

Joint ICTP-IAEA Workshop on Establishment and Utilization of Diagnostic Reference Levels in Medical Imaging 18-22 November 2019, Trieste, Italy

Cardiac Fluoroscopically Guided Invasive Procedures and Accounting for Complexity

Guglielmo Bernardi

azione per la Rigerca in Cardiologia

Catheterization suite

Angiografic machine protections injector monitors defibrillator drugs

Vascular access

Vascular access

Interventional cardiology

- Coronary angiography
- ✓ Adjunctive imaging techniques (IVUS, OCT)
- ✓ Coronary angioplasty (PTCA-PCI)
- Treatment of "structural" Heart Diseases
 - ✓ Valvuloplasty (dilatation of cardiac valves)
 - \checkmark aortic, mitral, tricuspid, pulmonary
 - ✓ Valve implantation
 - ✓ Mitral repair
 - ✓ Atrial/Ventricular septal defect occlusion
 - ✓ Left atrial appendage occlusion
 - ✓ Fistulas occlusion

Electrophysiology diagnostic & interventional

- ✓ EP diagnostic studies
- Pacemaker implantation
- Automatic implantable cardioverter defibrillator (AICD)
- ✓ Arrhythmias ablation
 - ✓ Accessory pathways
 - ✓ Atrial fibrillation/flutter
 - ✓ Ventricular tachycardia/VPB

Dose area product in different fluoroscopically guided percutaneous procedures

Sciahbasi A, Internat J Cardiol 2017;240:92

Interventional cardiology

- Coronary angiography
- ✓ Adjunctive imaging techniques (IVUS, OCT)
- ✓ Coronary angioplasty (PTCA-PCI)
- Treatment of "structural" Heart Diseases
 - Valvuloplasty (dilatation of cardiac valves)
 - ✓ aortic, mitral, tricuspid, pulmonary
 - ✓ Valve implantation
 - ✓ Mitral repair
 - ✓ Atrial/Ventricular septal defect occlusion
 - ✓ Left atrial appendage occlusion
 - ✓ Fistulas occlusion

Electrophysiology diagnostic & interventional

- ✓ EP diagnostic studies
- Pacemaker implantation
- Automatic implantable cardioverter defibrillator (AICD)
- ✓ Arrhythmias ablation
 - Accessory pathways
 - ✓ Atrial fibrillation/flutter
 - ✓ Ventricular tachycardia/VPB

Coronary angiography Europe

Coronary angiography: the most performed angiographic procedure in the Western world. The second in-hospital procedure in USA

Moschovitis A, Eurointervention 2010;6:189

ESAMI DIAGNOSTICI – CORONAROGRAFIE ITALIA SERIE STORICA

Coronary Angiopraphy

catheters

Coronary Angiopraphy injection of iodine contrast

Coronary Angiopraphy

Intravascular ultrasounds (IVUS)

Arterial Anatomy (normal)

What is a stenosis ?

Stenosis

lumen narrowing caused by a disease in the wall

Intravascular ultrasounds (IVUS)

The IVUS technique can detect angiographically 'silent' atheroma

No evidence of disease

Little evidence of disease

- Atheroma

Non-critical but "complicated" stenosis

Optical Coherence Tomography (OCT)

Percutaneous coronary interventions in Europe

Moschovitis A, Eurointervention 2010;6:189

PCI

Coronary balloon angioplasty - technique

guide-wire

guide-wire

PTCA with stent

technique

Stent Mounted on Balloon

Stent with Balloon Inflated

Variability in exposure accross different center in coronary angioplasty

mean fluoroscopy time, frame number and dose-area product (DAP) in six European centers (600 procedures, third-quartile values)

Neofotistou, European Radiology 2003

Variability in exposure accross different cent in coronary angioplasty

dose-area product (KAP) in seven centers (Chile, Italy, Spain, Uruguay, USA, 1844 procedures)

Balter, Medical Physics 2008

Factors related to exposure

Equipment characteristics/settings

Patient/Procedure complexity

Operator's technique/experience

Case 1

Case 3 PCI of a calcified lesion with rotational atherectomy (Rotablator)

Case 3 PCI of a calcified lesion with Rotablator

Case 3 PCI of a calcified lesion with Rotablator

Case 3 PCI of a calcified lesion with Rotablator Final result

Case 4 Right Coronary Artery Chronic Total Occlusion

After TNT

Case 4 Right Coronary Artery Chronic Total Occlusion Final result

Retrograde approach to CTO

Patients' Skin Dose During PCI for Chronic Total Occlusion

Original Studies

Clinical and Technical Determinants of the Complexity of Percutaneous Transluminal Coronary Angioplasty Procedures: Analysis in Relation to Radiation Exposure Parameters

* MD, Renato Padova			
lalisan, ² PhD, Massim and Paol	Independent variable	Regression coefficient (sec)	Score
	No. of simple lesions	151*	1
	No. of complex lesions	400*	2.6
	IVUS (yes $= 1$; no $= 0$)	315*	2.1
	No. of simple stenting	157*	1
	No. of bifurcation stenting	331*	2.2
	No. of ostial stenting	346*	2.3
	No. of occlusion $\geq 3 \text{ mo}$	943*	6.2
	No. of moderate tortuosity	234**	1.5
	No. of severe tortuosity	1,471*	9.7
	No. of double balloon technique	350***	2.3
	No. of double wire technique	140***	0.9
	_		

The scores are based on the regression coefficient: a score of 1 has been assigned to the simple lesion coefficient; the other scores are multiples.

