

DRLs in paediatric radiology

Jenia Vassileva, Ph.D.

Radiation Protection Specialist Radiation Protection of Patients Unit International Atomic Energy Agency, Vienna, Austria

International BSS: Optimization

Particular aspects of medical exposures to be considered in the optimization process for:

J. Vassileva

- Paediatric patients subject to medical exposure;
- Exposure of the embryo or fetus, in particular for radiological procedures in which the abdomen or pelvis of the pregnant female patient is exposed to the useful radiation beam or could otherwise receive a significant dose;

IAEA Safety Standards

Radiation Protection and Safety of Radiation Sources:

General Safety Requirements Part 3

International Basic

Safety Standards

No. GSR Part 3

Radiosensitivity of children

Children are generally at higher risk for radiation induced cancer than adults

Source: BEIR VII report

Radiosensitivity of children

Scientific data: radiogenic tumor incidence in children is more variable than in adults and depends on tumor type, age and gender.

• For about 25% of cancers children are more radiosensitive (leukemia and thyroid, skin, breast and brain cancer)

J. Vassileva

Radiosensitivity of children

Scientific data: radiogenic tumor incidence in children is more variable than in adults and depends on tumor type, age and gender.

- For about 25% of cancers children are more radiosensitive (leukemia and thyroid, skin, breast and brain cancer)
- For 15% sensitivity is the same (colon cancer)
- For 10% children are less radiosensitive than adults (lung cancer)
- For others week relationship

Radiological procedures in children

- Approximately 3-10 % of all X ray procedures are performed on children
- Percentage of the all procedures in health-care level I countries:

Radiography			Comp
Head/ skull	19%		Head
Extremities	15%		Abdo
Abdomen	13%		Thora
Spine AP	7-12%		Spine
Chest PA and Lat	9-12%	-	16
Pelvis/ hips	9%		Bercentag
Other radiographic	3-9%	A Dela	4 0 Germ

UNSCEAR (2013). UNSCEAR 2013 Report. Sources, effects and risks
of ionizing radiation. Volume II: Scientific Annex B: Effects of
radiation exposure of children.

Computed tomo	ography
Head	8%
Abdomen	4%
Thorax	5%
Spine	3%
20	
16	
age 12	
<u>a</u> 8	
4	
0 Germany Japan Europe (a) Europe ((b) Africa (a) Worldwide United States Asia (a) Asia (b) Africa (b)

WHO (2016). Communicating radiation risks in paediatric imaging: information to support health care discussions about benefit and risk.

J. Vassileva

• Increased individual doses for children Johnson JN et al. Circulation 2014. Glatz AC et al. J Pediatr. 2014

Johnson JN et al. Circulation 2014. 130:161-7

337 children with heart disease exposed to 13 932 radiation examinations:

CED 0.1 - 76.9 mSv

(median 2.7 mSv):92% of all exams radiography81% of ED from CT and cardiac catheterisations

<u>Glatz AC</u> et al, J Pediatr. 2014 Apr;164(4):789-794

4132 children with congenital heart disease subjected to 134 715 radiation exams Median 14 exams (majority radiographs) at ED of 0.96 mSv (majority from cardiac catheterization)

5.3% had >20 mSv/year

Seal A.et al. PLoS One. 2017 Jan 12;12(1):e0167922

54 paediatric transplant recipients had 6215 imaging studies CED ranged 4.1–400 mSv (median 78 mSv)

19 (35%) had >100 mSv

*CED = cumulative effective dose

J. Vassileva

Increased individual doses

Increased individual doses for children

Fuchs Y et al, J Pediatr Gastroenterol Nutr. 2011 Mar;52(3):280-5

257 children with IBD (171 with Crohn disease and 86 ulcerative colitis). Mean CED 17.6 mSv

15 (5.8%) had CED ≥50 mSv 14 of them with Crohn disease Huang JS et al. J Pediatr Gastroenterol Nutr. 2011 Nov;53(5):502-6

105 paediatric patients with IBD Mean CED 15 mSv $42\% \ge 10$ mSv $6\% \ge 50$ mSv Sauer CG et al. Inflamm Bowel Dis. 2011 Nov;17(11):2326-32

117 children with IBD(86 Crohn's disease and31 ulcerative colitis)

Median CED 15.1 mSv in CD and 7.2 mSv in UC (43% from CT)

47 out of 78 (60%) children would exceed 50 mSv by 35 years of age.

