) [16,17], (Hirsch-
Fye) quantum Monte Carlo (QMC) calculations [18], and
functional renormalization group (fRG) [17] were ex-
tended to the present setup. With superconducting leads,
they suffer from significant conceptual or practical limita-
tions such as half filling of the dot level (NRG) and high
(NCA, QMC) or zero (fRG) temperature and, therefore,
cannot be used for a quantitative comparison to experi-
ments performed at temperatures on the order of a few tens
of mK and with a wide span of gate voltages [5,6]. The
regime of the strongest competition between superconduc-
tivity and Kondo correlations is reached for! (kBTK. For
typical experimental gap sizes of ! (0:1 meV [5– 7], in
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in the Cooper pair on the right side: {ψ®R = ({mk® – {km®) = eiπ 
{ψ®L. The above sequence of tunnel processes is the only fourth-
order process that transfers a Cooper pair across the quantum dot. 
The transfer amplitude thus picks up a π phase, which translates 
to a π-phase shift in the Josephson relation, that is, the critical 
current reverses.

The presence of a π-phase shift in the Josephson relation can 
be determined experimentally by embedding the quantum dot in 

a SQUID device containing a second, reference junction with a 
known current–phase relationship. Such devices have been made 
with InAs nanowires8 (see Fig. 1a) and carbon nanotubes18 (Fig. 6a). 
In both cases, a π-phase shift was observed for an odd number of 
electrons on the quantum dot, whereas the phase shift was gener-
ally absent in the case of even occupation, in line with the schemes 
of Fig. 5a. Although the exact number of confined electrons was 
unknown in these experiments, the data revealed a clear even–odd 
asymmetry demonstrating that a supercurrent of ~10−10 – 10−9 A 
(that is, billions of Cooper pairs per second) can be reversed simply 
by adding (removing) an electron to (from) the quantum dot. The 
π-phase shift associated with this sign change emerges clearly in 
the measurement of the SQUID switching current as a function of 
a perpendicular magnetic field. By varying a gate voltage, the occu-
pancy of the quantum dot can be changed from even to odd, lead-
ing to a π jump in the phase of the SQUID oscillations (Fig. 5b).

When the tunnel coupling between the quantum dot and the 
contacts is strong enough, even higher-order co-tunnelling proc-
esses (that is, beyond the fourth order necessary to transfer a Cooper 
pair) become important. Indeed, for a quantum dot with an odd 
number of electrons and a spin-1/2 ground state, high-order co-
tunnelling processes can screen the local spin moment through the 
formation of a many-body spin singlet state called a Kondo state. 
On average, the quantum dot spin gets bound to one electron from 
the leads with a characteristic binding energy kBTK, where kB is the 
Boltzmann constant and TK is the Kondo temperature52.

In the case of normal-type electrodes, the Kondo many-body 
state introduces a resonant level at the Fermi energy of the elec-
trodes leading to an enhanced conductance. When T << TK, the 
quantum dot conductance approaches 2e2/h (for symmetric tun-
nel coupling), and Coulomb blockade is entirely lifted53. As the 
electrodes become superconducting, the formation of the Kondo 
singlet competes with the tendency of the electrons around the 
Fermi energy to pair with each other. The resulting physics is gov-
erned by the ratio TK/Δ. For TK/Δ << 1, the Kondo effect is sup-
pressed and the quantum dot ground state is a spin doublet, and 
π-junction behaviour is thus expected as discussed before. In the 
opposite limit, Δ < TK, the Kondo effect wins and the singlet bound 
state at the Fermi energy provides a resonant tunnelling path for 
Cooper pairs resulting in a Josephson relation with no π-phase 
shift43. The crossover between these two regimes underlies a quan-
tum phase  transition.

For more than 20 years, the competition between Kondo physics 
and superconductivity (including related phenomena such as multiple 
Andreev reflections) has been explored by theorists43,54–63. The devel-
opment of the superconductor–quantum dot systems described here 
is now stimulating experimental activity in this field14,18,21,23,24,30,31,34−36.

Outlook
Classical Josephson junctions have been developed into a 
variety of devices, notably high-resolution sensors such as ultra-
sensitive SQUID-based detectors for measuring magnetic flux. 
Superconducting photon detectors are now routinely used for 
applications in astronomy, and superconducting qubits based on 
Josephson junctions have also been demonstrated6. In most of these 
devices, the tunnel barrier between the two superconductors is an 
insulating dielectric, in many cases aluminium oxide. However, junc-
tions in which the tunnel barrier is a normal metal have also been 
explored (in, for example, studies of Cooper-pair diffusion through 
disordered conductors), and the concept of Andreev reflection is 
often used to describe the conversion of normal state electrons into 
Cooper pairs in these devices. Very recently, Andreev bound states 
have been measured in a carbon nanotube64 and in a graphene sam-
ple65 connected to two superconductors.

In this Review we have, so far, focussed on devices in which 
the tunnel barrier is a quantum dot. Below we will conclude by 

Figure 5 | Supercurrent reversal in the intermediate-coupling regime 
(Γ ~ Δ ~ U). a, If Γ is not much smaller than U, co-tunnelling enables the 
coherent transfer of Cooper pairs across a quantum dot in the Coulomb 
blockade regime. For the simplest case of a single spin-degenerate level, 
the resulting Josephson coupling depends on its occupation. For a fully 
occupied (or empty) level and a total spin S = 0 on the dot, the fourth-
order co-tunnelling process can be seen as a sequence of four tunnelling 
events labelled as 1, 2, 3 and 4. The order in which the spins of a Cooper 
pair are annihilated in the left lead is the same as the order in which they 
are created to form a Cooper pair in the right lead. This results in a usual 
current–phase relation. For a singly occupied level (or, more generically, 
an odd number N of confined electrons and a total spin S = 1/2), the spin 
ordering is reversed leading to a π phase shift in the current–phase relation. 
For a fixed phase difference ∆φ between left and right leads, changing the 
dot occupation by one electron causes the reversal of the supercurrent. 
b, Critical current Ic versus the magnetic flux ϕ through a SQUID with an 
embedded quantum dot at gate voltages corresponding to an even (blue) 
and odd (red) number of electrons on the quantum dot; ϕ is plotted in units 
of the flux quantum ϕ0 = h/2e. The phase difference of π between the two 
traces is clear. Reproduced from ref. 8, © 2006 NPG.
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pancy of the quantum dot can be changed from even to odd, lead-
ing to a π jump in the phase of the SQUID oscillations (Fig. 5b).
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contacts is strong enough, even higher-order co-tunnelling proc-
esses (that is, beyond the fourth order necessary to transfer a Cooper 
pair) become important. Indeed, for a quantum dot with an odd 
number of electrons and a spin-1/2 ground state, high-order co-
tunnelling processes can screen the local spin moment through the 
formation of a many-body spin singlet state called a Kondo state. 
On average, the quantum dot spin gets bound to one electron from 
the leads with a characteristic binding energy kBTK, where kB is the 
Boltzmann constant and TK is the Kondo temperature52.

In the case of normal-type electrodes, the Kondo many-body 
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often used to describe the conversion of normal state electrons into 
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ple65 connected to two superconductors.
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Figure 5 | Supercurrent reversal in the intermediate-coupling regime 
(Γ ~ Δ ~ U). a, If Γ is not much smaller than U, co-tunnelling enables the 
coherent transfer of Cooper pairs across a quantum dot in the Coulomb 
blockade regime. For the simplest case of a single spin-degenerate level, 
the resulting Josephson coupling depends on its occupation. For a fully 
occupied (or empty) level and a total spin S = 0 on the dot, the fourth-
order co-tunnelling process can be seen as a sequence of four tunnelling 
events labelled as 1, 2, 3 and 4. The order in which the spins of a Cooper 
pair are annihilated in the left lead is the same as the order in which they 
are created to form a Cooper pair in the right lead. This results in a usual 
current–phase relation. For a singly occupied level (or, more generically, 
an odd number N of confined electrons and a total spin S = 1/2), the spin 
ordering is reversed leading to a π phase shift in the current–phase relation. 
For a fixed phase difference ∆φ between left and right leads, changing the 
dot occupation by one electron causes the reversal of the supercurrent. 
b, Critical current Ic versus the magnetic flux ϕ through a SQUID with an 
embedded quantum dot at gate voltages corresponding to an even (blue) 
and odd (red) number of electrons on the quantum dot; ϕ is plotted in units 
of the flux quantum ϕ0 = h/2e. The phase difference of π between the two 
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(Γ ~ Δ ~ U). a, If Γ is not much smaller than U, co-tunnelling enables the 
coherent transfer of Cooper pairs across a quantum dot in the Coulomb 
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the resulting Josephson coupling depends on its occupation. For a fully 
occupied (or empty) level and a total spin S = 0 on the dot, the fourth-
order co-tunnelling process can be seen as a sequence of four tunnelling 
events labelled as 1, 2, 3 and 4. The order in which the spins of a Cooper 
pair are annihilated in the left lead is the same as the order in which they 
are created to form a Cooper pair in the right lead. This results in a usual 
current–phase relation. For a singly occupied level (or, more generically, 
an odd number N of confined electrons and a total spin S = 1/2), the spin 
ordering is reversed leading to a π phase shift in the current–phase relation. 
For a fixed phase difference ∆φ between left and right leads, changing the 
dot occupation by one electron causes the reversal of the supercurrent. 
b, Critical current Ic versus the magnetic flux ϕ through a SQUID with an 
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We study the Josephson current 0-! transition of a quantum dot tuned to the Kondo regime. The physics

can be quantitatively captured by the numerically exact continuous time quantum Monte Carlo method

applied to the single-impurity Anderson model with Bardeen-Cooper-Schrieffer superconducting leads.

For a comparison to an experiment, the tunnel couplings are determined by fitting the normal-state linear

conductance. Excellent agreement for the dependence of the critical Josephson current on the level energy

is achieved. For increased tunnel couplings the Kondo scale becomes comparable to the superconducting

gap, and the regime of the strongest competition between superconductivity and Kondo correlations is

reached; we predict the gate voltage dependence of the critical current in this regime.
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Introduction.—Recently, hybrid superconductor-
quantum dot devices have attracted much attention [1]
due to their peculiar physical behavior determined by the
interplay of superconductivity of the leads and the level
characteristics of the dot. Applications in nanoelectronics
or quantum-information processing are envisaged. Among
other properties, dc Josephson transport [2– 7] was inten-
sively studied. Similar to the Josephson effect of ordinary
tunnel junctions [8], a difference " ! 0, ! of the order
parameter phases of the two superconductors with gap !
leads to an equilibrium Josephson current J running
through the system [2– 7]. The focus was on carbon nano-
tube dots [2,4– 7] with well separated single-particle levels,
i.e., level broadening " and temperature T much smaller
than the level spacings, simplifying the modeling as a
single-level dot with energy # can be considered.

It is well established both theoretically [9] and experi-
mentally [3– 7] that the local Coulomb interaction, i.e., the
dot charging energy U, can lead to a 0-! transition of the
quantum dot Josephson junction, associated to a first-order
(level-crossing) quantum phase transition from a singlet (0)
to a doublet (!) ground state [10]. In fact, a variation of any
of the system parameters U, #, !, " as well as the tunnel
couplings "L=R (with " ¼ "L þ "R) can be used to tune
the system across the phase boundary, if the others are
taken from appropriate ranges. At T ¼ 0, the transition
leads to a jump in J from a large and positive (0 phase) to a
small and negative value (! phase). At finite temperatures,
it is smeared out and significantly diminished, yet the sign
change of J is clearly observed in SQUID setups [3,4,7].
The experimental challenge in observing the true magni-
tude of the Josephson current to be compared with theo-
retical predictions consists in suppressing uncontrolled

phase fluctuations, which can be achieved by using
designed on-chip circuits [5,6]. In such experiments, J is
tuned by a variation of a gate voltage Vg which translates
into a rather controlled change of # [11].
The physics becomes particularly interesting if the dot is

tuned to a parameter regime in which Kondo correlations
[12] become relevant for suppressed superconductivity. It
is characterized by the appearance of the Kondo scale

(at odd dot filling) kBTK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
"U=2

p
expð$!U=8"Þ [12].

Kondo physics is important if kBT & kBTK & ", with kB
denoting the Boltzmann constant. In this regime perturba-
tive methods in either U, such as self-consistent Hartree-
Fock (HF) [13], or " [9] become uncontrolled. Even for
! ' kBTK, at which superconductivity prevails, one ex-
pects Kondo correlations to have a significant impact on J.
These were partly incorporated using a method developed
for large ! values [14]. Other techniques successfully used
for Kondo-correlated quantum dots with normal leads,
such as the noncrossing approximation (NCA) [15], nu-
merical renormalization group (NRG) [16,17], (Hirsch-
Fye) quantum Monte Carlo (QMC) calculations [18], and
functional renormalization group (fRG) [17] were ex-
tended to the present setup. With superconducting leads,
they suffer from significant conceptual or practical limita-
tions such as half filling of the dot level (NRG) and high
(NCA, QMC) or zero (fRG) temperature and, therefore,
cannot be used for a quantitative comparison to experi-
ments performed at temperatures on the order of a few tens
of mK and with a wide span of gate voltages [5,6]. The
regime of the strongest competition between superconduc-
tivity and Kondo correlations is reached for! (kBTK. For
typical experimental gap sizes of ! (0:1 meV [5– 7], in
this regime kBTK & " is no longer fulfilled. Still, even for
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Introduction. The combined e⇤ect of many-body inter-
actions in quantum dots and superconductivity in meso-
scopic transport has been a focus of interest for some
years now.1 An interesting scenario corresponds to the
quantum dot in the Kondo regime. It takes place at
temperatures below the Kondo temperature TK , and con-
sists of the generation of a screening cloud in the wires,
which couples with an electron confined in the quan-
tum dot to form a singlet. In the superconducting state,
the gap � conspires against this screening and di⇤erent
regimes result depending on the ratio �/TK . This has
an impact in the transport properties like the Joseph-
son e⇤ect, which motivated several experimental2–4 and
theoretical1,5–8 studies.

The prominent emergence of topological systems
brings about the interesting family of topological super-
conducting wires.9 In general, topological systems sup-
port edge states with peculiar properties. In the case
of topological superconductors the edge states are Ma-
jorana fermions and obey non-abelian statistics, which
makes them appealing to be used in quantum comput-
ing. An interesting model has been recently suggested,15

which could be fabricated in a wire with Rashba spin-
orbit interaction with induced s-wave symmetry due to
the proximity with a macroscopic ordinary superconduc-
tor. Unlike other systems previously studied,10–14 this
model is time-reversal symmetric and the Cooper pairs
are singlets and the Majorana states appear in Kramers
pairs in the superconducting gap. When such wires are
coupled to a quantum dot behaving as a Kondo impu-
rity, it is very interesting to analyze if the corresponding
Majorana states may contribute to the screening cloud
and which consequence this may have in the transport
behavior.

The goal of this work is to study a quantum dot mod-
eled by an Anderson impurity coupled to topological su-
perconducting wires described by the model of Ref. 15.
Particularly, we analyze the Kondo e⇤ect in this setup
and the behavior of the Josephson current. We focus on
identifying typical features that could be used as witness-
properties for the existence of Majorana edge-excitations.

Model. The full setup is sketched in Fig. 1, where meso-
scopic wires of length L of a material with Rashba spin-
orbit interaction are deposited on top of a macroscopic

ring of an ordinary s-wave superconductor threaded by a
magnetic flux ⇥. Superconductivity is induced into the
wires by proximity e⇤ect. A quantum dot is embedded
and attached to the wires. The Hamiltonian for the full
setup is H =

⇤
�=L,R (H� +Hc,�) +Hd. The first term

corresponds to the one-dimensional (1D) superconduct-
ing wires with N sites (L = Na, where a is the lattice
constant),

H� =
N⌅

⇥,j=1

�
�tc†�,j+1,⇥c�,j,⇥ + i�s⇥c

†
�,j+1,⇥c�,j,⇥

�µ n�,j,⇥ +�ei⇤�s⇥c
†
�,j+1,⇥c

†
�,j⇥ +H.c.

⇥
, (1)

with s�,⇥ = ± and ⌅ =⇧, ⇧ =⌅, which contains hopping
(t), Rashba spin-orbit (�) and extended s-wave pairing
(�). This model supports a superconducting topological
phase with Majorana edge states excitations for 2� ⇤ |µ|,
being µ the chemical potential. The phase di⇤erence ⌃L�
⌃R = ⌅/2 = 2⇤⇥/⇥0 accounts for the magnetic flux ⇥ in
units of the flux quantum ⇥0 = h/2e. The second term
corresponds to the tunneling contact between the wires

and the dot, Hc,� = �t⇤
⇤

⇥

�
c†�,1,⇥d⇥ +H.c.

⇥
. The last

term represents the quantum dot

Hd = ⇧d
⌅

⇥=�,⇥
nd,⇥ + Und�nd⇥. (2)

For simplicity, we consider a single level with energy ⇧
and U is the Coulomb interaction when it is occupied by
two electrons with opposite spins. We will focus on long
enough wires, for which the Majorana states at the end
opposite to the one attached to the quantum dot do not
play any role in the behavior of the midgap states in the
junction.

The dc Josephson current is induced by the magnetic

FIG. 1. Sketch of the setup.
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actions in quantum dots and superconductivity in meso-
scopic transport has been a focus of interest for some
years now.1 An interesting scenario corresponds to the
quantum dot in the Kondo regime. It takes place at
temperatures below the Kondo temperature TK , and con-
sists of the generation of a screening cloud in the wires,
which couples with an electron confined in the quan-
tum dot to form a singlet. In the superconducting state,
the gap � conspires against this screening and di⇤erent
regimes result depending on the ratio �/TK . This has
an impact in the transport properties like the Joseph-
son e⇤ect, which motivated several experimental2–4 and
theoretical1,5–8 studies.

The prominent emergence of topological systems
brings about the interesting family of topological super-
conducting wires.9 In general, topological systems sup-
port edge states with peculiar properties. In the case
of topological superconductors the edge states are Ma-
jorana fermions and obey non-abelian statistics, which
makes them appealing to be used in quantum comput-
ing. An interesting model has been recently suggested,15

which could be fabricated in a wire with Rashba spin-
orbit interaction with induced s-wave symmetry due to
the proximity with a macroscopic ordinary superconduc-
tor. Unlike other systems previously studied,10–14 this
model is time-reversal symmetric and the Cooper pairs
are singlets and the Majorana states appear in Kramers
pairs in the superconducting gap. When such wires are
coupled to a quantum dot behaving as a Kondo impu-
rity, it is very interesting to analyze if the corresponding
Majorana states may contribute to the screening cloud
and which consequence this may have in the transport
behavior.

The goal of this work is to study a quantum dot mod-
eled by an Anderson impurity coupled to topological su-
perconducting wires described by the model of Ref. 15.
Particularly, we analyze the Kondo e⇤ect in this setup
and the behavior of the Josephson current. We focus on
identifying typical features that could be used as witness-
properties for the existence of Majorana edge-excitations.