r = 0.722; IVUS, intravascular ultrasonography. **P* < 0.001 - ***P* < 0.05 - ****P* < 0.01

Complexity index/fluoro time correlation All significant variables

Complexity index/DAP correlation All significant variables

r = 0.716P < 0.0001

most significant & less operator-dependent variables

p< 0.001, p<0.01*, p<0.005°

	Weight (seconds)	score	
Constant	159	-	
lesion \leq B2 (AHA)	151	-	
lesion > B2 (AHA)	400	1	
IVUS	315	-	
simple stenting	157	- / /	
bifurcation stenting	331	1,5	
ostial stenting	346	0,8	
occlusion \geq 3 months	943	2,8	
moderate tortuosity	234°	-	
severe tortuosity	1471	4 ,9	
double balloon technique	350*	ā	AZIENDA OSPEDALIERO
double wire technique	140*	- 340	Santa Maria della Misericord

NIVERSITARIA

complexity index-based stratification fluoro time

complexity index-based stratification total DAP

Gy * cm²

complexity index-based stratification Fluoro time and total DAP, (Chile, Italy, Spain, Uruguay, USA, 857 procedures)

our series

All PTCA (857 cases)	Multivessel	Lesion type	Occlusion >3 months	Severe tortuosity	Bifurcation stenting
No. of cases	117	161	24	25	58
Coefficients (min)	9.75	4.98	7.20	6.77	5.66
(p value, 2 tail)	(0.000)	(0.000)	(0.002)	(0.000)	(0.000)
Weighting factors for the complexity index	1	0.51	0.73	0.69	0.58
N=857 cases					
Other factors, such as ostial stenting and interventions in bypass grafts did not enter the regression, possibly due to insufficient numbers of procedures in					

Balter, Medical Physics 2008

complexity index-based stratification Fluoro time and total DAP, (Chile, Italy, Spain, Uruguay, USA, 857 procedures)

175 150 Fluoroscopy Time vs. Clinical Complexi 125 KAP (Gy cm²) 40 100 mean median 75 **7**5% Fluoroscopy Time (minutes) 30 50 25 20 0 Simple Medium Complex **Complexity Group** 10 0 Medium Simple Complex Complexity Group

PKA (KAP) vs. Clinical Complexity for PTCA

Balter, Medical Physics 2008

- Complexity of percutaneous coronary interventions (PCI) can be assessed in an objective manner
- A scoring system can be developed and a Complexity Index (CI) can be calculated
- Based on CI, PCI can be divided into groups significantly different in terms radiation exposure parameters
- The factors that determine the CI can change over time and in different centers

Electrophysiology diagnostic & interventional

- EP diagnostic studies
- Pacemaker implantation
- Automatic implantable cardioverter defibrillator (AICD)
- Arrhythmias ablation
 - Accessory pathways
 - ✓ Atrial fibrillation/flutter
 - ✓ Ventricular tachycardia/VPB

AV Nodal Reentrant Tachycardia (AVNRT) Simple procedure

Reentrant Ventricular Tachicardia

Atrial fibrillation

Atrial fibrillation

Chowdhury P, Lewis WR, Schweikert RA, Cummings JE. Ablation of atrial fibrillation: what can we tell our patients? Cleve Clin J Med 2009; 76(9)543-550. doi:10.3949/ccjm.76a.08091

Catheter ablation of atrial fibrillation

Radiofrequency ablation

Fluoro time in EP procedures

author	procedure	Fluoro time (m')	reference
Oral H	pulmonary vein isolation	148 ± 34	<i>Circulation</i> 2002;105:1077
Oral H	segmental ostial ablation	50 ± 17	<i>Circulation</i> 2003;108:2355
Oral H	LA circumferential ablation	39 ± 12	Circulation. 2003;108:2355
Haissaguerre M	AF ablation	84 ± 30	J Card Electr 2005;16:1125
Saliba W	AF ablation with	64 ± 33	JACC 2008;51:2407
Pappone C	robotic navigation	32.3 ± 11	JACC 2006;47:1390
Schwartzman D	AF ablation ICE & 3D mapping	6 ± 2	Heart Rhythm 2006;3:930

Radiation dose during PVI over time

Lehrmann H, Europace 2018;20:279

The location pad

Generator of a lowintensity magnetic field

Localization of a sensor

The magnetic field is able to detect the position of the tip of a dedicated catheter

CARTO maps

A cardiac map is generated by moving the catheter inside the cardiac chambers

Merging CARTO maps with CT/MR

Left atrium, pulmonary veins & LAA

Classification of complexity in EP

Complex ablation

- Atrial fibrillation
- Atypical atrial flutter/tachycardias
- Ventricular tachycardia
- Pts with complex congenital heart disease

Simple ablation

- Accessory pathway
- Atrioventricular nodal re-entry tachycardia
- Typical caval-isthmus dependent atrial flutter
- Atrioventricular nodal ablation

Effect of simple radiation dose reduction strategy in complex & simple EP procedures

DRM: dose reduction manoeuvres

Baseline fluoro 'low' \rightarrow 12.5 pps pulse length of 6 ms grid in situ

Customised 'ultra-low' fluoro \rightarrow 6.25 pps grid removed

Rogers DPS, Heart 2011;97:366
Conclusions

- Cardiac FGI procedures highly contribute to patients' exposure
- Procedures' complexity plays a major role in the exposure rate
- Complexity needs to be known, measured and reviewed over time
- Further research is to be done in assessing complexity in new fields of FGI