*CED = cumulative effective

IBD = inflammatory bowel disease

Use of non-optimized protocols

• The same exposure parameters are often used for children as for adults, resulting in higher than necessary doses to children

AJR:176, February 2001 From the Editor's Notebool	Anne Paterso Donald P. Fru Lane F. Donne	^{on¹} Heli ^{sh²} Heli	cal CT of the Adjusted fo	e Body: Are Settings or Pediatric Patients?
Taking Care of Children: Check Out the Parameters User for Helical C		onal Confe	erence on Dose an Emphasi	Reduction in CT, with
Minimizing Radiation Dose for Pediat Applications of Single-Detector Helical CT:	tric Body Strategies			Otha W. Linton ¹ and Fred A. Mettler, Jr. ²
at a Large Children Lane F. Donnelly ^{1,2} , Kathleen H. Emery ^{1,2} , Alan S. Brody ^{1,2} , Tal Laor ^{1,2} , Victoria M. Gylys-Morin ^{1,2} , Chr Stephen R. Thom.	's Hospital ristopher G. Anton ^{1,2} , as ² , Donald P. Frush ³	Helical C Technique	CT of the Body s Used for Pedia	: A Survey of tric Patients
Paediatric CT examinations in 19 developing ountries: frequency and radiation dose . E. Muhogora, N. A. Ahmed, J. S. AlSuwaidi, A. Beganovic, O. Ciraj-Bjelac,	Estimation of procedures A. Sulieman ^{a,*} , E	f effective do 3. Elhag ^b , M. All	ose and radiation risl	k in pediatric barium studies Theodorou ^e , C. Kappas ^e , D. Bradley ^{d,f}
Gershan, E. Gershkevitsh, E. Grupetta, M. H. Kharita, N. Manatrakul, Maroufi, M. Milakovic, K. Ohno, L. Ben Omrane, J. Ptacek, C. Schandorf, S. Shaaban, N. Toutaoui, D. Sakkas, J. S. Wambani, M. M. Rehani ☎ adiation Protection Dosimetry, Volume 140, Issue 1, June 2010, Pages 49– 8, https://doi.org/10.1093/rpd/ncq015	Paediatric CT Ex n the Federal Republic tesults of a Nation-wide Sur	xposure Pract c of Germany rvey in 2005/06	Francis R. Verdun Daniel Gutierrez John Paul Vader Abbas Aroua Leonor Trinidad Alamo-Maestre François Bochud François Codinabat	CT radiation dose in children: a survey to establish age-based diagnostic reference levels in Switzerland
N	1. Galanski, H.D. Nagel, G. S	Stamm	François Guunicilet	

Joint ICTP-IAEA workshop 2019

J. Vassileva

IAEA survey of practice in paediatric radiology

- Three phases (2009 2013)
- 40 countries, 126 hospitals, 146 CT facilities
 - Questionnaires for radiologists and for radiographers
 - Data collection: standard protocols and patient exams