Model. The full setup is sketched in Fig. 1, where meso-
scopic wires of length L of a material with Rashba spin-
orbit interaction are deposited on top of a macroscopic

ring of an ordinary s-wave superconductor threaded by a
magnetic flux ⇥. Superconductivity is induced into the
wires by proximity e⇤ect. A quantum dot is embedded
and attached to the wires. The Hamiltonian for the full
setup is H =

⇤
�=L,R (H� +Hc,�) +Hd. The first term
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(t), Rashba spin-orbit (�) and extended s-wave pairing
(�). This model supports a superconducting topological
phase with Majorana edge states excitations for 2� ⇤ |µ|,
being µ the chemical potential. The phase di⇤erence ⌃L�
⌃R = ⌅/2 = 2⇤⇥/⇥0 accounts for the magnetic flux ⇥ in
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scopic transport has been a focus of interest for some
years now.1 An interesting scenario corresponds to the
quantum dot in the Kondo regime. It takes place at
temperatures below the Kondo temperature TK , and con-
sists of the generation of a screening cloud in the wires,
which couples with an electron confined in the quan-
tum dot to form a singlet. In the superconducting state,
the gap � conspires against this screening and di⇤erent
regimes result depending on the ratio �/TK . This has
an impact in the transport properties like the Joseph-
son e⇤ect, which motivated several experimental2–4 and
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The prominent emergence of topological systems
brings about the interesting family of topological super-
conducting wires.9 In general, topological systems sup-
port edge states with peculiar properties. In the case
of topological superconductors the edge states are Ma-
jorana fermions and obey non-abelian statistics, which
makes them appealing to be used in quantum comput-
ing. An interesting model has been recently suggested,15

which could be fabricated in a wire with Rashba spin-
orbit interaction with induced s-wave symmetry due to
the proximity with a macroscopic ordinary superconduc-
tor. Unlike other systems previously studied,10–14 this
model is time-reversal symmetric and the Cooper pairs
are singlets and the Majorana states appear in Kramers
pairs in the superconducting gap. When such wires are
coupled to a quantum dot behaving as a Kondo impu-
rity, it is very interesting to analyze if the corresponding
Majorana states may contribute to the screening cloud
and which consequence this may have in the transport
behavior.

The goal of this work is to study a quantum dot mod-
eled by an Anderson impurity coupled to topological su-
perconducting wires described by the model of Ref. 15.
Particularly, we analyze the Kondo e⇤ect in this setup
and the behavior of the Josephson current. We focus on
identifying typical features that could be used as witness-
properties for the existence of Majorana edge-excitations.
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orbit interaction are deposited on top of a macroscopic

ring of an ordinary s-wave superconductor threaded by a
magnetic flux ⇥. Superconductivity is induced into the
wires by proximity e⇤ect. A quantum dot is embedded
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actions in quantum dots and superconductivity in meso-
scopic transport has been a focus of interest for some
years now.1 An interesting scenario corresponds to the
quantum dot in the Kondo regime. It takes place at
temperatures below the Kondo temperature TK , and con-
sists of the generation of a screening cloud in the wires,
which couples with an electron confined in the quan-
tum dot to form a singlet. In the superconducting state,
the gap � conspires against this screening and di⇤erent
regimes result depending on the ratio �/TK . This has
an impact in the transport properties like the Joseph-
son e⇤ect, which motivated several experimental2–4 and
theoretical1,5–8 studies.
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brings about the interesting family of topological super-
conducting wires.9 In general, topological systems sup-
port edge states with peculiar properties. In the case
of topological superconductors the edge states are Ma-
jorana fermions and obey non-abelian statistics, which
makes them appealing to be used in quantum comput-
ing. An interesting model has been recently suggested,15

which could be fabricated in a wire with Rashba spin-
orbit interaction with induced s-wave symmetry due to
the proximity with a macroscopic ordinary superconduc-
tor. Unlike other systems previously studied,10–14 this
model is time-reversal symmetric and the Cooper pairs
are singlets and the Majorana states appear in Kramers
pairs in the superconducting gap. When such wires are
coupled to a quantum dot behaving as a Kondo impu-
rity, it is very interesting to analyze if the corresponding
Majorana states may contribute to the screening cloud
and which consequence this may have in the transport
behavior.

The goal of this work is to study a quantum dot mod-
eled by an Anderson impurity coupled to topological su-
perconducting wires described by the model of Ref. 15.
Particularly, we analyze the Kondo e⇤ect in this setup
and the behavior of the Josephson current. We focus on
identifying typical features that could be used as witness-
properties for the existence of Majorana edge-excitations.

Model. The full setup is sketched in Fig. 1, where meso-
scopic wires of length L of a material with Rashba spin-
orbit interaction are deposited on top of a macroscopic

ring of an ordinary s-wave superconductor threaded by a
magnetic flux ⇥. Superconductivity is induced into the
wires by proximity e⇤ect. A quantum dot is embedded
and attached to the wires. The Hamiltonian for the full
setup is H =

⇤
�=L,R (H� +Hc,�) +Hd. The first term

corresponds to the one-dimensional (1D) superconduct-
ing wires with N sites (L = Na, where a is the lattice
constant),

H� =
N⌅

⇥,j=1

�
�tc†�,j+1,⇥c�,j,⇥ + i�s⇥c

†
�,j+1,⇥c�,j,⇥

�µ n�,j,⇥ +�ei⇤�s⇥c
†
�,j+1,⇥c

†
�,j⇥ +H.c.

⇥
, (1)

with s�,⇥ = ± and ⌅ =⇧, ⇧ =⌅, which contains hopping
(t), Rashba spin-orbit (�) and extended s-wave pairing
(�). This model supports a superconducting topological
phase with Majorana edge states excitations for 2� ⇤ |µ|,
being µ the chemical potential. The phase di⇤erence ⌃L�
⌃R = ⌅/2 = 2⇤⇥/⇥0 accounts for the magnetic flux ⇥ in
units of the flux quantum ⇥0 = h/2e. The second term
corresponds to the tunneling contact between the wires

and the dot, Hc,� = �t⇤
⇤

⇥

�
c†�,1,⇥d⇥ +H.c.

⇥
. The last

term represents the quantum dot

Hd = ⇧d
⌅

⇥=�,⇥
nd,⇥ + Und�nd⇥. (2)

For simplicity, we consider a single level with energy ⇧
and U is the Coulomb interaction when it is occupied by
two electrons with opposite spins. We will focus on long
enough wires, for which the Majorana states at the end
opposite to the one attached to the quantum dot do not
play any role in the behavior of the midgap states in the
junction.

The dc Josephson current is induced by the magnetic

FIG. 1. Sketch of the setup.
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FIG. 5. (Color online) Upper panel: Local density of states at
the quantum dot in the topological phase with t0 = t, ⇧ = U/2,
� = t/2, � = t/5 and µ = 0. On the left sub-panel ⌅ =
0.3⇤ and on the right ⌅ = 0.8⇤, as indicated. Lower panel:
evolution of the spectrum as a function of ⌅ with the same
values of the parameters as above. The dark lines correspond
to the prediction of He� with t0 = 0.3, U = 1.2 with an
additional on-site energy ⇧0 = 0.04 at the non-interacting
site, in order to simulate the coupling to the continuum at
⌅ = 0.

the results calculated by the full solution of the problem
with quantum Monte Carlo. With the latter technique it
is possible to calculate the local density of states

⌅⇤(⌥) = �2Im[GR
d,⇤(⌥)] (7)

by recourse to analytic continuation of the Matsubara
Monte Carlo data to the real axis with a Max-Entropy
method? . In the top panel of the Fig. 5 we show ⌅⇤(⌥)
for a fixed flux ⇧ = 0.3⇤ and 0.8⇤. The edge of the
gap is indicated with dashed lines. We can distinguish
peaks corresponding to sub-gap states resulting from the

hybridization of the dot with the Majorana states of
the wires, as well as high-energy peaks centered at ap-
proximately ±U/2. The latter are the usual Coulomb-
blockade features of the Kondo-correlated quantum dot
while the low-energy peaks determine the behavior of the
Josephson current. In the bottom panel of Fig. 5 we show
the corresponding evolution of the spectral features as
functions of ⇧. Interestingly, the qualitative behavior of
the main features can be represented with the spectrum
of levels of the e�ective Hamiltonian He� (shown in the
dark lines). In the latter case, the density of states is
defined from

⌅e�,⇤(⌥) =
2⇤

Z

�

m,n

(e�⇥Em
even + e�⇥En

odd)|⇧⌃n
odd|d⇤|⌃m

even⌃|2

⇥⇥(⌥ � En
odd + Em

even), (8)

being Z the partition function. The e�ective model is ex-
pected to be accurate at ⇧ ⌅ ⇤ in which case the states
formed by the Majoranas at the end of the chains hy-
bridized with the states of the dot have energies below the
superconducting gap. For other values of ⇧, these states
have energies above the superconducting gap. Hence,
they hybridize with the continuum of quasiparticle exci-
tations and this ingredient has not been taken into ac-
count in He� . Nevertheless, they qualitatively reproduce
the behavior of the numerical exact solution.
Conclusions We have studied the behavior of the

Josephson current through a quantum dot attached to
two time-reversal topological superconducting wires. In
the case of a quantum dot without interactions, the
topological phase with Majorana end-states presents a
jump in the Josephson junction when the superconduct-
ing phase di�erence is ⇧ = ⇤. For a quantum dot with
Coulomb interaction we found that the correlated states
at the dot are entangled with the Majorana states at the
superconducting wires. This originates a resonance at the
quantum dot akin to the Kondo e�ect and the quantum
dot exhibits the same behavior as a non-interacting one.
This is in contrast to what is found in trivial supercon-
ductors attached to quantum dots, which present a tran-
sition from a 0 to a ⇤ junction. This peculiar behavior
could be useful in the experimental quest for Majorana
bound states.
Acknowledgements. We acknowledge support from

CONICET, MINCyT and UBACyT, Argentina.
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Time reversal invariant topological superconducting (TRITOPS) wires are known to host a frac-
tional spin ~/4 at their ends. We investigate how this fractional spin a↵ects the Josephson current in
a TRITOPS-quantum dot-TRITOPS Josephson junction, describing the wire in a model which can
be tuned between a topological and a nontopological phase. We compute the equilibrium Joseph-
son current of the full model by continuous-time Monte Carlo simulations and interpret the results
within an e↵ective low-energy theory. We show that in the topological phase, the 0-to-⇡ transition
is quenched via formation of a spin singlet from the quantum dot spin and the fractional spins
associated with the two adjacent topological superconductors.

PACS numbers: 74.78.Na, 74.45.+c, 73.21.La

Introduction.—The interplay of many-body interac-
tions in quantum dots and superconductivity has been
at the focus of interest for some time [1–6]. While elec-
trons are paired in superconductors, the charging energy
e↵ectively suppresses pairing in quantum dots. A promi-
nent consequence of this competition is the transition be-
tween 0 and ⇡ junction behavior of the Josephson current
in devices where a quantum dot (QD) connects between
ordinary (nontopological) singlet-superconducting wires
(S-QD-S junction) [7–10]. As a result of numerous stud-
ies [11–19], this phenomenon is now well understood for
conventional superconductors. Essentially, S-QD-S junc-
tions exhibit ⇡-junction behavior when the QD hosts an
e↵ective spin-1/2 degree of freedom.

Here, we address the 0 to ⇡ transition for Joseph-
son junctions in which a quantum dot connects be-
tween time-reversal-invariant topological superconduc-
tors (TRITOPS). Unlike their time-reversal-breaking
cousins [2, 20–22], TRITOPS preserve time-reversal sym-
metry and can coexist with an unpolarized quantum-
dot spin. It is thus an interesting question whether
⇡-junction behavior can be observed in TRITOPS-QD-
TRITOPS junctions. Such junctions di↵er from con-
ventional S-QD-S junctions in several ways. First, the
Majorana-Kramers pairs present in the topological phase
allow for the coherent transfer of single electrons, while
the Josephson current of a conventional junction is car-
ried by Cooper pairs. Even more intriguing, TRI-
TOPS host a fractional ~/4 spin at their ends. Thus,
a TRITOPS-QD-TRITOPS junction allows one to study
the hybridization of fractional and ordinary spins. We
show that the 0-⇡ transition constitutes a signature which
distinguishes between the topological and the nontopo-
logical phase, and trace the quenching of the transition
for TRITOPS to the formation of a spin singlet from the

quantum-dot spin and the fractional spins of the adjacent
TRITOPS.

In the wake of proposals to engineer time-reversal-
breaking topological phases and corresponding experi-
ments, there has also been substantial interest in time
reversal invariant topological superconductors (TRIP-
TOPS) [1, 24–26, 28–37]. TRITOPS are characterized
by Kramers pairs of Majorana end states and localized
fractional spins [28]. Time reversal protects the pair of
Majoranas from hybridizing which therefore generically
remain at zero energy. Similarly, the fractional spin is
topologically protected and cannot be determined from a
local measurement without breaking time reversal. Sev-
eral routes have been proposed to engineer TRITOPS al-
though their experimental realization is more demanding
than that of time-reversal-breaking topological supercon-
ductors [36].

Conventional Josephson junctions assume their mini-
mal energy at zero phase di↵erence and their maximal
energy at a phase di↵erence of ⇡ (0-junction behavior).
This behavior is reversed in ⇡ junctions which assume
their minimal energy at a phase di↵erence of ⇡ [1, 2]. In
S-QD-S junctions, ⇡-junction behavior occurs when the
quantum dot forming the junction is singly occupied and
acts e↵ectively as a magnetic impurity. When the QD
is weakly coupled to the superconductors, tunneling of
Cooper pairs between the conventional superconductors
relies on a forth-order cotunneling process [1, 10]. This
process includes a ⇡ phase shift which originates from
the Fermi statistics of electrons and becomes manifest in
the ⇡-junction behavior. As a consequence, the current-
phase relation of the junction phase shifts by ⇡ when the
occupation of the quantum dot is tuned from even to odd.
When the quantum dot is strongly coupled to the super-
conductors, the impurity spin can be screened, turning
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FIG. 3. (a) BdG spectrum of the 1D TRI SC as a function
of µ. (b) Spectrum of ABS’s in the junction as a function
of ⇤. The cyan lines are four-fold degenerate, denoting two
Kramers pairs of MBS’s at opposite ends. The red and green
lines are doubly degenerate, denoting two pairs of ABS’s in
the junction. We choose parameter values: t = 10, �R = 5,
�1 = 2, and �0 = 0. µ = 0 is used in (b).

when the physical separation between the ends of SC ring
is small. The four-fold cyan line shows the appearance
of a pair of MBS’s at each end. The red and green lines,
both doubly degenerate, represent two pairs of ABS’s in
the junction. When � ⌃= ⌦, a finite µ lifts the degener-
acy. However, protected by time reversal, particle-hole
and mirror (My = �i↵y) symmetries, their crossing at
E = 0 when � = ⌦ is a four-fold degeneracy of special
significance. This ⌦-junction is in sharp contrast with
its Z2 counterpart in the class without mirror symme-
try [8, 18, 34]. Splitting the Majorana quartet at � = ⌦
would break mirror and/or time reversal symmetry. To
understand this topological twist in Fig. 3(b), we lin-
earize Eq. (2) near the Fermi energy:

Heff = (vkx↵y � c) s �z � µ �z +HSC , (4)

HSC = ⇥ s [cos
�

2
�x + sgn(x) sin

�

2
�y] , (5)

where s = ± denote the inner and outer bands with
opposite spin helicities and c (0 < c < µ) lifts their
degeneracy [33]. The mirror symmetry allows one to
label the bands with the eigenvalues of My, � = ±i.
We find the ABS dispersions ⌅�(�) = ⇥ cos(�/2). Note
that the perfect normal state transmission and the in-
dependence on µ, c and � are artifacts of the simpli-
fied model. We can define Bogoliubov operators ��±
that satisfy �� ⇤ ��+ = �†

�� because of the particle-
hole symmetry. The low-energy Hamiltonian is thus
H =

�
� ⌅�(�)(�†

��� � 1
2 ) = 2i

�
� ⌅�(�)⇥�⇧� where

⇥� = (�†
� + ��)/2 and ⇧� = i(�†

� � ��)/2 are the Ma-
jorana operators. For each band, N0

� = �†
��� = 0, 1

distinguishes two states and coupling them requires an
process that changes N0

�. Due to the Cooper pairing,
the total charge is not conserved. However, the fermion
parity of each band N� mod 2 is conserved, as the mir-
ror symmetry does not allow scattering between the two

bands. This mirror fermion parity conservation forbids
the mixing among the four ABS’s in the junction and
therefore protects their crossing at zero energy. � acts
like a defect and parameterizes the mirror fermion parity
pump. Although Eq. (4) is invariant under ⇤⇤ = h/2e,
the global Hamiltonian is physically distinct. When a
flux h/2e is threaded through the SC ring, � is advanced
by 2⌦, ⇥� ⌅ ⇥� while ⇧� ⌅ �⇧�, and a unit of fermion
parity is transferred between the two bands resolving the
fermion parity anomaly for an individual band.
In response to the change of phase, the populated

ABS’s carry supercurrents I�± = ±I� through the de-
vice, whereas the states in the continuum has negli-
gible contributions. For the  = 1 case, we obtain
I� = (2e/~)⌘⌅�/⌘� = (�e⇥/~) sin(�/2), which is maxi-
mized at � = ⌦ in sharp contrast to the  = 0 (conven-
tional) case. In the absence of mirror symmetry break-
ing, there is no transition among I�±, signaling a mirror
fractional Josephson e⌅ect with 4⌦ periodicity.
Evolution of Majorana pair in Zeeman field.— When

one helical band is removed from the Fermi energy, a
Rashba nanowire proximity coupled to a s wave SC is a
topological SC with broken time reversal symmetry, sup-
porting a single MBS at each end. Realizing such a topo-
logical phase requires the Zeeman field Vz↵z (or Vz↵x)
and the chemical potential µ to satisfy: 4⇥2

1+(|µ|�2t)2 <
V 2
z < 4⇥2

1 + (|µ| + 2t)2. Since only one helical band is
present at the Fermi energy this also occurs even if the SC
is s± wave as long as the hybrid SC remains fully gapped
(µ2 ⌃= 4⌥2

R + V 2
z ). The latter condition is guaranteed for

the TRI  = 1 state as it satisfies |µ| < 2⌥R. It is thus
intriguing to investigate how a MBS pair evolves in the
Zeeman field, as the bulk SC undergoes a symmetry class
change and topological phase transitions. Fig. 4(a) shows
the evolution in the case of µ ⌃= 0. When Vz is turned on,
without gap closing, the topological SC in the TRI class
becomes a trivial SC in the class without time reversal
symmetry. Two topological phase transitions occur at
V 2
z = 4⇥2

1 + (|µ| ± 2t)2 where the gap closes. The  = 1
state in the new class is realized between the transitions.
At one end, as Vz is tuned up, one MBS disappears at the
first transition while the other persists in the  = 1 state
and enters the bulk continuum at the second transition.
For the special case µ = 0, the two transitions merge into
one and the new  = 1 state does not appear.