AEA Survey of Pediatric CT Practice in 40 Countries in Asia, Europe, Latin America, and Africa: Part I, Frequency and Appropriateness		Eur Radiol DOI 10.1007/s00330-012-2639-3		- 1	
		AJR2012; 198:1021-1031	IAEA survey of paediatric	computed tomography practice in 40	0
lenia Vassileva ¹			countries in Asia, Europe,	Latin America and Africa:	
Madan M. Henani* Humoud Al-Dhuhli ³ Huda M. Al-Naemi ⁴ Jamila Salem Al-Suwaidi ⁵	Vesna Gershan ¹⁸ Eduard Gershkevitsh ¹⁸ Edward Gruppetta ²⁰	Patricia Mora ³² Wilbroad Muhogora ³³ Pirunthavany Muthuvelu ³⁴	procedures and protocols	Radiation Protection Dosimetry Advance	Access published April 1, 2015
Kimberly Appelgate ⁶ Danijela Arandjic ⁷ Since Homed Osman Bachier ⁸	Alexandru Hustuc ²¹ Sonja Ivanovic ²² Asif Jauhasi ²³	Leos Novak ²⁵ Aruna S. Pallewatte ³⁶ Mohamod Shaahaa ³⁷	Jenia Vassileva • Madan M. Rehani •	Radiation Protection Dosimetry (2015), pp. 1-11	doi:10.1093/rpd/ncv116
Adnan Beganovic ⁹	Mohammad Hassan Kharita ²⁴	Esti Shelly ³⁸	Kimberly Applegate • Nada A. Ahmed •		
fony Benavente ¹⁰ Fadeusz Bieganski ¹¹ Simone Dias ¹² Leila El-Nachef ¹³ Dario Faj ¹⁴ Mirtha E. Gamarra-Sánchez ¹⁶ Juan Garcia-Aquilar ¹⁶	Siarh Radiatio Nadii Hami Heler Desii Radiation Protection Dos Ivana Lant	n Protection Dosimetry A	doi:10.1093/rpd/ncv113	A STUDY TO ESTABLISH INTERNATION REFERENCE LEVELS FOR PAEDIATRIC TOMOGRAPHY	AL DIAGNOSTIC COMPUTED
and Gel Gel Addition	PATIENT GR ESTABLISH IN PAEDIAT	OUPING FOR DOSE MENT OF DIAGNOST RIC COMPUTED TOM	SURVEYS AND IC REFERENCE LEVELS MOGRAPHY	J. Vassileva ^{1,*} , M. Rehani ² , D. Kostova-Lefterova ³ , H. M. Al-Naen E. H. O. Bashier ⁷ , S. Kodlulovich Renha ⁸ , L. El-Nachef ⁹ , J. G. Agu E. Gruppetta ¹³ , A. Hustuc ¹⁴ , A. Jauhan ¹⁵ , Mohammad Hassan KI H. R. Khosravi ¹⁸ , H. Khoury ¹⁹ , I. Kralik ²⁰ , S. Mahere ²¹ , J. Mazuol P. Muthuvelu ²⁵ , D. Nikodemova ²⁶ , L. Novak ²⁷ , A. Pallewatte ²⁸ , D. K. Stepanyan ³² , N. Thelsy ³³ , P. Visrutaratna ³⁴ and A. Zaman ³⁵	ni ⁴ , J. S. Al Suwaidi ⁵ , D. Arandjic ⁶ , iilar ¹⁰ , V. Gershan ¹¹ , E. Gershkevitsh ¹² , harital ⁶ , N. Khelassi-Toutaoui ¹⁷ , liene ²² , P. Mora ²³ , W. Muhogora ²⁴ , Pekarovič ²⁹ , M. Shaaban ³⁰ , E. Shelly ³¹ ,
	J. Vassileva ^{1,*} and N	1. Rehani ²			

40 countries, 126 hospitals, 146 CT facilities73 (50%) in Asia51 (35%) in Europe10 (7%) in Africa

- China (3)
- Indonesia (1)
- Iran (10)
- Israel (7)
- Kuwait (5)
- Lebanon (6)
- Malaysia (1)
- Myanmar (1)
- Oman (1)
- Pakistan (5)
- Qatar (1)
- Singapore (1)
- Sri Lanka (2)
- Syria (8)
- Thailand (1)
- UAE (15)

J. Vassileva

Armenia (1) Belarus (1) Bosnia and Herzegovina (3) Bulgaria (12) Croatia (3) Czech Republic (6) Estonia (2) Lithuania (3) FYR Macedonia (5) Malta (1) Moldova (5) Montenegro (1) Poland (1) Serbia (3) Slovakia (4) Slovenia (1) Joint ICTP-IAEA workshop 2019 Algeria (4) Sudan (3) Tanzania (3)

12 (8%) in Latin America

- Brazil (5)
- Costa Rica (1)
- Mexico (1)
- Paraguay (3)

IAEA survey of practice in paediatric radiology

Frequency of paediatric exams: 95 CT facilities in 28 countries

- The frequency of paediatric CT examinations ranged from less than 1% to 49.4%.
- Head was the most frequently scanned body part (69%)
- No significant difference between regions

IAEA survey of practice in paediatric radiology Review of standard protocols

- Up to 22-fold variation of CTDI values:
 - Head CT: between 3.3 (>5-10 y) and 18 (<10-15 y)
 - Chest CT: between 6.4 (>5-10y) and 22.3 (>10-15y)
 - Abdomen CT: between 6.4 (>10-15y) and 13.4 (>5-10y)
- In **40**% facilities the scanning protocols were not adapted to the body size.
- In 13% of facilities the same protocol was used for all age groups.
- In 8.2% of the scanners CTDI values for paediatric patients were higher than for adults in at least one age group and one examination.
- In > 50 % of facilities, manufacturers' pre-programmed protocols were used without any change, or, were modified mostly by the manufacturer's representative.

IAEA survey of practice in paediatric radiology

Protocols for **chest examination** of infant (<1 y) in 8 CT facilities with the same 64-detector scanner model (Light Speed VCT, GE)

Scanner number	mode	Tube voltage, kV	Tube current, mA	t rot, s	Pitch value	CTDI _{vol} , mGy
39	helical	80	129	0.5	1.3	1.89
40	helical	120	120	0.5	0.984	10.21
102	helical	80	240	0.5	0.984	2.64
26	helical	80	100-250	0.5	0.96	4.26
29	helical	100	180	0.4	0.98	3.2
8	helical	120	80	0.4	1.375	4.5
124	helical	80	25	0.5	0.9	0.71
119	helical	120	80	0.6	0.9	10

Variation in CTDI dose values across scanners:

- 14-fold for chest
- 6-fold for abdomen
- 4-fold for head

J. Vassileva

What to consider in dose surveys for children?

J. Vassileva

Different body size Different proportions:

- The head grows very gradual (~7 cm)
- Body height ≈ 4 heads for infant

5 heads for 3 years old 6 heads for 5 years old 7 heads for 10 years old 71/2 heads for 15 years old 8 heads for adult

Body mass (weight) in children can vary by a factor of more than 100, while in adults – a factor of ~4 approximately

FIG. 6. Mean height and weight for each class for boys from Japan (•), Singapore (\blacksquare), the United Kingdom (\blacktriangle) and the United States of America (•) [168].

IAEA. Dosimetry in diagnostic radiology for paediatric patients. Vienna, 2013.

J. Vassileva

IAEA. Dosimetry in diagnostic radiology for paediatric patients. Vienna, 2013.

J. Vassileva

A single "standard" paediatric patient should not be used

Patient grouping is needed

J. Vassileva

Patient grouping

Age

- Easily obtained
- Easily comparable
- Poorly reflects
 - Anatomical variability
 - Relatively independent of clinical presentation
 - Relatively independent of CT acquisition parameters

Weight

- Easily obtained (?)
- Better reflects
 - CT acquisition parameters
 - Anatomical variability
 - Clinical presentation
- Level of granularity inversely proportional to statistical error for small data cohorts

Pediatric categorization by age

- Rare publications quoting patient age and weight
- Majority used patient age
- Four or five age groups

Patient grouping by weight

In general, individual patient size does not correlate well with patient age, even though **fitted average patient sizes are age-dependent**.

IAEA survey:

- For 2012 out of 6115 patient (43.5%) both age and weight were known
- Grouped in 4 age groups
- A smooth increasing trend found for the mean and median weight as a function of the age group (for large samples).

Vassileva J, Rehani M. Patient grouping for dose surveys and establishment of diagnostic reference levels in paediatric computed tomography. Radiat Prot Dosimetry. 2015 Jul;165(1-4):81-5

Patient grouping

Relative difference of the median weight for samples of different size from the median weight for the corresponding age group, defined from the whole patient cohort

Within ±10% if > 35 patients in the sample (19 samples)

Within ±5% if > 90 patients in the sample (7 samples)

> Largest variation in the age group <1y ⇒ Relevant to split this group: --

- new-born (< 1 month)
- infant (>1 month to 1 y)

Vassileva J, Rehani M. Patient grouping for dose surveys and establishment of diagnostic reference levels in paediatric computed tomography. Radiat Prot Dosimetry. 2015 Jul;165(1-4):81-5