As implied by the zero energy black lines in Fig. 4(a),
it seems ba⌥ing that the Majorana pair is robust against
the Zeeman field before the first transition occurs. We
emphasize that these Majoranas are not topologically
protected because the bulk SC is trivial in the new class.
However, their robustness can be understood using the
e⌅ective model described by Eq. (4) with

HSC = ⇥ s �x ⌃(a� |x|) + ⇥̄ �x ⌃(|x|� a) , (6)

where x = ±a are the locations of the two ends of SC
and ⇥̄ ⌅ ⇧ reflects the infinity mass of vacuum. Eq. (6)

Andreev states

4-fold symmetry protected 
crossing:      periodicity   4⇡

Odd parity

Even parity

2

where µ is the chemical potential and � are the Pauli ma-
trices in Nambu particle-hole notation. ⇥k is a s± wave
singlet pairing potential that switches signs between the
zone center � (0, 0) and the zone corner M (⇧,⇧) when
the order parameters satisfy |⇥0| < 4|⇥1|. As we show
in Fig. 1(a) and note below, ⇥k could be provided by a
nodeless iron-based SC on which the Rashba layer is de-
posited. For convenience we have chosen a gauge to pin
the overall phase of s± wave SC at zero and assumed
0 < |⇥0| < 4⇥1 hereafter. HBdG

k has time reversal
(⇤ = �i⌃yK) and intrinsic particle-hole(⌅ = ⌃y⌥yK)
symmetries. We obtain the energy dispersion

EBdG
k = ±

⌃⇤
2t(cos kx + cos ky) + µ± �Rk

⌅2
+⇥2

k ,(3)

where �Rk = 2⇥R

⌃
sin2 kx + sin2 ky is the Rashba en-

ergy. ⇥k has a closed nodal line, i.e., cos kx + cos ky =
�⇥0/(2⇥1), in the first Brillouin zone. At the nodal line,
EBdG

k = ±
�
µ� �0 ± �Rk

⇥
with �0 = t⇥0/⇥1, and �Rk has

the maxima �Rmax = 2⇥R

⇧
2�⇥2

0/(8⇥
2
1) and the minima

�Rmin = 2⇥R

⇧
|⇥0/⇥1|�⇥2

0/(4⇥
2
1).

In both 2D and 1D, the Z2 topological invariant [15–
18] of a TRI SC is determined by whether the pairing
potential has a negative sign on odd number of Fermi
surfaces each of which encloses a TRI momentum [17].
As shown in Fig. 2 and summarized in Table I [31], the
phase of the hybrid SC depends on the chemical potential
µ. For the case of �Rmin ⇤ |µ��0| ⇤ �Rmax, HBdG

k describes
a nodal SC. When |µ��0| > �Rmax, the SC is fully gapped
but in the trivial (⌅ = 0) phase since ⇥k has the same
sign on both Fermi circles. When |µ� �0| < �Rmin is satis-
fied, the pairing potential switches sign between the two
Fermi circles [32], and consequently the hybrid system re-
alizes a TRI topological SC (⌅ = 1). The energy window
for tuning the system into the ⌅ = 1 state has the size
of 2�Rmin with an optimized value 4⇥R at ⇥0 = ±2⇥1.
For the ⌅ = 1 state helical Majorana edge states emerge
at the boundary, as shown in Fig. 2, the spectrum of a
infinite ribbon described by Eq. (1). The Majoranas at
k = ⇧ (0) for sgn(⇥0/⇥1) = 1 (�1) are protected by
time reversal and particle-hole symmetries.

1D TRI topological SC.— By turning o⌃ all the ky
terms Eq. (2) models a 1D Rashba nanowire deposited
on a nodeless s± wave SC. When the two s± wave or-
der parameters satisfy |⇥0| < 2⇥1, the pairing potential

TABLE I. Summary of the Z2 classification of the hybrid TRI
SC in class DIII. �0, �

R
m, �Rmin, and �Rmax are defined in the text.

Phase Two Dimension One Dimension

⌅ = 1 |µ� �0| < �Rmin |µ� �0| < �Rm

Nodal �Rmin ⇥ |µ� �0| ⇥ �Rmax |µ� �0| = �Rm

⌅ = 0 |µ� �0| > �Rmax |µ� �0| > �Rm
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FIG. 2. Upper panels: the two Fermi surfaces (blue and
green) of the single-particle bands for the ⌅ = 1 state; the
closed nodal line (red) of �k, separating two regions in which
�k has opposite signs. Lower panel: BdG spectrum of a 2D
ribbon as a function of k for the ⌅ = 1 state with µ = �0.
The red and green lines indicate the helical Majorana edge
states. We choose parameter values: t = 10, ⇥R = 5, and
|�0| = �1 = 2. (a) �0 > 0 and (b) �0 < 0.

switches sign between the two TRI momenta 0 and ⇧. In
1D, the closed nodal line of ⇥k is shrunk to two nodes at
k = ± arccos(�⇥0/2⇥1). At the nodes, the Rashba en-
ergy is �Rm = 2⇥R

⇧
1�⇥2

0/(4⇥
2
1), and thus a proximity

induced 1D TRI nodal SC is identified for µ = �0 ± �Rm.
When |µ� �0| < �Rm, a positive pairing is induced for the
inner pair of Fermi points while a negative pairing for
the outer pair, realizing a 1D TRI topological SC. In the
case of |µ��0| > �Rm, the hybrid system becomes a trivial
SC that is adiabatically connected to the vacuum state.

At each end of a 1D TRI topological SC, there emerges
a Kramers pair of Majorana bound states (MBS). With-
out loss of generality, in the rest of this paper we will
set ⇥0 = 0 for the 1D case and thus |µ| < 2⇥R is the
criterion for the ⌅ = 1 state, as shown in Fig. 3(a). The
cyan line denotes four degenerate MBS’s independent of
⇥1. Further investigation of their wavefunctions shows
that these four MBS’s form two Kramers pairs localized
at the opposite ends of nanowire. This verifies our ana-
lytical results summarized in Table I.

Mirror Fractional Josephson e�ect.— Consider the lin-
ear Josephson junction in Fig. 1(b), in which a Rashba
nanowire is deposited on a larger s± wave SC ring, and
the phase di⌃erence � = (2e/~)⇧ across the junction
is controlled by the magnetic flux ⇧ through the ring.
Fig. 3(b) shows the spectrum of ABS’s as a function of �



2

flux threading the ring and reads

J = �2t⇤
�
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Im
⇥
⌃c†�,1,⇥d⇥⌥

⇤

=
2t⇤2
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�
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n

Im
⇥
g(12)1�,⇥(i�n)G

(21)
d,⇥ (i�n)

⇤
, (3)

where the steps to derive the second line are given
in Appendix A, �n = (2n + 1)⌅/� are Matsub-
ara frequencies and � is the inverse of the tempera-
ture. The Green functions correspond to the Matsub-
ara components of the imaginary-time Green functions

g(12)1�,⇥(⌃) = �⌃T⇤

⇥
ĉ†�,1,⇥(⌃)ĉ

†
�,1,⇥(0)

⇤
⌥0 and G(21)

d,⇥ (⌃) =

�⌃T⇤

⇥
d̂⇥(⌃)d̂⇥(0)

⇤
⌥, where ⌃. . .⌥0 denotes the ensemble

average over the states of H�, while ⌃. . .⌥ denotes the en-
semble average over the states of the full Hamiltonian
H. The second Green function can be evaluated nu-
merically by recourse to quantum Monte Carlo17 as ex-
plained in Appendix B. Such procedure has been followed
in previous works on the Josephson current of a Kondo-
correlated quantum dot in contact to ordinary supercon-
ducting leads and revealed as an accurate and reliable
method. A similar procedure was also followed in Refs.
18 and 19 to investigate the conductance of normal wires
connected to correlated dots and molecules.

FIG. 2. (Color online) Josephson current for the quantum
dot with U = 0, t0 = t, ⌅ = 0, ⇥ = t/2. The length of the
superconducting wires is N = 100 sites. The inverse of the
temperature is � = 400. Energies are expressed in units of
t = 1.

Josephson current. For U = 0 the Josephson current
can be calculated from (3) with Ĝd,⇥(i�n) given by the
inverse of Eq. (B2). The non-interacting quantum dot
is basically equivalent to a Josephson junction formed by
connecting the two superconducting wires with a tunnel-
ing parameter like the one studied in Ref. 15. Results
are presented in Fig. 2. For these parameters, the topo-
logical superconducting phase with Majorana edge states
takes place for |µ| ⇥ 2⇥, while |µ| > 2⇥ corresponds to
a trivial superconducting phase. It is clearly seen that

the topological phase is characterized by a discontinuity
in the behavior of the Josephson current as a function
of ⌥. This feature can be traced back to the behavior of
the two double-degenerate Andreev bound states formed
by the hybridization of Majorana fermions at the ends
of the chains and the quantum dot. They can be un-
derstood in terms of the e�ective Hamiltonian (6), which
for U = 0 can be easily diagonalized exactly. There are
two sub-gap levels defining the behavior of the Josephson
current having energies E±(⌥), which are double degen-
erate due the mirror symmetry M = �i⇧z. As functions
of ⌥, these levels cross at ⌥ = ⌅ being E±(⌥ = ⌅) = 0.
Hence, for this phase there is a four-fold degeneracy. The
Josephson junction at T = 0 is J = (4e/~)�Em(⌥)/�⌥,
with Em = Min (E+, E�). At the crossing point ⌥ = ⌅,
Em has a cusp and this discontinuity leads to a jump in
the behavior of the Josephson junction as a function of
⌥.

FIG. 3. (Color online) Josephson current for the interacting
quantum dot with t0 = t, ⌅ = U/2, ⇥ = t/2. The upper
panel corresponds to µ = 0.0 within the topological phase.
The lower panel corresponds to µ = 1.8 in the trivial (non-
topological) case. In both cases, several values of U are shown.
Energies are expressed in units of t.

Interacting quantum dot. The behavior of the Joseph-
son junction as a function of ⌥ for the interacting quan-
tum dot (U ⌅= 0) calculated with the quantum Monte
Carlo method is shown in Fig. 3. The parameters are
chosen in order to have the dot singly occupied. In the
non-topological phase shown in the lower panel, we can
observe the inversion of the sign of the current for val-
ues of the interaction U larger than a critical value Uc.
This corresponds to the crossover from the 0-junction to
the ⌅-junction regime, which has been widely explored
in the literature.1–8 The explanation for this change in
the sign of the current is a crossover from a regime where
the Andreev bound states form a Kondo singlet with the
localized singly-occupied state at the dot for U < Uc to
the doublet state of the isolated singly-occupied dot for
U > Uc. This is because as U increases, the Kondo
temperature (TK ⇤ 1/U) decreases until it becomes
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Interacting quantum dot. The behavior of the Joseph-
son junction as a function of ⌥ for the interacting quan-
tum dot (U ⌅= 0) calculated with the quantum Monte
Carlo method is shown in Fig. 3. The parameters are
chosen in order to have the dot singly occupied. In the
non-topological phase shown in the lower panel, we can
observe the inversion of the sign of the current for val-
ues of the interaction U larger than a critical value Uc.
This corresponds to the crossover from the 0-junction to
the ⌅-junction regime, which has been widely explored
in the literature.1–8 The explanation for this change in
the sign of the current is a crossover from a regime where
the Andreev bound states form a Kondo singlet with the
localized singly-occupied state at the dot for U < Uc to
the doublet state of the isolated singly-occupied dot for
U > Uc. This is because as U increases, the Kondo
temperature (TK ⇤ 1/U) decreases until it becomes
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midgap states are gapped. In general the one-particle
excitations are 2-fold degenerate (due to the symmetry
of the Hamiltonian under time reversal and change of
sign of ⌅) at ⌅ = 2m⇤ and ⌅ = (2m + 1)⇤, with m in-
teger. In the latter case, two Andreev states reach the
Fermi energy. In the top panel of Fig. 1 we show the
corresponding behavior of the Josephson current for sev-
eral values of µ ranging from the topological (µ < 2�)
to the non-topological (µ > 2�) cases. The topological
phase is characterized by a jump at ⌅ = ⇤, in coincidence
with the crossing of the Andreev states, while the non-
topological phase presents the usual sinusoidal behavior.
The jump is smoothed in the figure for some parameters
due to finite-size e⇤ects in the calculation.

0 0.5 1 1.5 2
φ/π

-0.5

0

0.5

E 0
(φ
)

0 0.5 1 1.5 2
φ/π

0 0.5 1 1.5 2
φ/π

FIG. 1. (Color online) Top panel: Josephson current as the
function of ⌅ for the quantum dot with U = 0, connected
to superconducting wires with t0 = t, ⇥ = t/2 and di�erent
values of µ where µ < (>)t corresponds to the topological
(nontopological) case. The wires have N = 100 sites and
the inverse of the temperature is � = 400. Bottom panels:
Spectrum of ĤBdG for the configuration of the top panel with
µ = ⇧ = 0 (left) and µ = 0, ⇧ = t (middle) and µ = �⇧ = 1.8t
(right). Energies are expressed in units of t = 1.

Interacting quantum dot. For U ⌥= 0 the Josephson

FIG. 2. (Color online) Josephson current for the interacting
quantum dot with t0 = t, ⇧ = �U/2, ⇥ = t/2. The upper
panel corresponds to µ = 0.0 within the topological phase.
The lower panel corresponds to µ = 1.8t in the trivial (non-
topological) case. In both cases, several values of U are shown.
Energies are expressed in units of t.

junction as a function of ⌅ can be calculated with quan-
tum Monte Carlo. After a Shiba transformation, H is
mapped to a Hamiltonian conserving the number of par-
ticles with negative U [11]. The Green function of the
transformed problem is calculated by using the algorithm
introduced in Refs. 28 and 29 and the inverse trans-
formation leads to Ĝd,�(i⇧n) entering (4). Results are
shown in Fig. 2 along with the corresponding Joseph-
son current for the non-interacting case. The bottom
panel shows the non-topological case. The value of the
dot energy has been fixed to satisfy the half-filling con-
figuration �nd� + nd⇥ = 1. The Kondo temperature
for the dot embedded in a normal metal bath at half-
filling is defined as kBTK =

�
�U/2 exp (�⇤U/8�) [31].

For T < TK < �/kB , low energy excitations of the en-
vironment generate a screening cloud for the localized
spin at the quantum dot and the resulting state is a sin-
glet. When the quantum dot is embedded into the non-
topological superconductor, the formation of the Kondo
screening cloud is frustrated by the existence of the su-
perconducting gap. For ⇥ ⇤ kBTK Kondo correlations
subsist and the localized spin at the dot forms a singlet
with the electrons in the leads, while for ⇥ ⌅ kBTK

the Kondo screening is suppressed and the localized spin
at the quantum dot becomes e⇤ectively decoupled in the
doublet state with ⇧, ⌃ spin orientations. Concomitantly,
as U increases (hence, TK decreases), the Josephson cur-
rent displays a global change of sign. This is the well
known 0�⇤ transition, which has been extensively stud-
ied in the literature in models with local s-wave pairing
[1, 2, 6–14]. For U = t the dot is in the intermediate
valence regime, while for U = 6t and U = 10t it is in
the Kondo regime when attached to normal wires with
the same hybridization parameter � ⇥ ⇤(t⇤)2/(2t). In
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junction as a function of ⌅ can be calculated with quan-
tum Monte Carlo. After a Shiba transformation, H is
mapped to a Hamiltonian conserving the number of par-
ticles with negative U [11]. The Green function of the
transformed problem is calculated by using the algorithm
introduced in Refs. 28 and 29 and the inverse trans-
formation leads to Ĝd,�(i⇧n) entering (4). Results are
shown in Fig. 2 along with the corresponding Joseph-
son current for the non-interacting case. The bottom
panel shows the non-topological case. The value of the
dot energy has been fixed to satisfy the half-filling con-
figuration �nd� + nd⇥ = 1. The Kondo temperature
for the dot embedded in a normal metal bath at half-
filling is defined as kBTK =

�
�U/2 exp (�⇤U/8�) [31].

For T < TK < �/kB , low energy excitations of the en-
vironment generate a screening cloud for the localized
spin at the quantum dot and the resulting state is a sin-
glet. When the quantum dot is embedded into the non-
topological superconductor, the formation of the Kondo
screening cloud is frustrated by the existence of the su-
perconducting gap. For ⇥ ⇤ kBTK Kondo correlations
subsist and the localized spin at the dot forms a singlet
with the electrons in the leads, while for ⇥ ⌅ kBTK

the Kondo screening is suppressed and the localized spin
at the quantum dot becomes e⇤ectively decoupled in the
doublet state with ⇧, ⌃ spin orientations. Concomitantly,
as U increases (hence, TK decreases), the Josephson cur-
rent displays a global change of sign. This is the well
known 0�⇤ transition, which has been extensively stud-
ied in the literature in models with local s-wave pairing
[1, 2, 6–14]. For U = t the dot is in the intermediate
valence regime, while for U = 6t and U = 10t it is in
the Kondo regime when attached to normal wires with
the same hybridization parameter � ⇥ ⇤(t⇤)2/(2t). In
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where µ is the chemical potential and � are the Pauli ma-
trices in Nambu particle-hole notation. ⇥k is a s± wave
singlet pairing potential that switches signs between the
zone center � (0, 0) and the zone corner M (⇧,⇧) when
the order parameters satisfy |⇥0| < 4|⇥1|. As we show
in Fig. 1(a) and note below, ⇥k could be provided by a
nodeless iron-based SC on which the Rashba layer is de-
posited. For convenience we have chosen a gauge to pin
the overall phase of s± wave SC at zero and assumed
0 < |⇥0| < 4⇥1 hereafter. HBdG

k has time reversal
(⇤ = �i⌃yK) and intrinsic particle-hole(⌅ = ⌃y⌥yK)
symmetries. We obtain the energy dispersion

EBdG
k = ±

⌃⇤
2t(cos kx + cos ky) + µ± �Rk

⌅2
+⇥2

k ,(3)

where �Rk = 2⇥R

⌃
sin2 kx + sin2 ky is the Rashba en-

ergy. ⇥k has a closed nodal line, i.e., cos kx + cos ky =
�⇥0/(2⇥1), in the first Brillouin zone. At the nodal line,
EBdG

k = ±
�
µ� �0 ± �Rk

⇥
with �0 = t⇥0/⇥1, and �Rk has

the maxima �Rmax = 2⇥R

⇧
2�⇥2

0/(8⇥
2
1) and the minima

�Rmin = 2⇥R

⇧
|⇥0/⇥1|�⇥2

0/(4⇥
2
1).