-Use of four age groups, <1, >1–5, >5–10 and >10–15 y, is realistic and pragmatic

- for dose surveys in less resourced countries
- Data for >30 patients in a particular age group should be collected

• Small sample

• Large sample

- -Need to record weight
- Median weight within 5–10 % from the median weight of the sample for which the DRLs are established

Vassileva J, Rehani M. Patient grouping for dose surveys and establishment of diagnostic reference levels in paediatric computed tomography. Radiat Prot Dosimetry. 2015 Jul;165(1-4):81-5

Joint ICTP-IAEA workshop 2019

Patient grouping by weight

J. Vassileva

Patient grouping

Vassileva J, Rehani M. Patient grouping for dose surveys and establishment of diagnostic reference levels in paediatric computed tomography. Radiat Prot Dosimetry. 2015 Jul; 165(1-4):81-5

J. Vassileva

Weight grouping for paediatric DRLs

Description	Weight group	Age group based on weight-for-age charts	Most common age groups used for the NDRLs (or equivalent)
Neonate	< 5 kg	< 1 m	0 y
Infant, toddler and early childhood	5 - < 15 kg	1 m - < 4 y	1 y
Middle childhood	15 - < 30 kg	4 - < 10 y	5 y
Early adolescence	30 - < 50 kg	10 - < 14 y	10 y
Late adolescence	50 - < 80 kg	14 - < 18 y	15 y

Recommended weight groups (intervals) for <i>body</i> examinations	Recommended age groups (intervals) for <i>head</i> examinations
< 5 kg	0 - < 3 months
5 - < 15 kg	3 months - < 1 y
15 - < 30 kg	1- < 6 y
30 - < 50 kg	≥ 6 y
50 - < 80 kg	

European Guidelines on Diagnostic Reference Levels for Paediatric Imaging. Radiation Protection 185. European Union, Luxembourg. http://www.eurosafeimaging.org/wp/wp-content/uploads/2018/09/rp_185.pdf

J. Vassileva

Attenuation-based bands

- Modern systems have AEC and TCM
- In order to develop useful values for paediatric DRLs, consideration should be given in the future to grouping survey data into attenuation-based bands

J. Vassileva

Paediatric DRL values for CT

- CTDI_{vol} and DLP, based on 32-cm-diameter phantom for body examinations and a 16-cm-diameter phantom for head examinations
- Values for these quantities should be obtained from patient examinations
- SSDE may be used in addition to the recommended DRL quantities

Values of SSDE are derived from displayed values of CTDI_{vol}, though application of tabulated correction factors specific to patient age or effective diameter (AP and LAT dimensions)

J. Vassileva

Issue with phantom diameter

- To compare CTDI_{vol} or DLP:
 - Phantom diameter used for the specific scanner model
 - Software version
- Phantom diameter:
 - Displayed on the user console
 - DICOM report
 - Consult manufacturer for older scanners

What examination should be included?

- On the basis of collective dose to the paediatric population
- Examinations resulting in high collective doses:
 - Low dose examinations
 - Less common high dose examinations

Radiography and fluoroscopy

Anatomical region	Projection(s) or procedure			
Radiography				
Head (skull)	AP/PA			
	LAT			
Thorax (chest)	AP/PA			
Abdomen	Abdomen-pelvis AP			
Pelvis	Pelvis/hip AP			
Cervical spine	AP/PA			
	LAT			
Thoracic spine	AP/PA			
	LAT			
Lumbar spine	AP/PA			
	LAT			
Whole spine/Scoliosis	AP/PA			
	LAT			
Fluoroscopy				
Urinary tract	Micturating/Voiding			
	cystourethrography (MCU/VCU)			
Gastro-intestinal tract	Upper GE-examinations			
	Contrast enema			

European Guidelines on Diagnostic Reference Levels for Paediatric Imaging. Radiation Protection 185. European Union, Luxembourg. http://www.eurosafeimaging.org/wp/wp-content/uploads/2018/09/rp 185.pdf