In both 2D and 1D, the Z2 topological invariant [15–
18] of a TRI SC is determined by whether the pairing
potential has a negative sign on odd number of Fermi
surfaces each of which encloses a TRI momentum [17].
As shown in Fig. 2 and summarized in Table I [31], the
phase of the hybrid SC depends on the chemical potential
µ. For the case of �Rmin ⇤ |µ��0| ⇤ �Rmax, HBdG

k describes
a nodal SC. When |µ��0| > �Rmax, the SC is fully gapped
but in the trivial (⌅ = 0) phase since ⇥k has the same
sign on both Fermi circles. When |µ� �0| < �Rmin is satis-
fied, the pairing potential switches sign between the two
Fermi circles [32], and consequently the hybrid system re-
alizes a TRI topological SC (⌅ = 1). The energy window
for tuning the system into the ⌅ = 1 state has the size
of 2�Rmin with an optimized value 4⇥R at ⇥0 = ±2⇥1.
For the ⌅ = 1 state helical Majorana edge states emerge
at the boundary, as shown in Fig. 2, the spectrum of a
infinite ribbon described by Eq. (1). The Majoranas at
k = ⇧ (0) for sgn(⇥0/⇥1) = 1 (�1) are protected by
time reversal and particle-hole symmetries.

1D TRI topological SC.— By turning o⌃ all the ky
terms Eq. (2) models a 1D Rashba nanowire deposited
on a nodeless s± wave SC. When the two s± wave or-
der parameters satisfy |⇥0| < 2⇥1, the pairing potential
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FIG. 2. Upper panels: the two Fermi surfaces (blue and
green) of the single-particle bands for the ⌅ = 1 state; the
closed nodal line (red) of �k, separating two regions in which
�k has opposite signs. Lower panel: BdG spectrum of a 2D
ribbon as a function of k for the ⌅ = 1 state with µ = �0.
The red and green lines indicate the helical Majorana edge
states. We choose parameter values: t = 10, ⇥R = 5, and
|�0| = �1 = 2. (a) �0 > 0 and (b) �0 < 0.

switches sign between the two TRI momenta 0 and ⇧. In
1D, the closed nodal line of ⇥k is shrunk to two nodes at
k = ± arccos(�⇥0/2⇥1). At the nodes, the Rashba en-
ergy is �Rm = 2⇥R

⇧
1�⇥2

0/(4⇥
2
1), and thus a proximity

induced 1D TRI nodal SC is identified for µ = �0 ± �Rm.
When |µ� �0| < �Rm, a positive pairing is induced for the
inner pair of Fermi points while a negative pairing for
the outer pair, realizing a 1D TRI topological SC. In the
case of |µ��0| > �Rm, the hybrid system becomes a trivial
SC that is adiabatically connected to the vacuum state.

At each end of a 1D TRI topological SC, there emerges
a Kramers pair of Majorana bound states (MBS). With-
out loss of generality, in the rest of this paper we will
set ⇥0 = 0 for the 1D case and thus |µ| < 2⇥R is the
criterion for the ⌅ = 1 state, as shown in Fig. 3(a). The
cyan line denotes four degenerate MBS’s independent of
⇥1. Further investigation of their wavefunctions shows
that these four MBS’s form two Kramers pairs localized
at the opposite ends of nanowire. This verifies our ana-
lytical results summarized in Table I.

Mirror Fractional Josephson e�ect.— Consider the lin-
ear Josephson junction in Fig. 1(b), in which a Rashba
nanowire is deposited on a larger s± wave SC ring, and
the phase di⌃erence � = (2e/~)⇧ across the junction
is controlled by the magnetic flux ⇧ through the ring.
Fig. 3(b) shows the spectrum of ABS’s as a function of �
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but in the trivial (⌅ = 0) phase since ⇥k has the same
sign on both Fermi circles. When |µ� �0| < �Rmin is satis-
fied, the pairing potential switches sign between the two
Fermi circles [32], and consequently the hybrid system re-
alizes a TRI topological SC (⌅ = 1). The energy window
for tuning the system into the ⌅ = 1 state has the size
of 2�Rmin with an optimized value 4⇥R at ⇥0 = ±2⇥1.
For the ⌅ = 1 state helical Majorana edge states emerge
at the boundary, as shown in Fig. 2, the spectrum of a
infinite ribbon described by Eq. (1). The Majoranas at
k = ⇧ (0) for sgn(⇥0/⇥1) = 1 (�1) are protected by
time reversal and particle-hole symmetries.

1D TRI topological SC.— By turning o⌃ all the ky
terms Eq. (2) models a 1D Rashba nanowire deposited
on a nodeless s± wave SC. When the two s± wave or-
der parameters satisfy |⇥0| < 2⇥1, the pairing potential
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FIG. 2. Upper panels: the two Fermi surfaces (blue and
green) of the single-particle bands for the ⌅ = 1 state; the
closed nodal line (red) of �k, separating two regions in which
�k has opposite signs. Lower panel: BdG spectrum of a 2D
ribbon as a function of k for the ⌅ = 1 state with µ = �0.
The red and green lines indicate the helical Majorana edge
states. We choose parameter values: t = 10, ⇥R = 5, and
|�0| = �1 = 2. (a) �0 > 0 and (b) �0 < 0.
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k = ± arccos(�⇥0/2⇥1). At the nodes, the Rashba en-
ergy is �Rm = 2⇥R
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1), and thus a proximity

induced 1D TRI nodal SC is identified for µ = �0 ± �Rm.
When |µ� �0| < �Rm, a positive pairing is induced for the
inner pair of Fermi points while a negative pairing for
the outer pair, realizing a 1D TRI topological SC. In the
case of |µ��0| > �Rm, the hybrid system becomes a trivial
SC that is adiabatically connected to the vacuum state.

At each end of a 1D TRI topological SC, there emerges
a Kramers pair of Majorana bound states (MBS). With-
out loss of generality, in the rest of this paper we will
set ⇥0 = 0 for the 1D case and thus |µ| < 2⇥R is the
criterion for the ⌅ = 1 state, as shown in Fig. 3(a). The
cyan line denotes four degenerate MBS’s independent of
⇥1. Further investigation of their wavefunctions shows
that these four MBS’s form two Kramers pairs localized
at the opposite ends of nanowire. This verifies our ana-
lytical results summarized in Table I.

Mirror Fractional Josephson e�ect.— Consider the lin-
ear Josephson junction in Fig. 1(b), in which a Rashba
nanowire is deposited on a larger s± wave SC ring, and
the phase di⌃erence � = (2e/~)⇧ across the junction
is controlled by the magnetic flux ⇧ through the ring.
Fig. 3(b) shows the spectrum of ABS’s as a function of �
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our case, kBTK ⇤ � for U ⇤ 8.5t and we we see that
the transition to the ⌅ phase takes place between U = 6t
and U = 10t.

We now turn to analyze the topological case shown in
the top panel of the figure, in which case, we see that the
Josephson current has always the same sign (0 phase)
and no signature of a transition to a ⌅ phase has been
found. The behavior of J as a function of ⌃ is always
very similar to the non-interacting case. In particular,
in the thermodynamic limit it shows the discontinuity
at ⌃ = ⌅ (blurred by finite.size e⇥ects in the figure),
which in the non-interacting case we have explained as
due to the degeneracy of the Andreev states. The results
shown in the figure, suggest that such degeneracy per-
sists even in the presence of the many-body interaction
in the quantum dot. We interpret this behavior as a con-
sequence of a robust screening of the spin of the quantum
dot by the Andreev states formed with combinations of
the Kramers pairs of Majorana states at neighboring left
and right ends of the wires.

E�ective Hamiltonian. In order to further understand
the nature of the low-energy bound states at the quan-
tum dot within the topological phase and the consequent
behavior of the Josephson current, we formulate an e⇥ec-
tive model. In this phase, the superconducting isolated
wires have zero-energy excitations at the edges that can
be described as Majorana fermions. The edge states can
be represented by Bogoliubov operators with the follow-
ing properties [32]

�†
L = �†

L,� = i�L,⇥, �†
R = �†

R,� = �i�R,⇥. (5)

The e⇥ective Hamiltonian describing the direct tunneling
from left to right wires is Hdir

e� = t0ei⇥/2
⇧

� �
†
L,��R,� +

H.c. [32]. Due to Eqs. (5) it can be expressed as

Hdir
e� = 2t0 cos(⌃/2)

⇤
�†
L�R +H.c

⌅
=

⌃

�

E(⌃)
�
�†
��� � 1

⇥

(6)
where in the last step it has been diagonalized by

�� =
1�
2
(�L + �R) , �⇥ = � i�

2

⇤
�†
L � �†

R

⌅
, (7)

with eigenenergies E(⌃) = 2t0 cos(⌃/2). The degeneracy
of these two states should be traced to the symmetry of
the original Hamiltonian under time reversal and change
of sign of ⌃[23]. The many-body states of this Hamilto-
nian are |0⌃, |⇧⌃ = ��|0⌃, | ⌅⇧⌃ = ���⇥|0⌃ with eigenen-
ergies E0 = �2t0 cos(⌃/2), E� = 0, E2 = 2t0 cos(⌃/2),
respectively. The spectrum is 4⌅-periodic and the value
⌃ = ⌅ mod(2⌅) corresponds to a 4-fold degeneracy.

In the presence of the quantum dot, the e⇥ective

Hamiltonian is He� = t0ei⇥/4
⇧

�

⇤
�†
L,�d� + d†��R,�

⌅
+

H.c.+Hd. Using (5) and the operators (7) it reads

He� =
⌃

�

�
tc�

†
�d� � ts��d�

⇥
+H.c+Hd, (8)
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FIG. 3. (Color online) Spectrum of He� as a function of �
for di�erent values of the parameters. Upper left panels cor-
respond to the diagonalization of the (non-interacting) BdG
Hamiltonian in the Nambu space. The corresponding many-
body states are shown in the bottom where red and blue plots
correspond to states with odd (even) number of quasiparticle
excitations. Right panel: many-body spectrum of the inter-
acting Hamiltonian.

with tc = 2t0 cos(⌃/4) and ts = 2t0 sin(⌃/4). This Hamil-
tonian contains a pairing term with triplet nature, which
is interpreted as induced by proximity to the topolog-
ical superconductivity of the wires. The spectrum of
He� is shown in Fig. 3. The top left panels correspond
to diagonalizing the Hamiltonian matrix in the Nambu
representation and should be compared to the bottom
left and middle panels of Fig. 1. We see that it repro-
duces qualitatively the low energy spectrum of Andreev
states localized at the junction in the topological phase
at µ = 0. The case with ⇥d = 0 = U = 0 is very in-
teresting. Performing a rotation of the spin quantization
axis to the x-direction, the Hamiltonian transforms to
He� =

⇧
�

�
tc�†

�d� � ts��d�
⇥
+ H.c., which corresponds

to two copies (one for each ⇧) of the Kitaev model in a
2-site lattice [16]. For ⌃ = 0, tc = t0, ts = 0 this Hamil-
tonian is a normal tunneling between the Andreev states
and the dot, while for ⌃ = ⌅, tc = ts, which is the exactly
solvable limit of Kitaev model. Hence, the evolution of
⌃ behaves as an adiabatic domain wall from a normal to
a topological phase of a molecule with induced “p-wave”
superconductivity. The e⇥ective Hamiltonian can be di-
agonalized in Nambu space. The corresponding eigenen-
ergies are ±E1,±E2 with E1,2(⌃) = [tc(⌃) ± ts(⌃)],
which implies an 8⌅ periodicity of the spectrum, shown
in the upper left panel of Fig. 3. In the quasiparti-
cle basis, the e⇥ective Hamiltonian can be written as

He� =
⇧

�,j=1,2 Ej(⌃)
⇤
�†
j��j,� � 1/2

⌅
and the many-
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Josephson current has always the same sign (0 phase)
and no signature of a transition to a ⌅ phase has been
found. The behavior of J as a function of ⌃ is always
very similar to the non-interacting case. In particular,
in the thermodynamic limit it shows the discontinuity
at ⌃ = ⌅ (blurred by finite.size e⇥ects in the figure),
which in the non-interacting case we have explained as
due to the degeneracy of the Andreev states. The results
shown in the figure, suggest that such degeneracy per-
sists even in the presence of the many-body interaction
in the quantum dot. We interpret this behavior as a con-
sequence of a robust screening of the spin of the quantum
dot by the Andreev states formed with combinations of
the Kramers pairs of Majorana states at neighboring left
and right ends of the wires.

E�ective Hamiltonian. In order to further understand
the nature of the low-energy bound states at the quan-
tum dot within the topological phase and the consequent
behavior of the Josephson current, we formulate an e⇥ec-
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wires have zero-energy excitations at the edges that can
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our case, kBTK ⇤ � for U ⇤ 8.5t and we we see that
the transition to the ⌅ phase takes place between U = 6t
and U = 10t.

We now turn to analyze the topological case shown in
the top panel of the figure, in which case, we see that the
Josephson current has always the same sign (0 phase)
and no signature of a transition to a ⌅ phase has been
found. The behavior of J as a function of ⌃ is always
very similar to the non-interacting case. In particular,
in the thermodynamic limit it shows the discontinuity
at ⌃ = ⌅ (blurred by finite.size e⇥ects in the figure),
which in the non-interacting case we have explained as
due to the degeneracy of the Andreev states. The results
shown in the figure, suggest that such degeneracy per-
sists even in the presence of the many-body interaction
in the quantum dot. We interpret this behavior as a con-
sequence of a robust screening of the spin of the quantum
dot by the Andreev states formed with combinations of
the Kramers pairs of Majorana states at neighboring left
and right ends of the wires.

E�ective Hamiltonian. In order to further understand
the nature of the low-energy bound states at the quan-
tum dot within the topological phase and the consequent
behavior of the Josephson current, we formulate an e⇥ec-
tive model. In this phase, the superconducting isolated
wires have zero-energy excitations at the edges that can
be described as Majorana fermions. The edge states can
be represented by Bogoliubov operators with the follow-
ing properties [32]

�†
L = �†

L,� = i�L,⇥, �†
R = �†

R,� = �i�R,⇥. (5)

The e⇥ective Hamiltonian describing the direct tunneling
from left to right wires is Hdir

e� = t0ei⇥/2
⇧

� �
†
L,��R,� +

H.c. [32]. Due to Eqs. (5) it can be expressed as

Hdir
e� = 2t0 cos(⌃/2)

⇤
�†
L�R +H.c

⌅
=

⌃

�

E(⌃)
�
�†
��� � 1

⇥

(6)
where in the last step it has been diagonalized by

�� =
1�
2
(�L + �R) , �⇥ = � i�

2

⇤
�†
L � �†

R

⌅
, (7)

with eigenenergies E(⌃) = 2t0 cos(⌃/2). The degeneracy
of these two states should be traced to the symmetry of
the original Hamiltonian under time reversal and change
of sign of ⌃[23]. The many-body states of this Hamilto-
nian are |0⌃, |⇧⌃ = ��|0⌃, | ⌅⇧⌃ = ���⇥|0⌃ with eigenen-
ergies E0 = �2t0 cos(⌃/2), E� = 0, E2 = 2t0 cos(⌃/2),
respectively. The spectrum is 4⌅-periodic and the value
⌃ = ⌅ mod(2⌅) corresponds to a 4-fold degeneracy.

In the presence of the quantum dot, the e⇥ective

Hamiltonian is He� = t0ei⇥/4
⇧

�

⇤
�†
L,�d� + d†��R,�

⌅
+

H.c.+Hd. Using (5) and the operators (7) it reads

He� =
⌃

�

�
tc�

†
�d� � ts��d�

⇥
+H.c+Hd, (8)

-3

-2

-1

0

1

2

3

E(
φ)

-3

-2

-1

0

1

2

3

0 0.5 1 1.5 2
φ/π

-4

-3

-2

-1

0

1

2

E(
φ)

0 0.5 1 1.5 2
φ/π

-2

-1

0

1

2

E(
φ)

0 0.5 1 1.5 2
φ/π

-2

-1

0

1

2

3

4

U=4t0

εd=0 εd=t0

εd=-U/2

FIG. 3. (Color online) Spectrum of He� as a function of �
for di�erent values of the parameters. Upper left panels cor-
respond to the diagonalization of the (non-interacting) BdG
Hamiltonian in the Nambu space. The corresponding many-
body states are shown in the bottom where red and blue plots
correspond to states with odd (even) number of quasiparticle
excitations. Right panel: many-body spectrum of the inter-
acting Hamiltonian.

with tc = 2t0 cos(⌃/4) and ts = 2t0 sin(⌃/4). This Hamil-
tonian contains a pairing term with triplet nature, which
is interpreted as induced by proximity to the topolog-
ical superconductivity of the wires. The spectrum of
He� is shown in Fig. 3. The top left panels correspond
to diagonalizing the Hamiltonian matrix in the Nambu
representation and should be compared to the bottom
left and middle panels of Fig. 1. We see that it repro-
duces qualitatively the low energy spectrum of Andreev
states localized at the junction in the topological phase
at µ = 0. The case with ⇥d = 0 = U = 0 is very in-
teresting. Performing a rotation of the spin quantization
axis to the x-direction, the Hamiltonian transforms to
He� =

⇧
�

�
tc�†

�d� � ts��d�
⇥
+ H.c., which corresponds

to two copies (one for each ⇧) of the Kitaev model in a
2-site lattice [16]. For ⌃ = 0, tc = t0, ts = 0 this Hamil-
tonian is a normal tunneling between the Andreev states
and the dot, while for ⌃ = ⌅, tc = ts, which is the exactly
solvable limit of Kitaev model. Hence, the evolution of
⌃ behaves as an adiabatic domain wall from a normal to
a topological phase of a molecule with induced “p-wave”
superconductivity. The e⇥ective Hamiltonian can be di-
agonalized in Nambu space. The corresponding eigenen-
ergies are ±E1,±E2 with E1,2(⌃) = [tc(⌃) ± ts(⌃)],
which implies an 8⌅ periodicity of the spectrum, shown
in the upper left panel of Fig. 3. In the quasiparti-
cle basis, the e⇥ective Hamiltonian can be written as

He� =
⇧

�,j=1,2 Ej(⌃)
⇤
�†
j��j,� � 1/2

⌅
and the many-
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our case, kBTK ⇤ � for U ⇤ 8.5t and we we see that
the transition to the ⌅ phase takes place between U = 6t
and U = 10t.

We now turn to analyze the topological case shown in
the top panel of the figure, in which case, we see that the
Josephson current has always the same sign (0 phase)
and no signature of a transition to a ⌅ phase has been
found. The behavior of J as a function of ⌃ is always
very similar to the non-interacting case. In particular,
in the thermodynamic limit it shows the discontinuity
at ⌃ = ⌅ (blurred by finite.size e⇥ects in the figure),
which in the non-interacting case we have explained as
due to the degeneracy of the Andreev states. The results
shown in the figure, suggest that such degeneracy per-
sists even in the presence of the many-body interaction
in the quantum dot. We interpret this behavior as a con-
sequence of a robust screening of the spin of the quantum
dot by the Andreev states formed with combinations of
the Kramers pairs of Majorana states at neighboring left
and right ends of the wires.