J. Vassileva

Computed tomography

Anatomical region	Procedure
Head	Routine
	Paranasal sinuses
	Inner ear/internal auditory meatus
	Ventricular size (shunt)
Neck	Neck
Chest	Chest
	Cardiovascular CT angiography
Abdomen	Abdomen (upper abdomen)
	Abdomen+pelvis
Trunk Whole body CT in trauma	
Spine	Cervical spine
	Thoracic spine
	Lumbar spine

Indication based DRL

European Guidelines on Diagnostic Reference Levels for Paediatric Imaging. Radiation Protection 185. European Union, Luxemb http://www.eurosafeimaging.org/wp/wp-content/uploads/2018/09/rp_185.pdf

J. Vassileva

Interventional procedures

- Few available data
- Development of LDRLs should be encouraged
- Limited experiences for determination of the complexity levels
- Procedure to be considered:

Cardiac procedures

- Patent Ductus Arteriosus (PDA) occlusion
- Atrial Septal Defect (ASD) occlusion
- Pulmonary valve dilatation
- Diagnostic cardiac catheterization

Non-cardiac procedures

Peripherally inserted central catheter (PICC)

DRLs for adults vs DRLs for children

Common for adults and children

- Choice of DRL quantity
- Statistical analysis
- Phantom and patient issues

Specific for children

- Patient weight and size
- Patient procedures

DRL values for adults are defined for a patient of standard size, whereas for children, there cannot be a single standard patient due to the large size range of paediatric patients.

DRL quantities for paediatric patients

Modality	Quantity	Recommended symbols	Recommended unit
Radiography	Entrance surface air kerma	K _{a,e}	mGy
	Air kerma-area product	P _{KA}	mGy.cm ²
Fluoroscopy and interventional radiology	Air kerma-area product	P _{KA}	Gy.cm ²
ladiology	Fluoroscopy time and number of images	-	-
	Air kerma at the patient entrance reference point (interventional procedures)	К _{а,r}	mGy
Computed tomography	Volume computed tomography dose index	CTDI _{vol}	mGy
	Dose-length product	DLP	mGy.cm
	Size specific dose estimate	SSDE	mGy
Diagnostic nuclear medicine	Administered activity or activity per body weighty	А	MBq or MBq kg ⁻¹

J. Vassileva

IAEA HUMAN HEALTH SERIES No. 24

Dosimetry in Diagnostic Radiology for Paediatric Patients

https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1609_web.p

IAEA International Atomic Energy Agency

J. Vassileva

Additional parameters to be recorded

Radiography	Fluoroscopy	Interventional procedures
Equipment: manufacturer and type	Equipment: manufacturer and type	Equipment: manufacturer and type
Detector system: SF, CR, DR	Type of detector (DR)	Type of detector (DR)
Source detector distance (SDD)	Source detector distance (SDD)	Source detector distance (SDD)
Added filtration	Added filtration	Added filtration
Grid (used/not used/removable)	Grid (used/not used/removable)	Grid (used/not used/removable)
Exposure parameters: kV, mA, mAs	Exposure parameters: kV, mA, mAs	Exposure parameters: kV, mA, mAs
Automatic exposure control, AEC (active/deactivated)	AEC mode	AEC mode

European Guidelines on Diagnostic Reference Levels for Paediatric Imaging. Radiation Protection 185. European Union, Luxembourg.

J. Vassileva

Additional parameters to be recorded

СТ	
Equipment: manufacturer and type	Image quality level: Quality Reference mAs/noise index/reference image
Detector configuration (number of detector rows)	Standard deviation of CT numbers or equivalent
Exposure parameters: kV, mA, mAs	Image handling: reconstruction slice thickness, iterative reconstruction
Automatic tube voltage selection tool used/not used	Number of phases and scan sequences
Rotation time, mode (sequential/helical), pitch (helical) or table Increment (sequential), Field of View (FOV), collimation thickness, beam shaping filters, scanning length	Size of the calibration phantom
Tube –current modulation	

Towards DRLs in paediatric radiology

J. Vassileva

Image quality

- The image quality should be adequate for the diagnosis according to the indication of the examination
- Patient doses associated with rejected images should not be included in the sample for setting DRLs
- No limit or warning level for low image quality based solely on the dose level is recommended