E�ective Hamiltonian. In order to further understand
the nature of the low-energy bound states at the quan-
tum dot within the topological phase and the consequent
behavior of the Josephson current, we formulate an e⇥ec-
tive model. In this phase, the superconducting isolated
wires have zero-energy excitations at the edges that can
be described as Majorana fermions. The edge states can
be represented by Bogoliubov operators with the follow-
ing properties [32]

�†
L = �†

L,� = i�L,⇥, �†
R = �†

R,� = �i�R,⇥. (5)

The e⇥ective Hamiltonian describing the direct tunneling
from left to right wires is Hdir

e� = t0ei⇥/2
⇧

� �
†
L,��R,� +

H.c. [32]. Due to Eqs. (5) it can be expressed as

Hdir
e� = 2t0 cos(⌃/2)

⇤
�†
L�R +H.c

⌅
=

⌃
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E(⌃)
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�†
��� � 1

⇥

(6)
where in the last step it has been diagonalized by

�� =
1�
2
(�L + �R) , �⇥ = � i�

2

⇤
�†
L � �†

R

⌅
, (7)

with eigenenergies E(⌃) = 2t0 cos(⌃/2). The degeneracy
of these two states should be traced to the symmetry of
the original Hamiltonian under time reversal and change
of sign of ⌃[23]. The many-body states of this Hamilto-
nian are |0⌃, |⇧⌃ = ��|0⌃, | ⌅⇧⌃ = ���⇥|0⌃ with eigenen-
ergies E0 = �2t0 cos(⌃/2), E� = 0, E2 = 2t0 cos(⌃/2),
respectively. The spectrum is 4⌅-periodic and the value
⌃ = ⌅ mod(2⌅) corresponds to a 4-fold degeneracy.

In the presence of the quantum dot, the e⇥ective

Hamiltonian is He� = t0ei⇥/4
⇧

�

⇤
�†
L,�d� + d†��R,�

⌅
+

H.c.+Hd. Using (5) and the operators (7) it reads

He� =
⌃
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tc�

†
�d� � ts��d�

⇥
+H.c+Hd, (8)
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with tc = 2t0 cos(⌃/4) and ts = 2t0 sin(⌃/4). This Hamil-
tonian contains a pairing term with triplet nature, which
is interpreted as induced by proximity to the topolog-
ical superconductivity of the wires. The spectrum of
He� is shown in Fig. 3. The top left panels correspond
to diagonalizing the Hamiltonian matrix in the Nambu
representation and should be compared to the bottom
left and middle panels of Fig. 1. We see that it repro-
duces qualitatively the low energy spectrum of Andreev
states localized at the junction in the topological phase
at µ = 0. The case with ⇥d = 0 = U = 0 is very in-
teresting. Performing a rotation of the spin quantization
axis to the x-direction, the Hamiltonian transforms to
He� =

⇧
�

�
tc�†

�d� � ts��d�
⇥
+ H.c., which corresponds

to two copies (one for each ⇧) of the Kitaev model in a
2-site lattice [16]. For ⌃ = 0, tc = t0, ts = 0 this Hamil-
tonian is a normal tunneling between the Andreev states
and the dot, while for ⌃ = ⌅, tc = ts, which is the exactly
solvable limit of Kitaev model. Hence, the evolution of
⌃ behaves as an adiabatic domain wall from a normal to
a topological phase of a molecule with induced “p-wave”
superconductivity. The e⇥ective Hamiltonian can be di-
agonalized in Nambu space. The corresponding eigenen-
ergies are ±E1,±E2 with E1,2(⌃) = [tc(⌃) ± ts(⌃)],
which implies an 8⌅ periodicity of the spectrum, shown
in the upper left panel of Fig. 3. In the quasiparti-
cle basis, the e⇥ective Hamiltonian can be written as

He� =
⇧

�,j=1,2 Ej(⌃)
⇤
�†
j��j,� � 1/2

⌅
and the many-
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our case, kBTK ⇤ � for U ⇤ 8.5t and we we see that
the transition to the ⌅ phase takes place between U = 6t
and U = 10t.

We now turn to analyze the topological case shown in
the top panel of the figure, in which case, we see that the
Josephson current has always the same sign (0 phase)
and no signature of a transition to a ⌅ phase has been
found. The behavior of J as a function of ⌃ is always
very similar to the non-interacting case. In particular,
in the thermodynamic limit it shows the discontinuity
at ⌃ = ⌅ (blurred by finite.size e⇥ects in the figure),
which in the non-interacting case we have explained as
due to the degeneracy of the Andreev states. The results
shown in the figure, suggest that such degeneracy per-
sists even in the presence of the many-body interaction
in the quantum dot. We interpret this behavior as a con-
sequence of a robust screening of the spin of the quantum
dot by the Andreev states formed with combinations of
the Kramers pairs of Majorana states at neighboring left
and right ends of the wires.

E�ective Hamiltonian. In order to further understand
the nature of the low-energy bound states at the quan-
tum dot within the topological phase and the consequent
behavior of the Josephson current, we formulate an e⇥ec-
tive model. In this phase, the superconducting isolated
wires have zero-energy excitations at the edges that can
be described as Majorana fermions. The edge states can
be represented by Bogoliubov operators with the follow-
ing properties [32]

�†
L = �†

L,� = i�L,⇥, �†
R = �†

R,� = �i�R,⇥. (5)

The e⇥ective Hamiltonian describing the direct tunneling
from left to right wires is Hdir

e� = t0ei⇥/2
⇧

� �
†
L,��R,� +

H.c. [32]. Due to Eqs. (5) it can be expressed as

Hdir
e� = 2t0 cos(⌃/2)

⇤
�†
L�R +H.c

⌅
=

⌃

�

E(⌃)
�
�†
��� � 1

⇥

(6)
where in the last step it has been diagonalized by

�� =
1�
2
(�L + �R) , �⇥ = � i�

2

⇤
�†
L � �†

R

⌅
, (7)

with eigenenergies E(⌃) = 2t0 cos(⌃/2). The degeneracy
of these two states should be traced to the symmetry of
the original Hamiltonian under time reversal and change
of sign of ⌃[23]. The many-body states of this Hamilto-
nian are |0⌃, |⇧⌃ = ��|0⌃, | ⌅⇧⌃ = ���⇥|0⌃ with eigenen-
ergies E0 = �2t0 cos(⌃/2), E� = 0, E2 = 2t0 cos(⌃/2),
respectively. The spectrum is 4⌅-periodic and the value
⌃ = ⌅ mod(2⌅) corresponds to a 4-fold degeneracy.

In the presence of the quantum dot, the e⇥ective

Hamiltonian is He� = t0ei⇥/4
⇧

�

⇤
�†
L,�d� + d†��R,�

⌅
+

H.c.+Hd. Using (5) and the operators (7) it reads

He� =
⌃

�

�
tc�

†
�d� � ts��d�

⇥
+H.c+Hd, (8)
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with tc = 2t0 cos(⌃/4) and ts = 2t0 sin(⌃/4). This Hamil-
tonian contains a pairing term with triplet nature, which
is interpreted as induced by proximity to the topolog-
ical superconductivity of the wires. The spectrum of
He� is shown in Fig. 3. The top left panels correspond
to diagonalizing the Hamiltonian matrix in the Nambu
representation and should be compared to the bottom
left and middle panels of Fig. 1. We see that it repro-
duces qualitatively the low energy spectrum of Andreev
states localized at the junction in the topological phase
at µ = 0. The case with ⇥d = 0 = U = 0 is very in-
teresting. Performing a rotation of the spin quantization
axis to the x-direction, the Hamiltonian transforms to
He� =

⇧
�

�
tc�†

�d� � ts��d�
⇥
+ H.c., which corresponds

to two copies (one for each ⇧) of the Kitaev model in a
2-site lattice [16]. For ⌃ = 0, tc = t0, ts = 0 this Hamil-
tonian is a normal tunneling between the Andreev states
and the dot, while for ⌃ = ⌅, tc = ts, which is the exactly
solvable limit of Kitaev model. Hence, the evolution of
⌃ behaves as an adiabatic domain wall from a normal to
a topological phase of a molecule with induced “p-wave”
superconductivity. The e⇥ective Hamiltonian can be di-
agonalized in Nambu space. The corresponding eigenen-
ergies are ±E1,±E2 with E1,2(⌃) = [tc(⌃) ± ts(⌃)],
which implies an 8⌅ periodicity of the spectrum, shown
in the upper left panel of Fig. 3. In the quasiparti-
cle basis, the e⇥ective Hamiltonian can be written as

He� =
⇧

�,j=1,2 Ej(⌃)
⇤
�†
j��j,� � 1/2

⌅
and the many-
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our case, kBTK ⇤ � for U ⇤ 8.5t and we we see that
the transition to the ⌅ phase takes place between U = 6t
and U = 10t.

We now turn to analyze the topological case shown in
the top panel of the figure, in which case, we see that the
Josephson current has always the same sign (0 phase)
and no signature of a transition to a ⌅ phase has been
found. The behavior of J as a function of ⌃ is always
very similar to the non-interacting case. In particular,
in the thermodynamic limit it shows the discontinuity
at ⌃ = ⌅ (blurred by finite.size e⇥ects in the figure),
which in the non-interacting case we have explained as
due to the degeneracy of the Andreev states. The results
shown in the figure, suggest that such degeneracy per-
sists even in the presence of the many-body interaction
in the quantum dot. We interpret this behavior as a con-
sequence of a robust screening of the spin of the quantum
dot by the Andreev states formed with combinations of
the Kramers pairs of Majorana states at neighboring left
and right ends of the wires.

E�ective Hamiltonian. In order to further understand
the nature of the low-energy bound states at the quan-
tum dot within the topological phase and the consequent
behavior of the Josephson current, we formulate an e⇥ec-
tive model. In this phase, the superconducting isolated
wires have zero-energy excitations at the edges that can
be described as Majorana fermions. The edge states can
be represented by Bogoliubov operators with the follow-
ing properties [32]

�†
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L,� = i�L,⇥, �†
R = �†

R,� = �i�R,⇥. (5)

The e⇥ective Hamiltonian describing the direct tunneling
from left to right wires is Hdir

e� = t0ei⇥/2
⇧

� �
†
L,��R,� +

H.c. [32]. Due to Eqs. (5) it can be expressed as

Hdir
e� = 2t0 cos(⌃/2)

⇤
�†
L�R +H.c

⌅
=

⌃
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E(⌃)
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�†
��� � 1

⇥

(6)
where in the last step it has been diagonalized by

�� =
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2
(�L + �R) , �⇥ = � i�

2

⇤
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L � �†

R

⌅
, (7)

with eigenenergies E(⌃) = 2t0 cos(⌃/2). The degeneracy
of these two states should be traced to the symmetry of
the original Hamiltonian under time reversal and change
of sign of ⌃[23]. The many-body states of this Hamilto-
nian are |0⌃, |⇧⌃ = ��|0⌃, | ⌅⇧⌃ = ���⇥|0⌃ with eigenen-
ergies E0 = �2t0 cos(⌃/2), E� = 0, E2 = 2t0 cos(⌃/2),
respectively. The spectrum is 4⌅-periodic and the value
⌃ = ⌅ mod(2⌅) corresponds to a 4-fold degeneracy.

In the presence of the quantum dot, the e⇥ective

Hamiltonian is He� = t0ei⇥/4
⇧

�

⇤
�†
L,�d� + d†��R,�

⌅
+

H.c.+Hd. Using (5) and the operators (7) it reads

He� =
⌃
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�
tc�

†
�d� � ts��d�

⇥
+H.c+Hd, (8)
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respond to the diagonalization of the (non-interacting) BdG
Hamiltonian in the Nambu space. The corresponding many-
body states are shown in the bottom where red and blue plots
correspond to states with odd (even) number of quasiparticle
excitations. Right panel: many-body spectrum of the inter-
acting Hamiltonian.

with tc = 2t0 cos(⌃/4) and ts = 2t0 sin(⌃/4). This Hamil-
tonian contains a pairing term with triplet nature, which
is interpreted as induced by proximity to the topolog-
ical superconductivity of the wires. The spectrum of
He� is shown in Fig. 3. The top left panels correspond
to diagonalizing the Hamiltonian matrix in the Nambu
representation and should be compared to the bottom
left and middle panels of Fig. 1. We see that it repro-
duces qualitatively the low energy spectrum of Andreev
states localized at the junction in the topological phase
at µ = 0. The case with ⇥d = 0 = U = 0 is very in-
teresting. Performing a rotation of the spin quantization
axis to the x-direction, the Hamiltonian transforms to
He� =

⇧
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tc�†

�d� � ts��d�
⇥
+ H.c., which corresponds

to two copies (one for each ⇧) of the Kitaev model in a
2-site lattice [16]. For ⌃ = 0, tc = t0, ts = 0 this Hamil-
tonian is a normal tunneling between the Andreev states
and the dot, while for ⌃ = ⌅, tc = ts, which is the exactly
solvable limit of Kitaev model. Hence, the evolution of
⌃ behaves as an adiabatic domain wall from a normal to
a topological phase of a molecule with induced “p-wave”
superconductivity. The e⇥ective Hamiltonian can be di-
agonalized in Nambu space. The corresponding eigenen-
ergies are ±E1,±E2 with E1,2(⌃) = [tc(⌃) ± ts(⌃)],
which implies an 8⌅ periodicity of the spectrum, shown
in the upper left panel of Fig. 3. In the quasiparti-
cle basis, the e⇥ective Hamiltonian can be written as

He� =
⇧

�,j=1,2 Ej(⌃)
⇤
�†
j��j,� � 1/2

⌅
and the many-
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our case, kBTK ⇤ � for U ⇤ 8.5t and we we see that
the transition to the ⌅ phase takes place between U = 6t
and U = 10t.

We now turn to analyze the topological case shown in
the top panel of the figure, in which case, we see that the
Josephson current has always the same sign (0 phase)
and no signature of a transition to a ⌅ phase has been
found. The behavior of J as a function of ⌃ is always
very similar to the non-interacting case. In particular,
in the thermodynamic limit it shows the discontinuity
at ⌃ = ⌅ (blurred by finite.size e⇥ects in the figure),
which in the non-interacting case we have explained as
due to the degeneracy of the Andreev states. The results
shown in the figure, suggest that such degeneracy per-
sists even in the presence of the many-body interaction
in the quantum dot. We interpret this behavior as a con-
sequence of a robust screening of the spin of the quantum
dot by the Andreev states formed with combinations of
the Kramers pairs of Majorana states at neighboring left
and right ends of the wires.

E�ective Hamiltonian. In order to further understand
the nature of the low-energy bound states at the quan-
tum dot within the topological phase and the consequent
behavior of the Josephson current, we formulate an e⇥ec-
tive model. In this phase, the superconducting isolated
wires have zero-energy excitations at the edges that can
be described as Majorana fermions. The edge states can
be represented by Bogoliubov operators with the follow-
ing properties [32]
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L,� = i�L,⇥, �†
R = �†

R,� = �i�R,⇥. (5)

The e⇥ective Hamiltonian describing the direct tunneling
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⇧
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†
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H.c. [32]. Due to Eqs. (5) it can be expressed as

Hdir
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where in the last step it has been diagonalized by

�� =
1�
2
(�L + �R) , �⇥ = � i�
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�†
L � �†

R

⌅
, (7)

with eigenenergies E(⌃) = 2t0 cos(⌃/2). The degeneracy
of these two states should be traced to the symmetry of
the original Hamiltonian under time reversal and change
of sign of ⌃[23]. The many-body states of this Hamilto-
nian are |0⌃, |⇧⌃ = ��|0⌃, | ⌅⇧⌃ = ���⇥|0⌃ with eigenen-
ergies E0 = �2t0 cos(⌃/2), E� = 0, E2 = 2t0 cos(⌃/2),
respectively. The spectrum is 4⌅-periodic and the value
⌃ = ⌅ mod(2⌅) corresponds to a 4-fold degeneracy.

In the presence of the quantum dot, the e⇥ective

Hamiltonian is He� = t0ei⇥/4
⇧

�

⇤
�†
L,�d� + d†��R,�

⌅
+

H.c.+Hd. Using (5) and the operators (7) it reads

He� =
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+H.c+Hd, (8)
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with tc = 2t0 cos(⌃/4) and ts = 2t0 sin(⌃/4). This Hamil-
tonian contains a pairing term with triplet nature, which
is interpreted as induced by proximity to the topolog-
ical superconductivity of the wires. The spectrum of
He� is shown in Fig. 3. The top left panels correspond
to diagonalizing the Hamiltonian matrix in the Nambu
representation and should be compared to the bottom
left and middle panels of Fig. 1. We see that it repro-
duces qualitatively the low energy spectrum of Andreev
states localized at the junction in the topological phase
at µ = 0. The case with ⇥d = 0 = U = 0 is very in-
teresting. Performing a rotation of the spin quantization
axis to the x-direction, the Hamiltonian transforms to
He� =
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tc�†

�d� � ts��d�
⇥
+ H.c., which corresponds

to two copies (one for each ⇧) of the Kitaev model in a
2-site lattice [16]. For ⌃ = 0, tc = t0, ts = 0 this Hamil-
tonian is a normal tunneling between the Andreev states
and the dot, while for ⌃ = ⌅, tc = ts, which is the exactly
solvable limit of Kitaev model. Hence, the evolution of
⌃ behaves as an adiabatic domain wall from a normal to
a topological phase of a molecule with induced “p-wave”
superconductivity. The e⇥ective Hamiltonian can be di-
agonalized in Nambu space. The corresponding eigenen-
ergies are ±E1,±E2 with E1,2(⌃) = [tc(⌃) ± ts(⌃)],
which implies an 8⌅ periodicity of the spectrum, shown
in the upper left panel of Fig. 3. In the quasiparti-
cle basis, the e⇥ective Hamiltonian can be written as
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respectively. The spectrum is 4⌅-periodic and the value
⌃ = ⌅ mod(2⌅) corresponds to a 4-fold degeneracy.
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is interpreted as induced by proximity to the topolog-
ical superconductivity of the wires. The spectrum of
He� is shown in Fig. 3. The top left panels correspond
to diagonalizing the Hamiltonian matrix in the Nambu
representation and should be compared to the bottom
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states localized at the junction in the topological phase
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to two copies (one for each ⇧) of the Kitaev model in a
2-site lattice [16]. For ⌃ = 0, tc = t0, ts = 0 this Hamil-
tonian is a normal tunneling between the Andreev states
and the dot, while for ⌃ = ⌅, tc = ts, which is the exactly
solvable limit of Kitaev model. Hence, the evolution of
⌃ behaves as an adiabatic domain wall from a normal to
a topological phase of a molecule with induced “p-wave”
superconductivity. The e⇥ective Hamiltonian can be di-
agonalized in Nambu space. The corresponding eigenen-
ergies are ±E1,±E2 with E1,2(⌃) = [tc(⌃) ± ts(⌃)],
which implies an 8⌅ periodicity of the spectrum, shown
in the upper left panel of Fig. 3. In the quasiparti-
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Figure 3: (a) 2D QSH model with finite tunneling probability
between the edges. (b) A closed path in parameters space en-
circling the gapless region (cones) corresponding to a fermion
parity pump. The path is not contractible due to the persis-
tence of the gapless region for B ̸= 0.

spin pump discussed in Ref. [39, 40]. The spin pumping
property can be used as an experimental signature of the
anomalous edge states. At φ = π each edge supports two
degenerate (many-body) states with an opposite expec-
tation value of Sz. Since the two states differ by adding a
single electron or hole, they must have ⟨Sz⟩ = ±1/4 [35].
When φ is changed adiabatically by 2π, the local spin of
the edge switches. If Sz is not conserved, the unit of spin
transferred between the edges during the adiabatic cycle
is not quantized; however, we still expect ⟨Sz⟩ of each
edge to flip its sign over one cycle.

The pumping property becomes particularly transpar-
ent if one considers an alternative model, illustrated in
Fig. 3a. Consider a strip of a 2D quantum spin Hall
(QSH) material with 1D helical edge states. If the width
of the strip is finite, the tunneling amplitude t⊥ between
the edge states is non-zero. The opposite sides of the
strip are proximity-coupled to two s-wave SCs with a
phase difference of φ.

In absence of a magnetic field and in the t⊥ → 0 limit,
a cycle in which φ changes by 2π can be realized by pass-
ing a superconducting vortex through the QSH strip (be-
tween the two SCs), along the x direction. Such a vortex
induces a voltage along the y direction, which in its turn
will lead to a spin current along the x direction. The
total spin transferred between the ends of the QSH strip
in this process is 1/2, corresponding to a single fermion.
Hence, such a cycle exactly serves as a fermion parity
pump. Note that the use of a QSH is not essential for
the pumping phenomena. In the QSH model, however,
the origin of the pumping is evident.

Denoting the two edges of the QSH state by σz = ±1,
we can write the following low energy effective Hamilto-
nian:

H = (vkszσz − t⊥σx − µ) τz+Bsz+∆ cos
φ

2
τx+∆ sin

φ

2
σzτy.

(6)
Here, v is the velocity of the edge modes, µ is their chem-
ical potential, B is an applied Zeeman field, and ∆ is the

induced pairing potential. We examine the phase dia-
gram of the system in the parameter space spanned by
∆, φ and B, Fig. 3b. For B = 0 and φ = 0,π, the system
is TRI. For µ > t⊥, the gapless point ∆ = 0 separates
between the trivial and the topological phases. When a
magnetic field is turned on, the gapless point does not
disappear but turns into a finite region |∆| ≤ |B|. As we
change φ by 2π, the path in parameter space encircles
a gapless region and can not be contracted to a point
without crossing it. This is a consequence of the fermion
parity pumping property of this cycle[41].

Discussion.−We have presented a general setup to re-
alize a time reversal invariant TSC by proximity cou-
pling a quantum wire with strong SOC to conventional
superconductors. The TSC phase can be identified by
the presence of a pair of zero-energy Majorana bound
states at each edge, protected by time-reversal symme-
try. Thus, we expect a zero-bias peak to appear in the
tunneling conductance into the edge of the system when
the phase difference between the two superconductors is
φ = π. Intriguingly, varying φ adiabatically by 2π pumps
both fermion parity and spin between the edges.
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tation value of Sz. Since the two states differ by adding a
single electron or hole, they must have ⟨Sz⟩ = ±1/4 [35].
When φ is changed adiabatically by 2π, the local spin of
the edge switches. If Sz is not conserved, the unit of spin
transferred between the edges during the adiabatic cycle
is not quantized; however, we still expect ⟨Sz⟩ of each
edge to flip its sign over one cycle.
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the origin of the pumping is evident.
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is TRI. For µ > t⊥, the gapless point ∆ = 0 separates
between the trivial and the topological phases. When a
magnetic field is turned on, the gapless point does not
disappear but turns into a finite region |∆| ≤ |B|. As we
change φ by 2π, the path in parameter space encircles
a gapless region and can not be contracted to a point
without crossing it. This is a consequence of the fermion
parity pumping property of this cycle[41].

Discussion.−We have presented a general setup to re-
alize a time reversal invariant TSC by proximity cou-
pling a quantum wire with strong SOC to conventional
superconductors. The TSC phase can be identified by
the presence of a pair of zero-energy Majorana bound
states at each edge, protected by time-reversal symme-
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tunneling conductance into the edge of the system when
the phase difference between the two superconductors is
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TK ⇤ ⇥/kB . At that point, the available states of the
superconducting wires have so high energies that they are
not able to screen the electron in the dot, which behaves
as a disentangled spin. Instead, in the topological regime
shown in the upper panel of the figure, we see exactly the
same behavior as in the non-interacting quantum dot pre-
sented in Fig. 2 for all the values of U . In particular, the
sharp jump of the Josephson current at ⌅ = ⇤ can be
clearly distinguished as in the non-interacting case. We
interpret this feature as a signature of the formation of a
Kondo singlet with a localized spin at the quantum dot
and the Majorana fermions acting as a screening cloud.
Irrespectively the smallness of the Kondo temperature in
comparison to the superconducting gap, the Majorana
states hybridize with the singly occupied quantum dot
forming a singlet with the localized spin at the dot. This
resonant state is akin to the non-interacting quantum dot
regarding the behavior of the Josephson current.

In order to further understand the nature of the low-
energy bound states at the quantum dot within the
topological phase we formulate an e⇤ective model. In
this phase, the superconducting isolated wires have zero-
energy excitations at the edges that can be described as
Majorana fermions. The edge states can be represented
by Bogoliubov operators with the following properties16

�†
L = �†

L," = i�L,#, �†
R = �†

R," = �i�R,#. (4)

The e⇤ective Hamiltonian describing the quantum dot
with tunneling coupling to these states reads

He� = t0e
i⇤/4

⇧

⇥

⇤
�†
L,⇥d⇥ + d†⇥�R,⇥

⌅
+H.c.+Hd, (5)

where t0 is an e⇤ective hopping parameter that depends
on the parameters of H� and t0. The Bogoliubov op-
erators can be expressed in terms of Majorana fermions
�†�,± = ��,± as ��," = (��,+ � i��,�)/2. Due to the
relations (4) the

Substituting in Eq. (5) the e⇤ective Hamiltonian can
be expressed as

He� =
⇧

s=±,⇥

�
tcc

†
sd⇥ � tscsd⇥

⇥
+H.c+Hd, (6)

with tc = 2t0 cos(⌅/4) and ts = 2t0 sin(⌅/4). We have
introduced new fermion operators c" = �L + �R and
c# = �i(�L � �R). These operators represent the e⇤ec-
tive fermionic bath constituted by the Majoranas of the
chains. Due to the relation (4) of the zero-energy modes
at the ends of the topological superconducting chains,
the states |�L,R = �†

L,R|0 are not eigenstates of Sz,
but are not orthogonal. They can be characterized by
the symmetry Mz = iSz. In fact, Mz|�L = i|�L ,
while ��L|M†

z = �i��L|, indicating that |�L and ��L|
are eigenstates of Mz with eigenvalues ±i, respectively.
The states associated to �R are analogous. The e⇤ective
Hamiltonian (6), however commutes with Sz = Sz

c + Sz
d ,

where Sz
d is the z-component of the spin in impurity while
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FIG. 4. (Color online) Eigenenergies of Heff as a function
of � for U = 4 and t0 = 1. Blue corresponds to states with
odd parity and are double degenerate in Sz. Red corresponds
to states with even parity and Sz = 0. Solid corresponds to
label t = �1 and dashed to t = 1 (see appendix). The plot
in dot-dashed lines corresponds to a 2-fold degenerate state
(with t = ±1) of the subspace with even parity and Sz = 0.
Cyan corresponds to the 2-fold degenerate state with even
parity and Sz = ±1.

Sz
c is the z-component of the pseudospin defined by the

two states associated to the operators c",#. In what fol-
lows we will refer to this symmetry as total spin in the
z-direction. Interestingly, in this notation, the e⇤ective
Hamiltonian has exactly the same symmetries as the orig-
inal one (I think). Concretely, the relevant symmetries
of Heff are (i) the spin conservation in the z-direction,
Sz above mentioned, (ii) conservation of the parity of the
number of particles P and (iii) there is another symme-
try which we name T which is discussed in Appendix C.
I first thought it was total spin but I think that Heff

and H does not commute with S2. Suspect T is time-
reversal but not sure. In Appendix C we present the rel-
evant states classified according to these symmetries. In
Fig. 4 we show the behavior of the corresponding eigen-
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In Fig. 5 we benchmark the accuracy of He� to de-

scribe the localized states of the quantum dot against
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FIG. 5. (Color online) Upper panel: Local density of states at
the quantum dot in the topological phase with t0 = t, ⇧ = U/2,
� = t/2, � = t/5 and µ = 0. On the left sub-panel ⌅ =
0.3⇤ and on the right ⌅ = 0.8⇤, as indicated. Lower panel:
evolution of the spectrum as a function of ⌅ with the same
values of the parameters as above. The dark lines correspond
to the prediction of He� with t0 = 0.3, U = 1.2 with an
additional on-site energy ⇧0 = 0.04 at the non-interacting
site, in order to simulate the coupling to the continuum at
⌅ = 0.

the results calculated by the full solution of the problem
with quantum Monte Carlo. With the latter technique it
is possible to calculate the local density of states

⌅⇤(⌥) = �2Im[GR
d,⇤(⌥)] (7)

by recourse to analytic continuation of the Matsubara
Monte Carlo data to the real axis with a Max-Entropy
method? . In the top panel of the Fig. 5 we show ⌅⇤(⌥)
for a fixed flux ⇧ = 0.3⇤ and 0.8⇤. The edge of the
gap is indicated with dashed lines. We can distinguish
peaks corresponding to sub-gap states resulting from the

hybridization of the dot with the Majorana states of
the wires, as well as high-energy peaks centered at ap-
proximately ±U/2. The latter are the usual Coulomb-
blockade features of the Kondo-correlated quantum dot
while the low-energy peaks determine the behavior of the
Josephson current. In the bottom panel of Fig. 5 we show
the corresponding evolution of the spectral features as
functions of ⇧. Interestingly, the qualitative behavior of
the main features can be represented with the spectrum
of levels of the e�ective Hamiltonian He� (shown in the
dark lines). In the latter case, the density of states is
defined from

⌅e�,⇤(⌥) =
2⇤

Z

�

m,n

(e�⇥Em
even + e�⇥En

odd)|⇧⌃n
odd|d⇤|⌃m

even⌃|2

⇥⇥(⌥ � En
odd + Em

even), (8)

being Z the partition function. The e�ective model is ex-
pected to be accurate at ⇧ ⌅ ⇤ in which case the states
formed by the Majoranas at the end of the chains hy-
bridized with the states of the dot have energies below the
superconducting gap. For other values of ⇧, these states
have energies above the superconducting gap. Hence,
they hybridize with the continuum of quasiparticle exci-
tations and this ingredient has not been taken into ac-
count in He� . Nevertheless, they qualitatively reproduce
the behavior of the numerical exact solution.
Conclusions We have studied the behavior of the

Josephson current through a quantum dot attached to
two time-reversal topological superconducting wires. In
the case of a quantum dot without interactions, the
topological phase with Majorana end-states presents a
jump in the Josephson junction when the superconduct-
ing phase di�erence is ⇧ = ⇤. For a quantum dot with
Coulomb interaction we found that the correlated states
at the dot are entangled with the Majorana states at the
superconducting wires. This originates a resonance at the
quantum dot akin to the Kondo e�ect and the quantum
dot exhibits the same behavior as a non-interacting one.
This is in contrast to what is found in trivial supercon-
ductors attached to quantum dots, which present a tran-
sition from a 0 to a ⇤ junction. This peculiar behavior
could be useful in the experimental quest for Majorana
bound states.
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1International Center for Advanced Studies, Escuela de Ciencia y Tecnologı́a,
Universidad Nacional de San Martı́n-UNSAM, Av 25 de Mayo y Francia, 1650 Buenos Aires, Argentina

2Departamento de Fı́sica, FCEyN, Universidad de Buenos Aires and IFIBA,
Pabellón I, Ciudad Universitaria, 1428 CABA Argentina
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We study all the possible di↵erent two terminal configurations of Josephson junctions containing wires of
time-reversal invariant topological superconductors (TRITOPS) and ordinary superconductors, including com-
binations with an interacting quantum dot between both wires in the junction. We introduce simple e↵ective
Hamiltonians which explain the di↵erent qualitative behaviors obtained. We analyze a wide range of phenom-
ena, including occurrence and quenching of the so called 0 � ⇡ transition, anomalous periodicity and jumps
of the Josephson current as a function of the phase di↵erence, and finite Josephson current in the absence of
magnetic flux.

I. INTRODUCTION

Topological states of the matter is an ubiquitous topic of sev-
eral areas of physics, including the communities of solid state
physics,1, photonic sciences,2 and cold-atoms.3 The branch
of topological superconductivity is paramount to the field of
quantum computation, after the seminal idea by Kitaev4 and
coworkers5 of exploiting the non-abelian nature of anyons.
Low-dimensional topological superconductors are promising
candidates for realizing topological q-bits, since they host Ma-
jorana zero-modes as edge states6,7. This motivated a number
of proposals to produce the topological phases in structures
of quantum wires proximity-coupled to macroscopic super-
conductors as q-bit platforms. A prominent one is the model
proposed in Refs. 8 and 9, which is under active experimental
investigation.10–13

The Kitaev model6 and several other models for topologi-
cal superconductivity,8,9 are based on ingredients that break
time-reversal symmetry. In contrast, there is another fam-
ily, the TRITOPS, which belongs to the DIII class and hosts
zero-energy edge excitations that appear in Kramers pairs.
So far there are no experimental realizations of this topo-
logical phase, although it is receiving significant theoreti-
cal attention in the last years.14–41 An interesting character-
istic, of these end modes is the fact that they have frac-
tional spin projection.21 This property can be relevant for their
detection.31,34,35,37 Recently a universal gate set using TRI-
TOPS has been proposed.42

One of the most relevant and clear signatures of the super-
conducting phase is the Josephson e↵ect, which takes place
in superconductor structures with an annular shape threaded
by a magnetic flux. The behavior of the generated Josephson
current as a function of the phase � = 2⇡�/�0, where � is
the flux and �0 = h/2e is the superconducting flux quantum,
constitutes a valuable tool to unveil interesting physics related
to the nature of the superconductor or to the junction itself. In
the case of ordinary superconductors, the current-phase rela-
tion has a periodicity of 2⇡.
In the case of junctions of topological superconducting wires,

the periodicity of the Andreev spectrum is 4⇡ (2⇡) if the elec-
tron parity of the system is (is not) conserved and there is a
level crossing at � = ⇡, which leads to a peculiar behavior
of the Josephson junction.6,43 Josephson junctions contain-
ing one-dimensional topological superconductors with bro-
ken time-reversal (TR) symmetry have been studied in sev-
eral works. Since the proposal by Fu and Kane for the real-
ization of the topological phase in a quantum spin Hall sys-
tem with a magnetic island, in proximity with a supercon-
ductor, the behavior of the Josephson current was suggested
as a way to detect the topological phase,44 and this system
was later analyzed in other works.45,46 Dynamical e↵ects in
Josephson junctions with topological wires with broken TR
were also analyzed,45,47,48 as well as other configurations in-
cluding quantum dots with many-body interactions and mul-
tiple terminals.49–57

The Josephson current in junctions of ordinary (non-
topological) time-reversal invariant superconductors with an
embedded interacting quantum dot (QD) has the same peri-
odicity with the magnetic flux as the direct junctions with-
out QD. Interestingly, they exhibit the so called 0 � ⇡
transition.59–68 This implies the inversion of the sign of the
Josephson current, as the control parameters change and mod-
ify the occupancy and the net spin of the QD, which is a con-
sequence of the many-body interactions and is originated in
the competition of the Kondo e↵ect with the superconducting
pairing. When the former one is dominant, the system is in the
0 phase, while when the latter turns to dominate, the transition
to the ⇡-phase takes place. When the junctions are made of
TRITOPS wires with an embedded interacting QD, and pre-
serve at least one component of the spin, the peculiarity is the
quenching of the 0�⇡ transition, as discussed in Ref. 34. This
is due to the screening of the magnetic moment of the quan-
tum dot by a combination of the zero-energy modes at both
sides of the quantum dot. This generates a correlated ground
state and the Josephson current displays a 0-phase behavior,
irrespectively of the strength of the many-body interactions
in the QD. Other remarkable feature is the existence of dis-
continuities with large jumps in the Josephson current at both
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Introduction. The combined e⇤ect of many-body inter-
actions in quantum dots and superconductivity in meso-
scopic transport has been a focus of interest for some
years now.1 An interesting scenario corresponds to the
quantum dot in the Kondo regime. It takes place at
temperatures below the Kondo temperature TK , and con-
sists of the generation of a screening cloud in the wires,
which couples with an electron confined in the quan-
tum dot to form a singlet. In the superconducting state,
the gap � conspires against this screening and di⇤erent
regimes result depending on the ratio �/TK . This has
an impact in the transport properties like the Joseph-
son e⇤ect, which motivated several experimental2–4 and
theoretical1,5–8 studies.

The prominent emergence of topological systems
brings about the interesting family of topological super-
conducting wires.9 In general, topological systems sup-
port edge states with peculiar properties. In the case
of topological superconductors the edge states are Ma-
jorana fermions and obey non-abelian statistics, which
makes them appealing to be used in quantum comput-
ing. An interesting model has been recently suggested,15

which could be fabricated in a wire with Rashba spin-
orbit interaction with induced s-wave symmetry due to
the proximity with a macroscopic ordinary superconduc-
tor. Unlike other systems previously studied,10–14 this
model is time-reversal symmetric and the Cooper pairs
are singlets and the Majorana states appear in Kramers
pairs in the superconducting gap. When such wires are
coupled to a quantum dot behaving as a Kondo impu-
rity, it is very interesting to analyze if the corresponding
Majorana states may contribute to the screening cloud
and which consequence this may have in the transport
behavior.

The goal of this work is to study a quantum dot mod-
eled by an Anderson impurity coupled to topological su-
perconducting wires described by the model of Ref. 15.
Particularly, we analyze the Kondo e⇤ect in this setup
and the behavior of the Josephson current. We focus on
identifying typical features that could be used as witness-
properties for the existence of Majorana edge-excitations.

Model. The full setup is sketched in Fig. 1, where meso-
scopic wires of length L of a material with Rashba spin-
orbit interaction are deposited on top of a macroscopic

ring of an ordinary s-wave superconductor threaded by a
magnetic flux ⇥. Superconductivity is induced into the
wires by proximity e⇤ect. A quantum dot is embedded
and attached to the wires. The Hamiltonian for the full
setup is H =

⇤
�=L,R (H� +Hc,�) +Hd. The first term

corresponds to the one-dimensional (1D) superconduct-
ing wires with N sites (L = Na, where a is the lattice
constant),

H� =
N⌅

⇥,j=1

�
�tc†�,j+1,⇥c�,j,⇥ + i�s⇥c

†
�,j+1,⇥c�,j,⇥

�µ n�,j,⇥ +�ei⇤�s⇥c
†
�,j+1,⇥c

†
�,j⇥ +H.c.