Sample for national DRLs

- Dedicated paediatric healthcare facilities and departments (i.e. children hospitals or departments/units specializing in paediatric imaging)
- General healthcare facilities and departments where paediatric practices are part of the overall radiology services

Data analysis for a given facility and patient group

- Statistical description: Minimum, Maximum, Average, Standard deviation, Median of patient sample
- Typical value: Median

Local DRLs

- Collection of data from different X ray rooms (10-20 rooms), performing the same procedure or X ray rooms from a few facilities in local area
- Statistical description: Minimum, Maximum, Average, Standard deviation, Median of typical doses from different rooms
- Local DRL: Third quartile of median values for each patient group

National DRLs

- Collection of data from representative sample of facilities covering an entire country
- Statistical description: Min, Max, Average, Standard deviation, Median of typical doses from different hospital for each patient group
- National DRL: Third quartile of median values for each patient

Difference between samples based on facilities mean and median values

Vassileva J, et al. A study to establish international diagnostic reference levels for paediatric computed tomography. Radiat Prot Dosimetry. 2015 Jul;165(1-4):70-80.

J. Vassileva

Difference between samples based on facilities mean and median values

Mean and median values of DLP for chest for 48 CT facilities (287 patients in the sample) in the age group >10-15 y, phase C.

Vassileva J, et al. A study to establish international diagnostic reference levels for paediatric computed tomography. Radiat Prot Dosimetry. 2015 Jul;165(1-4):70-80.

Difference between samples based on facilities mean and median values

Difference between 75th percentiles of the two paired samples: based on mean values and based on median values of individual patient dose indexes in each facility

- The difference between mean and median values can result in up to 20–25% difference in set DRL.
- The median is better estimate of typical dose, both in small and large samples with symmetrically or non-symmetrically distributed data and in the presence of extreme values.

Vassileva J, et al. A study to establish international diagnostic reference levels for paediatric computed tomography. Radiat Prot Dosimetry. 2015 Jul;165(1-4):70-80.

If national DRL are not available?

 When regional or national DRL values are not available, local practice may be compared with appropriate available published data

International DRLs for paediatric CT

 Table 1. Third-quartile values from three study phases and proposed international DRLs for CTDI_{vol} and DLP for head, chest and abdomen CT, and for all age groups.

		CTDI _{vol} , mGy				DLP, mGy cm				
Examination	Age group	Phase A	Phase B	Phase C	DRL CTDI ₁₆	DRL CTDI ₃₂	Phase B	Phase C	DRL DLP ₁₆	DRL DLP ₃₂
Head CT	<1 y	29.0	25.1	25.8	26.0		486	439	440	
	>1-5 y >5-10 y	37.7 46.1	38.3 55.6	36.1 43.3	36.0 43.0		584 738	536 692	540 690	
Chest CT	>10-15 y <1 y	58.1 7.0	59.7 3.0	53.0 5.2	53.0	5.2	987 52	835 129	840	130
	>1-5 y >5-10 y	8.5 10.0	4.4 5.5	$\begin{array}{c} 6.0 \\ 6.8 \end{array}$		6.0 6.8	$\frac{106}{250}$	142 171		$\frac{140}{170}$
Abdomen	>10-15 y <1 y	13.2 10.7	7.0 3.4	7.3 5.2		7.3 5.2	241 130	301 129		300 130
СТ	>1-5 y >5-10 y	13.0 12.0	4.3 7.3	7.0 7.8		7.0 7.8	190 315	245 308		250 310
	>10-15 y	14.3	7.1	9.8		9.8	402	456		460

International DRLs can be used by the clinical staff in countries without sufficient medical physics support, to identify non-optimised practice.

Vassileva J, et al. A study to establish international diagnostic reference levels for paediatric computed tomography. Radiat Prot Dosimetry. 2015 Jul;165(1-4):70-80.