⇥
, (1)

with s�,⇥ = ± and ⌅ =⇧, ⇧ =⌅, which contains hopping
(t), Rashba spin-orbit (�) and extended s-wave pairing
(�). This model supports a superconducting topological
phase with Majorana edge states excitations for 2� ⇤ |µ|,
being µ the chemical potential. The phase di⇤erence ⌃L�
⌃R = ⌅/2 = 2⇤⇥/⇥0 accounts for the magnetic flux ⇥ in
units of the flux quantum ⇥0 = h/2e. The second term
corresponds to the tunneling contact between the wires

and the dot, Hc,� = �t⇤
⇤

⇥

�
c†�,1,⇥d⇥ +H.c.

⇥
. The last

term represents the quantum dot

Hd = ⇧d
⌅

⇥=�,⇥
nd,⇥ + Und�nd⇥. (2)

For simplicity, we consider a single level with energy ⇧
and U is the Coulomb interaction when it is occupied by
two electrons with opposite spins. We will focus on long
enough wires, for which the Majorana states at the end
opposite to the one attached to the quantum dot do not
play any role in the behavior of the midgap states in the
junction.

The dc Josephson current is induced by the magnetic

FIG. 1. Sketch of the setup.
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junction.
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FIG. 5. (Color online) Upper panel: Local density of states at
the quantum dot in the topological phase with t0 = t, ⇧ = U/2,
� = t/2, � = t/5 and µ = 0. On the left sub-panel ⌅ =
0.3⇤ and on the right ⌅ = 0.8⇤, as indicated. Lower panel:
evolution of the spectrum as a function of ⌅ with the same
values of the parameters as above. The dark lines correspond
to the prediction of He� with t0 = 0.3, U = 1.2 with an
additional on-site energy ⇧0 = 0.04 at the non-interacting
site, in order to simulate the coupling to the continuum at
⌅ = 0.

the results calculated by the full solution of the problem
with quantum Monte Carlo. With the latter technique it
is possible to calculate the local density of states

⌅⇤(⌥) = �2Im[GR
d,⇤(⌥)] (7)

by recourse to analytic continuation of the Matsubara
Monte Carlo data to the real axis with a Max-Entropy
method? . In the top panel of the Fig. 5 we show ⌅⇤(⌥)
for a fixed flux ⇧ = 0.3⇤ and 0.8⇤. The edge of the
gap is indicated with dashed lines. We can distinguish
peaks corresponding to sub-gap states resulting from the

hybridization of the dot with the Majorana states of
the wires, as well as high-energy peaks centered at ap-
proximately ±U/2. The latter are the usual Coulomb-
blockade features of the Kondo-correlated quantum dot
while the low-energy peaks determine the behavior of the
Josephson current. In the bottom panel of Fig. 5 we show
the corresponding evolution of the spectral features as
functions of ⇧. Interestingly, the qualitative behavior of
the main features can be represented with the spectrum
of levels of the e�ective Hamiltonian He� (shown in the
dark lines). In the latter case, the density of states is
defined from

⌅e�,⇤(⌥) =
2⇤

Z

�

m,n

(e�⇥Em
even + e�⇥En

odd)|⇧⌃n
odd|d⇤|⌃m

even⌃|2

⇥⇥(⌥ � En
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being Z the partition function. The e�ective model is ex-
pected to be accurate at ⇧ ⌅ ⇤ in which case the states
formed by the Majoranas at the end of the chains hy-
bridized with the states of the dot have energies below the
superconducting gap. For other values of ⇧, these states
have energies above the superconducting gap. Hence,
they hybridize with the continuum of quasiparticle exci-
tations and this ingredient has not been taken into ac-
count in He� . Nevertheless, they qualitatively reproduce
the behavior of the numerical exact solution.
Conclusions We have studied the behavior of the

Josephson current through a quantum dot attached to
two time-reversal topological superconducting wires. In
the case of a quantum dot without interactions, the
topological phase with Majorana end-states presents a
jump in the Josephson junction when the superconduct-
ing phase di�erence is ⇧ = ⇤. For a quantum dot with
Coulomb interaction we found that the correlated states
at the dot are entangled with the Majorana states at the
superconducting wires. This originates a resonance at the
quantum dot akin to the Kondo e�ect and the quantum
dot exhibits the same behavior as a non-interacting one.
This is in contrast to what is found in trivial supercon-
ductors attached to quantum dots, which present a tran-
sition from a 0 to a ⇤ junction. This peculiar behavior
could be useful in the experimental quest for Majorana
bound states.
Acknowledgements. We acknowledge support from
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� = 0, ⇡ in junctions with one TRITOPS and another ordinary
superconducting wire.28,32

The aim of the present work is the analysis and compari-
son of the Andreev spectrum and Josephson current of all
the possible configurations containing one or two TRITOPS
wires with spin-orbit interaction. We consider direct junctions
and junctions with an embedded interacting QD between both
wires. For the case of two TRITOPS wires, we consider the
e↵ect of di↵erent directions of the spin-orbit interaction of the
two wires. We focus only on configurations which are time-
reversal invariant at � = 0, ⇡.
The work is organized as follows. Section II contains the de-
scription of the theoretical model for the wires and the e↵ec-
tive Hamiltonian used to analyze the subgap Andreev spec-
trum. Results are presented in section III. Section IV is de-
voted to summary and conclusions.

II. MODEL

The full structure is modeled by the Hamiltonian H =
P
↵ H↵+

HJ , where ↵ = L,R labels the two wires, and HJ is the Hamil-
tonian for the junction. We describe the di↵erent pieces sepa-
rately

A. Wires

Each wire of the structure is modeled by the following Hamil-
tonian

H↵ =
X

i, j

h
 †↵,i h↵i j  ↵, j +  

†
↵,i �

↵
i j  

†
↵, j

i
+ H.c.,

h↵i j = � (t↵ + i�↵n↵ · �) � j,i+1 � µ↵�i, j

�↵i j =
⇣
�̃↵ � j,i+1 + �↵ �i, j

⌘
i�y (1)

where we have introduced the spinor  †↵, j =
⇣
c†↵, j,", c

†
↵, j,"
⌘

and
� =
⇣
�x,�y,�z

⌘
are the three Pauli matrices. The terms of the

normal part of the Hamiltonian are the nearest-neighbor hop-
ping t↵, and the spin-orbit interaction �↵ in the direction of the
vector n↵. The pairing potential has a local s-wave component
�↵, as well as an extended-s-wave component �̃↵ and µ↵ is the
chemical potential.
The Hamiltonian of Eq. (1) has time-reversal symmetry and
corresponds to the model introduced by Zhang-Kane-Mele in
Ref. 20 for TRITOPS (DIII class) in one dimension. The
key ingredients for the topological phase of class DIII are the
spin-orbit interaction �↵ and the extended s-wave pairing �̃↵.
The local s-wave pairing �↵ induces ordinary superconductiv-
ity. As discussed in Ref. 20, the TRITOPS phase takes place
within the range of chemical potentials satisfying |µ↵ � ✏0,↵| <
✏m,↵, being ✏0,↵ = (t↵�↵) /�̃↵ and ✏m,↵ = 2|�↵|

q
1 � �2

↵/
⇣
4�̃2

↵

⌘
.

This topological phase hosts Kramers pairs of end modes lo-
calized at the left and right edge of the wire, represented by
fermionic operators �↵,s, �̃↵,s, with s = ±, satisfying (see Ref.
35)

�†↵,+ = i sgn
⇣
�↵�̃↵

⌘
�↵,�, �̃†↵,+ = �i sgn

⇣
�↵�̃↵

⌘
�̃↵,�. (2)

Here, +, � denotes parallel or antiparallel orientations of the
spin along the direction n↵.

B. Junction

We consider two types of junctions. (i) A direct junction, de-
scribed by a tunneling Hamiltonian between the two wires,

HJ,dir = tJ

X

s

⇣
ei�/2c†L,scR,s + H.c.

⌘
. (3)

(ii) A junction containing an interacting quantum dot embed-
ded between the two wires

HJ,dot =
X

s

⇣
tLei�/4c†L,sds + tRei�/4d†s cR,s + H.c.

⌘
+ Hd,

Hd = "d
�
nd," + nd,#

�
+ Und"nd#. (4)

Here, � = 2⇡�/�0, where � is the total magnetic flux and the
index ↵ = L,R corresponds to the end site of the L,R wire,
which intervenes in the connection of the junction.

C. Configurations and symmetries

The di↵erent configurations are the following: S-S,
TRITOPS-TRITOPS, S-TRITOPS. The non-interacting case
can be analyzed by means of exactly diagonalizing the Hamil-
tonian of the wires. In order to analyze the configurations with
the interacting QD, we resort to low-energy e↵ective Hamil-
tonians. As we will see, such e↵ective Hamiltonians are also
useful to understand most of the relevant physical properties
of direct junctions.
Each wire separately has charge conjugation, time-reversal,
mirror symmetry (the spin projection in the direction of the
spin-orbit coupling is conserved), chiral. When they are con-
nected having di↵erent orientations of the spin-orbit interac-
tion, the two latter symmetries are broken. For a flux di↵erent
from zero or half a superconducting flux quantum (� , 0, ⇡),
also time-reversal symmetry is broken. For the whole system
the fermion parity is a conserved quantity.

III. LOW-ENERGY EFFECTIVE HAMILTONIANS

A. S-S

Following Ref. 59, we define the e↵ective low-energy Hamil-
tonian

He↵
S�S =

X

↵

⇣
�↵c†↵,"c

†
↵,# + H.c.

⌘
+ HJ , (5)

with HJ ⌘ HJ,dir, for a direct junction or HJ ⌘ HJ,dot, for a
junction with an embedded quantum dot. We discuss in Sec-
tion IV the validity of this e↵ective Hamiltonian.
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B. TRITOPS-TRITOPS

Following Ref. 34, we define an e↵ective Hamiltonian where
only the degrees of freedom associated to the zero modes of
the topological wires are taken into account. For the case of a
direct junction we have He↵

TRITOPS�TRITOPS = He↵
J,dir, and when

a dot is between the wires He↵
TRITOPS�D�TRITOPS = He↵

J,dot. De-
pending on the configuration we obtain

He↵
J,dir = tJ

X

s=",#
ei�/2�̃†L,s�R,s + H.c.,

He↵
J,dot = tJ

X

s=",#

⇣
ei�/4�̃†L,sds + d†s�R,s

⌘
+ H.c. + Hd. (6)

The operators �↵,s and �̃↵,s are related to the Bogoliubov oper-
ators representing the zero modes defined in Eq. (2) through
the transformation

�
�↵,", �↵,#

�T = U↵
�
�↵,+, �↵,�

�T ,
�
�̃↵,", �̃↵,#

�T = U↵
�
�̃↵,+, �̃↵,�

�T . (7)

The unitary matrix relating the operators is de-
fined from the orientation of the vector n↵ =
(sin ✓↵ cos'↵, sin ✓↵ sin'↵, cos ✓↵), as follows

U↵ =
 

cos ✓↵2 � sin ✓↵2 ei'↵

sin ✓↵2 e�i'↵ cos ✓↵2 .

!
. (8)

Without loss of generality we set nR along the z-direction and
sgn

⇣
�̃↵�↵

⌘
> 0. Denoting by �̃L,+ = �̃ and �R,+ = �, we have

�̃L," = cos
✓

2
�̃ � iei' sin

✓

2
�̃†, �R," = �,

�̃L,# = e�i' sin
✓

2
�̃ + i cos

✓

2
�̃†, �†R,# = i�, (9)

Substituting this transformation in Eqs. (6), and using the re-
lations of Eq. (2), we get the following e↵ective Hamiltonians

He↵
J,dir = t0�̃†� + �0�̃� + H.c., (10)

He↵
J,dot = HL + t�d†"� � it�d†#�

† + H.c. + Hd

HL =
X

s=",#

⇣
ts�̃
†ds + �s�̃ds

⌘
(11)

We have defined

t0 = 2tJ cos
✓

2
cos
�

2
, �0 = �2tJ sin

✓

2
sin
�

2
ei',

t" = t� cos
✓

2
, t# = t�ei' sin

✓

2
, t� = tJei�/4,

�" = it�e�i' sin
✓

2
, �# = �it� cos

✓

2
. (12)

Notice that Eqs. (10) are actually independent of the az-
imuthal angle ' as it might be expected. In fact, the lat-
ter can be eliminated by the following gauge transformation
�̃ ! ei'/2�̃, � ! ei'/2�, d" ! d"e�i'/2, d# ! d#ei'/2.
If the transformation that relates the zero modes �↵,� with
those entering Eq. (1) is known (for example numerically in
large chains or analytically as in Ref. 35), tJ can be calculated

explicitly. In the second Eq. (6) we have assumed tL = tR = t
for simplicity. In general tJ is smaller but of the order of t.
Since in the construction of the e↵ective Hamiltonian the en-
ergies above the superconducting gap have been neglected, the
quantitative validity of the e↵ective Hamiltonian is restricted
to tJ ⌧ |�̃↵|, |�↵|. The neglected terms in the derivation of the
e↵ective Hamiltonian are the hybridization of the zero modes
of the opposite chain (in the case of direct junction) or of the
degrees of freedom of the quantum dot (for the junction with
QD), with the high-energy quasiparticles above the gap in the
direct junction. Such processes can a↵ect the parameters of
the e↵ective Hamiltonian, but do not modify its form.

C. TRITOPS-S

In this case, the e↵ective Hamiltonian is a combination of
the e↵ective Hamiltonians previously formulated. Concretely,
He↵

TRITOPS�S = HJ + HS . The Hamiltonian HJ of the junc-
tion corresponds to He↵

J,dir for a direct junction and He↵
J,dot for

a junction with a quantum dot. In the former case, it can be
expressed as follows
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given in Eq. (8). It is interesting to notice the explicit phase
⇡/2 in the e↵ective pairing (2nd term of the above Hamil-
tonian), which is a consequence of the relations of Eq. (2)
satisfied by the zero end modes. This e↵ectively introduces a
phase in the junction, in addition to the one due to the mag-
netic flux.
Similarly, for the case of a quantum dot embedded in the
junction, we can perform the transformation (d+, d�)T =
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�T . Then, the
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where we are using the same definition of t� as in Eq. (12).
Notice that in this configuration, the e↵ective Hamiltonians
become independent of the orientation of the spin-orbit of the
TRITOPS wire, as expected.

IV. RESULTS

We show results calculated by the exact numerical diagonal-
ization of the full Hamiltonian in wires of finite length L,
along with the many-body spectrum calculated by the exact
diagonalization of the e↵ective Hamiltonians introduced in
Sections III A, III B and III C. The Josephson current is cal-
culated from
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� = 0, ⇡ in junctions with one TRITOPS and another ordinary
superconducting wire.28,32

The aim of the present work is the analysis and compari-
son of the Andreev spectrum and Josephson current of all
the possible configurations containing one or two TRITOPS
wires with spin-orbit interaction. We consider direct junctions
and junctions with an embedded interacting QD between both
wires. For the case of two TRITOPS wires, we consider the
e↵ect of di↵erent directions of the spin-orbit interaction of the
two wires. We focus only on configurations which are time-
reversal invariant at � = 0, ⇡.
The work is organized as follows. Section II contains the de-
scription of the theoretical model for the wires and the e↵ec-
tive Hamiltonian used to analyze the subgap Andreev spec-
trum. Results are presented in section III. Section IV is de-
voted to summary and conclusions.

II. MODEL

The full structure is modeled by the Hamiltonian H =
P
↵ H↵+

HJ , where ↵ = L,R labels the two wires, and HJ is the Hamil-
tonian for the junction. We describe the di↵erent pieces sepa-
rately

A. Wires

Each wire of the structure is modeled by the following Hamil-
tonian

H↵ =
X

i, j

h
 †↵,i h↵i j  ↵, j +  

†
↵,i �

↵
i j  

†
↵, j

i
+ H.c.,

h↵i j = � (t↵ + i�↵n↵ · �) � j,i+1 � µ↵�i, j

�↵i j =
⇣
�̃↵ � j,i+1 + �↵ �i, j

⌘
i�y (1)

where we have introduced the spinor  †↵, j =
⇣
c†↵, j,", c

†
↵, j,"
⌘

and
� =
⇣
�x,�y,�z

⌘
are the three Pauli matrices. The terms of the

normal part of the Hamiltonian are the nearest-neighbor hop-
ping t↵, and the spin-orbit interaction �↵ in the direction of the
vector n↵. The pairing potential has a local s-wave component
�↵, as well as an extended-s-wave component �̃↵ and µ↵ is the
chemical potential.
The Hamiltonian of Eq. (1) has time-reversal symmetry and
corresponds to the model introduced by Zhang-Kane-Mele in
Ref. 20 for TRITOPS (DIII class) in one dimension. The
key ingredients for the topological phase of class DIII are the
spin-orbit interaction �↵ and the extended s-wave pairing �̃↵.
The local s-wave pairing �↵ induces ordinary superconductiv-
ity. As discussed in Ref. 20, the TRITOPS phase takes place
within the range of chemical potentials satisfying |µ↵ � ✏0,↵| <
✏m,↵, being ✏0,↵ = (t↵�↵) /�̃↵ and ✏m,↵ = 2|�↵|

q
1 � �2

↵/
⇣
4�̃2

↵

⌘
.

This topological phase hosts Kramers pairs of end modes lo-
calized at the left and right edge of the wire, represented by
fermionic operators �↵,s, �̃↵,s, with s = ±, satisfying (see Ref.
35)

�†↵,+ = i sgn
⇣
�↵�̃↵

⌘
�↵,�, �̃†↵,+ = �i sgn

⇣
�↵�̃↵

⌘
�̃↵,�. (2)

Here, +, � denotes parallel or antiparallel orientations of the
spin along the direction n↵.

B. Junction

We consider two types of junctions. (i) A direct junction, de-
scribed by a tunneling Hamiltonian between the two wires,

HJ,dir = tJ

X

s

⇣
ei�/2c†L,scR,s + H.c.

⌘
. (3)

(ii) A junction containing an interacting quantum dot embed-
ded between the two wires

HJ,dot =
X

s

⇣
tLei�/4c†L,sds + tRei�/4d†s cR,s + H.c.

⌘
+ Hd,

Hd = "d
�
nd," + nd,#

�
+ Und"nd#. (4)

Here, � = 2⇡�/�0, where � is the total magnetic flux and the
index ↵ = L,R corresponds to the end site of the L,R wire,
which intervenes in the connection of the junction.

C. Configurations and symmetries

The di↵erent configurations are the following: S-S,
TRITOPS-TRITOPS, S-TRITOPS. The non-interacting case
can be analyzed by means of exactly diagonalizing the Hamil-
tonian of the wires. In order to analyze the configurations with
the interacting QD, we resort to low-energy e↵ective Hamil-
tonians. As we will see, such e↵ective Hamiltonians are also
useful to understand most of the relevant physical properties
of direct junctions.
Each wire separately has charge conjugation, time-reversal,
mirror symmetry (the spin projection in the direction of the
spin-orbit coupling is conserved), chiral. When they are con-
nected having di↵erent orientations of the spin-orbit interac-
tion, the two latter symmetries are broken. For a flux di↵erent
from zero or half a superconducting flux quantum (� , 0, ⇡),
also time-reversal symmetry is broken. For the whole system
the fermion parity is a conserved quantity.