J. Vassileva

Example: Trends in national reference doses for common CT examinations on children

TABLE 13 Trends in national reference doses for common CT examinations on children

	Region/ technique	National reference doses for the UK ^a					
Examination (clinical indication)		CTDI _{vol} per sequence (mGy)			DLP per exam (mGy cm)		
		2000 ^b	2003°	2011 ^d	2000 ^b	2003°	2011 ^d
Paediatric head: 0–1 y ^e (trauma)	Post fossa	-	35	-	_	_	_
	Cerebrum	_	30	_	_	_	_
	Whole exam	40	_	25	300	270	350
Paediatric head: >1–5 y ^e (trauma)	Post fossa	_	50	_	_	_	_
	Cerebrum	_	45	_	-	_	_
	Whole exam	60	_	40	600	470	650
Paediatric head: >5 y ^e (trauma)	Post fossa	-	65	-	-	_	_
	Cerebrum	-	50	-	-	_	_
	Whole exam	70	_	60	750	620	860
							•

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/349188/PHE_CRCE_013.pdf

J. Vassileva

European DRLs for paediatric radiology

Radiography and fluoroscopy						
Examination	Age or weight	EDRL				
	group	K _{a,e} ,	Р _{ка} ,			
		mGy	mGy cm ²			
Head AP/PA	3 months-<1 y		215			
	1-<6 y		295			
	<u>≥</u> 6 y		350			
Head LAT	3 months-<1 y		200			
	1-<6 y		250			
Thorax AP/PA**	<5 kg		15			
	5-<15 kg	0,06	22			
	15-<30 kg	0,08	50			
	30-<50 kg	0,11	70			
	50-<80 kg		87			
Abdomen AP	<5 kg		45			
	5-<15 kg		150			
	15-<30 kg	0,40	250			
	30-<50 kg	0,75	475			
	50-<80 kg		700			
Pelvis AP	15-<30 kg		180			
	30-<50 kg		310			
MCU	<5 kg		300			
	5-<15 kg		700			
	15-<30 kg		800			
	30-<50 kg		750*			
*Based on 4 NDRLs, ra to both AP and PA proje	nge 400-2000 mGy ections	cm ² ; **AP/PA:	DRL applies			

Computed tomography						
Exam	Age or weight	EDRL				
	group		DLP,			
		mGy	mGy cm			
Head	0-<3 months	24	300			
	3 months-<1 y	28	385			
	1-<6 y	40	505			
	≥6 y	50	650			
Thorax	<5 kg	1,4	35			
	5-<15 kg	1,8	50			
	15-<30 kg	2,7	70			
	30-<50 kg	3,7	115			
	50-<80 kg	5,4	200			
Abdomen	<5 kg		45			
	5-<15 kg	3,5	120			
	15-<30 kg	5,4	150			
	30-<50 kg	7,3	210			
	50-<80 kg	13	480			

European Guidelines on Diagnostic Reference Levels for Paediatric Imaging. Radiation Protection 185. European Union, Luxembourg. http://www.eurosafeimaging.org/wp/wpcontent/uploads/2018/09/rp_185.pdf

J. Vassileva

DLR quantity-weight curve

DRL-curves for CT chest, 32 cm diameter CT dosimetry phantom

- Hospital A random data
- Eksp. (75 % curves from hospitals A, B and C data (equal weight))
- Eksp. (Hospital A random data)
- ---- Eksp. (50 % curves from hospitals A, B and C data (equal weight))

Järvinen H, et al. Indication-based national diagnostic reference levels for paediatric CT: a new approach with proposed values. Radiat Prot Dosimetry. 2015, 165(1-4):86-90.

J. Vassileva

Chest CT, all ages (332 patients)

J. Vassileva

Diagnostic reference range (DRR)

Table 3

Distribution of SSDE

BW Group	No. of Scans	Mean	Standard Error	Lower DRR, 25th Percentile	Median, 50th Percentile	Upper DRR, 75th Percentile	SSDE/SSDE _{adult} Ratio
<15 cm	21	8.6	0.9	5.8	8.0	12.0	0.52
15–19 cm	153	10.0	0.5	7.3	8.7	12.2	0.61
20-24 cm	286	11.4	0.7	7.6	9.8	13.4	0.69
25–29 cm	326	13.5	0.3	9.8	13.0	16.4	0.82
≥30 cm	168	16.5	0.4	13.1	15.6	19.0	1.00

Goske MJ, et al. Diagnostic reference ranges for pediatric abdominal CT. Radiology. 2013 Jul;268(1):208-18.