III. LOW-ENERGY EFFECTIVE HAMILTONIANS

A. S-S

Following Ref. 59, we define the e↵ective low-energy Hamil-
tonian

He↵
S�S =

X

↵

⇣
�↵c†↵,"c

†
↵,# + H.c.

⌘
+ HJ , (5)

with HJ ⌘ HJ,dir, for a direct junction or HJ ⌘ HJ,dot, for a
junction with an embedded quantum dot. We discuss in Sec-
tion IV the validity of this e↵ective Hamiltonian.
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Figure 3: (a) 2D QSH model with finite tunneling probability
between the edges. (b) A closed path in parameters space en-
circling the gapless region (cones) corresponding to a fermion
parity pump. The path is not contractible due to the persis-
tence of the gapless region for B ̸= 0.

spin pump discussed in Ref. [39, 40]. The spin pumping
property can be used as an experimental signature of the
anomalous edge states. At φ = π each edge supports two
degenerate (many-body) states with an opposite expec-
tation value of Sz. Since the two states differ by adding a
single electron or hole, they must have ⟨Sz⟩ = ±1/4 [35].
When φ is changed adiabatically by 2π, the local spin of
the edge switches. If Sz is not conserved, the unit of spin
transferred between the edges during the adiabatic cycle
is not quantized; however, we still expect ⟨Sz⟩ of each
edge to flip its sign over one cycle.

The pumping property becomes particularly transpar-
ent if one considers an alternative model, illustrated in
Fig. 3a. Consider a strip of a 2D quantum spin Hall
(QSH) material with 1D helical edge states. If the width
of the strip is finite, the tunneling amplitude t⊥ between
the edge states is non-zero. The opposite sides of the
strip are proximity-coupled to two s-wave SCs with a
phase difference of φ.

In absence of a magnetic field and in the t⊥ → 0 limit,
a cycle in which φ changes by 2π can be realized by pass-
ing a superconducting vortex through the QSH strip (be-
tween the two SCs), along the x direction. Such a vortex
induces a voltage along the y direction, which in its turn
will lead to a spin current along the x direction. The
total spin transferred between the ends of the QSH strip
in this process is 1/2, corresponding to a single fermion.
Hence, such a cycle exactly serves as a fermion parity
pump. Note that the use of a QSH is not essential for
the pumping phenomena. In the QSH model, however,
the origin of the pumping is evident.

Denoting the two edges of the QSH state by σz = ±1,
we can write the following low energy effective Hamilto-
nian:

H = (vkszσz − t⊥σx − µ) τz+Bsz+∆ cos
φ

2
τx+∆ sin

φ

2
σzτy.

(6)
Here, v is the velocity of the edge modes, µ is their chem-
ical potential, B is an applied Zeeman field, and ∆ is the

induced pairing potential. We examine the phase dia-
gram of the system in the parameter space spanned by
∆, φ and B, Fig. 3b. For B = 0 and φ = 0,π, the system
is TRI. For µ > t⊥, the gapless point ∆ = 0 separates
between the trivial and the topological phases. When a
magnetic field is turned on, the gapless point does not
disappear but turns into a finite region |∆| ≤ |B|. As we
change φ by 2π, the path in parameter space encircles
a gapless region and can not be contracted to a point
without crossing it. This is a consequence of the fermion
parity pumping property of this cycle[41].

Discussion.−We have presented a general setup to re-
alize a time reversal invariant TSC by proximity cou-
pling a quantum wire with strong SOC to conventional
superconductors. The TSC phase can be identified by
the presence of a pair of zero-energy Majorana bound
states at each edge, protected by time-reversal symme-
try. Thus, we expect a zero-bias peak to appear in the
tunneling conductance into the edge of the system when
the phase difference between the two superconductors is
φ = π. Intriguingly, varying φ adiabatically by 2π pumps
both fermion parity and spin between the edges.
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Figure 3: (a) 2D QSH model with finite tunneling probability
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circling the gapless region (cones) corresponding to a fermion
parity pump. The path is not contractible due to the persis-
tence of the gapless region for B ̸= 0.

spin pump discussed in Ref. [39, 40]. The spin pumping
property can be used as an experimental signature of the
anomalous edge states. At φ = π each edge supports two
degenerate (many-body) states with an opposite expec-
tation value of Sz. Since the two states differ by adding a
single electron or hole, they must have ⟨Sz⟩ = ±1/4 [35].
When φ is changed adiabatically by 2π, the local spin of
the edge switches. If Sz is not conserved, the unit of spin
transferred between the edges during the adiabatic cycle
is not quantized; however, we still expect ⟨Sz⟩ of each
edge to flip its sign over one cycle.

The pumping property becomes particularly transpar-
ent if one considers an alternative model, illustrated in
Fig. 3a. Consider a strip of a 2D quantum spin Hall
(QSH) material with 1D helical edge states. If the width
of the strip is finite, the tunneling amplitude t⊥ between
the edge states is non-zero. The opposite sides of the
strip are proximity-coupled to two s-wave SCs with a
phase difference of φ.

In absence of a magnetic field and in the t⊥ → 0 limit,
a cycle in which φ changes by 2π can be realized by pass-
ing a superconducting vortex through the QSH strip (be-
tween the two SCs), along the x direction. Such a vortex
induces a voltage along the y direction, which in its turn
will lead to a spin current along the x direction. The
total spin transferred between the ends of the QSH strip
in this process is 1/2, corresponding to a single fermion.
Hence, such a cycle exactly serves as a fermion parity
pump. Note that the use of a QSH is not essential for
the pumping phenomena. In the QSH model, however,
the origin of the pumping is evident.

Denoting the two edges of the QSH state by σz = ±1,
we can write the following low energy effective Hamilto-
nian:

H = (vkszσz − t⊥σx − µ) τz+Bsz+∆ cos
φ

2
τx+∆ sin

φ

2
σzτy.

(6)
Here, v is the velocity of the edge modes, µ is their chem-
ical potential, B is an applied Zeeman field, and ∆ is the

induced pairing potential. We examine the phase dia-
gram of the system in the parameter space spanned by
∆, φ and B, Fig. 3b. For B = 0 and φ = 0,π, the system
is TRI. For µ > t⊥, the gapless point ∆ = 0 separates
between the trivial and the topological phases. When a
magnetic field is turned on, the gapless point does not
disappear but turns into a finite region |∆| ≤ |B|. As we
change φ by 2π, the path in parameter space encircles
a gapless region and can not be contracted to a point
without crossing it. This is a consequence of the fermion
parity pumping property of this cycle[41].

Discussion.−We have presented a general setup to re-
alize a time reversal invariant TSC by proximity cou-
pling a quantum wire with strong SOC to conventional
superconductors. The TSC phase can be identified by
the presence of a pair of zero-energy Majorana bound
states at each edge, protected by time-reversal symme-
try. Thus, we expect a zero-bias peak to appear in the
tunneling conductance into the edge of the system when
the phase difference between the two superconductors is
φ = π. Intriguingly, varying φ adiabatically by 2π pumps
both fermion parity and spin between the edges.
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is characterized by the energy scale set by the Kondo temper-
ature TK , which in the Kondo limit t↵ ⌧ �"d, t↵ ⌧ "d+U and
for � ! 0 is kBTK / exp[�1/(⇢J)] where ⇢ is the density of
conduction states and J = 2(t2

L + t2
R)U/["d("d + U)]).. Hence,

in the symmetric case "d = �U/2 as U increases, the Kondo
energy scale decreases. When kBTK ⌧ �R, it becomes ener-
getically non-convenient to build the Kondo singlet between
the localized electron and conductions electrons or holes at en-

ergy �R. Then, the ground state becomes one with odd parity
and an unscreened localized electron at the QD. The behavior
of the ground-state energy as a function of �, changes from
having a minimum at � = 0 and a maximum at � = ⇡ to the
opposite situation, with the consequent change of sign in the
Josephson current. The latter is, precisely, known as the 0 � ⇡
transition.
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of ✓ = 0, ⇡/4, ⇡/2, 3⇡/4 and ⇡. Other details are the same as in Fig.
1.

2. TRITOPS-QD-TRITOPS

Results for the Andreev spectra of a junction with an em-
bedded quantum dot calculated by diagonalizing the e↵ective
Hamiltonian are shown in Figs. 6. Only the low-energy sector
of the spectrum is shown. The case with the spin orbit of the
wires oriented along the same direction (✓ = 0) was previously
analyzed in Ref. 34 by means of a quantum Monte Carlo sim-
ulation to treat the interacting quantum dot. In addition an ef-
fective low-energy model of the Kondo type (constructed by a
Schrie↵er-Wol↵ transformation of the e↵ective Hamiltonian)
o↵ered a simpler explanation of the main physics. The results
shown in the top left panel of Fig. 6 coincide with the latter
picture. The spectrum is characterized by a four-fold degener-
ate crossing at � = ⇡. This is because, in addition to the cross-
ing of two states belonging to the subspace with even number
of particles, there is an additional crossing with a two-fold de-
generate state belonging to the subspace with odd number of
particles. Consequently, the Josephson current presents a dis-
continuity at � = ⇡. This feature has been already discussed
in Ref. 34.
This behavior is strongly modified when di↵erent orientations

TRITOPS-QD-TRITOPS.  
U 6= 0

No signatures of          transition induced by U0� ⇡

5

-0.1

0

0.1

J

L = 200

L = 100

L = 50

L = 30

L = 20

-0.1

0

0.1

J

0 0.5 1

φ/2π

-0.1

0

0.1

J

FIG. 2. Josephson current of a TRITOPS-TRITOPS junction with
direct tunneling between the wires for various orientations of the spin
orbit of the left wire. Results correspond to exact diagonalization
of finite chains. Top, middle and bottom panels correspond to ✓ =
0, 0.3⇡, ⇡, respectively. Parameters are � = 0, �̃ = 0.2, � = 0.5, µ =
0. Energies are indicated in units of t.

3. TRITOPS-S

The solution of the e↵ective Hamiltonian for the junction with
direct tunneling between the wires is very simple. Details
of the calculation of the many-body states are presented in
Appendix A. The resulting spectra and Josephson current are
shown in Figs. 3. As mentioned in the derivation of the ef-
fective Hamiltonian, this configuration is independent of the
orientation of the spin-orbit coupling. The features to high-
light are: (i) the discontinuity with a jump of the Josephson
current at zero flux. This is a consequence of the phase ⇡/2 in
the e↵ective pairing along the junction, which can be traced
back to the relation between the Bogoliubov operators repre-
senting the zero modes, expressed in Eq. (2). (ii) The other
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FIG. 3. Same as Fig. 1 for a TRITOPS-S junction with direct tunnel-
ing between the wires. We have considered �R = 1.5t.

interesting feature is the level crossing at � = ⇡. As it is
clear from the corresponding e↵ective Hamiltonian (see ap-
pendix A), both crossings at � = 0 and � = ⇡ are protected
by fermion parity, since the two levels that cross belong to
subspaces with di↵erent parity. (iii) It is also very interesting
the fact that the Josephson current seems to be approximately
periodic in ⇡ instead of in 2⇡. In fact, the low-energy e↵ec-
tive Hamiltonian is exactly periodic in ⇡ (see appendix A). In
the case of wires of finite length, the coupling of zero modes
modifies this picture, but the Fourier analysis of the Josephson
current anyway presents a strong component associated to this
half periodicity.
Results obtained by exact diagonalization of the wires are
shown in Fig. 4, where the e↵ect of the length of the wires
can be appreciated.

B. Junctions with embedded quantum dot

1. S-QD-S

The description of the leads –in which only one site is
considered– in the e↵ective Hamiltonian corresponds to the
atomic limit,59,66 in which the superconducting gap |�↵| is as-
sumed to be much larger then the hopping term |t↵|. In spite
of its simplicity, as we briefly discuss below this approxima-
tion is able to describe qualitatively the 0 � ⇡ transition .The
occurrence of the 0�⇡ transition is, precisely, main character-
istic of this junction. It takes place as the parameters "d and
U change with the quantum dot singly occupied. This transi-
tion has been widely discussed in the literature.59–67. In Fig.
5 we review the evolution of the spectrum and the Josephson
current as it takes place.
The 0 � ⇡ transition is related to the Kondo e↵ect, which con-
sists in the formation of a singlet between the localized spin at
the QD and the spins of the electrons in the wires. This e↵ect

Exact, U=0 Effective Hamiltonian

✓ = 0

✓ = ⇡

✓ = 0.3⇡
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is characterized by the energy scale set by the Kondo temper-
ature TK , which in the Kondo limit t↵ ⌧ �"d, t↵ ⌧ "d+U and
for � ! 0 is kBTK / exp[�1/(⇢J)] where ⇢ is the density of
conduction states and J = 2(t2

L + t2
R)U/["d("d + U)]).. Hence,

in the symmetric case "d = �U/2 as U increases, the Kondo
energy scale decreases. When kBTK ⌧ �R, it becomes ener-
getically non-convenient to build the Kondo singlet between
the localized electron and conductions electrons or holes at en-

ergy �R. Then, the ground state becomes one with odd parity
and an unscreened localized electron at the QD. The behavior
of the ground-state energy as a function of �, changes from
having a minimum at � = 0 and a maximum at � = ⇡ to the
opposite situation, with the consequent change of sign in the
Josephson current. The latter is, precisely, known as the 0 � ⇡
transition.
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2. TRITOPS-QD-TRITOPS

Results for the Andreev spectra of a junction with an em-
bedded quantum dot calculated by diagonalizing the e↵ective
Hamiltonian are shown in Figs. 6. Only the low-energy sector
of the spectrum is shown. The case with the spin orbit of the
wires oriented along the same direction (✓ = 0) was previously
analyzed in Ref. 34 by means of a quantum Monte Carlo sim-
ulation to treat the interacting quantum dot. In addition an ef-
fective low-energy model of the Kondo type (constructed by a
Schrie↵er-Wol↵ transformation of the e↵ective Hamiltonian)
o↵ered a simpler explanation of the main physics. The results
shown in the top left panel of Fig. 6 coincide with the latter
picture. The spectrum is characterized by a four-fold degener-
ate crossing at � = ⇡. This is because, in addition to the cross-
ing of two states belonging to the subspace with even number
of particles, there is an additional crossing with a two-fold de-
generate state belonging to the subspace with odd number of
particles. Consequently, the Josephson current presents a dis-
continuity at � = ⇡. This feature has been already discussed
in Ref. 34.
This behavior is strongly modified when di↵erent orientations

7

of the spin-orbit coupling of the wires are considered. As in
the case of the direct junction analyzed in Fig. 1, crossings
between states of the di↵erent subspaces take place within the
intervals 0 < � < ⇡ and ⇡ < � < 2⇡. The jumps in the
Josephson current take place at the crossing points. Also, as
in the case of the direct junction analyzed in Section IV A 2
in the limit of ✓ = ⇡, the crossing takes place at � = 0, as a
consequence of the phase between the zero end-modes given
in Eq. (2). This can be explicitly seen in Fig. 6.
Overall, the behavior of the Josephson current is practically
una↵ected by the many-body interaction at the quantum dot.
As in the case analyzed in Ref. 34 there is no signature of
the 0 � ⇡ transition as a function of U and the occupancy
of the QD. This is because the low-energy spectrum is domi-
nated by the zero modes, which hybridize to the QD to form
a combined state akin to the Kondo singlet, irrespectively of
the value of U. In the present case, the low-energy e↵ec-
tive Hamiltonian provides the right qualitative description of
the physics (high energy perturbative processes only introduce
minor corrections to the parameters).
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FIG. 7. Andreev spectrum (left) and Josephson current (right) of a
TRITOPS-QD-S junction for �R = 1.5t. Other parameters are the
same as in Fig. 6.

3. TRITOPS-QD-S

The solution of the e↵ective Hamiltonian of Eq. (14) for
the junction between TRITOPS and S wires with the embed-
ded quantum dot leads to the spectrum and Josephson current
shown in Figs. 7. We see similar features as in the case of
the direct coupling. In particular the features (i), (ii) and (iii)
described in Section IV A 3 are also observed in the case of
the junction with the embedded QD.
It is also interesting to highlight the absence of 0�⇡ transition

in this configuration. Due to the crossing of states of di↵erent
fermion-parity at flux ⇡, there is always a relative maximum
in the ground state energy E(�) there. Therefore, the 0 � ⇡
transition associated with a change from a maximum of E(�)
at � = ⇡ to a minimum, accompanied by a change in fermion
parity from even to odd as U increases, does not take place.
In the limit of�R ! 1, we can derive the e↵ective low-energy
Hamiltonian by recourse to a Schrie↵er-Wol↵ transformation,
which reads

Hlow = J
h�

nd# � nd"
�
�̃†�̃ + nd"

i
, (17)

with J = �|t�|2U/ ["d (U + "d)]. Therefore, as in the case
of the QD connected to two TRITOPS wires, the low-energy
states correspond to hybridizations of the zero modes with the
QD, irrespectively of the value of U. The ground state does
not experience any qualitative change, which explains the lack
of 0 � ⇡ transition as U changes.

V. SUMMARY AND CONCLUSIONS

We have analyzed the Andreev spectrum and the Joseph-
son current in di↵erent two-terminal configurations contain-
ing one or two TRITOPS wires with spin-orbit interaction. We
have analyzed the possibility of di↵erent orientations of the
spin-orbit coupling and the e↵ect of many-body interactions
when a quantum dot is embedded into the junction between
both wires.
For TRITOPS-TRITOPS configurations we find that the phase
introduced by the relative orientation of the spin-orbit cou-
pling of the wires plays a role, which is similar to the one due
to the magnetic flux. In this way, level crossings and the con-
sequent jumps of the Josephson current shift from � = ⇡ for
parallel orientations of the spin orbit to � = 0 to antiparallel
ones.
For TRITOPS-S junctions, we find an abrupt discontinuity
with a jump of the Josephson current at � = 0 as in previ-
ous works, as well as a strong component with periodicity of
half the superconducting flux quantum.28,32,36 These features
are, however, modified in wires of finite length due to the hy-
bridization of the zero modes.
For both cases, we find a quench of the 0 � ⇡ transition in
the presence of an interacting quantum dot in the junction.
The reason is the hybridization of the states localized at the
quantum dot with the zero modes of the TRITOPS wires, that
leads to a formation of a low-energy singlet. We show that
the zero mode of a single wire is enough to screen the local-
ized state inhibiting the transition to the ⇡ phase. In contrast,
for ordinary superconductors the formation of a Kondo singlet
requires taking quasiparticles with energy above the band gap.
All these features can be explained in terms of simple low-
energy e↵ective Hamiltonians.
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OUTLOOK
• TRITOPS phase induced in thin films of BiSe by proximity to 

s-wave superconductors.

• Zero-energy states with Sz=1/4 at the ends combine at the 
junction to form 1/2-spin that screen the localized spin of 
the quantum dot:  No transition to pi-junction! 

• Signatures in Josephson junctions TRITOPS-TRITOPS and 
TRITOPS-TRS. Main features well described by low-energy 
effective Hamiltonians.

• To do: experimental setups to realize the TRIPTOPS phase.
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