

Joint ICTP-IAEA Workshop on Establishment and Utilization of Diagnostic Reference Levels in Medical Imaging 18-22 November 2019, Trieste, Italy

Marco Brambilla, PhD Head of Medical Physics Department University Hospital of Novara, Italy <u>marco.brambilla@maggioreosp.novara.it</u> President of the EFOMP

Summary

DRL's variability in PET

> Why DRL's in PET vary?

> Why DRL's in Nuclear cardiology vary?

DRL's variability in PET

Administered Activity and Radiation dose (USA)

Effective Doses for Adults from Various Nuclear Medicine Examinations						
Examination*	Effective Dose (mSv)	Administered Activity (MBq)^{\dagger}	Effective Dose (mSv/MBq) [‡]			
Tumor (18F-FDG)	14.1	740	0.019			
⁴ DMSA = dimercaptosuccinic acid, DTPA = diethylenetriaminepentaacetic acid, ECD = ethyl cysteinate dimer, ¹⁸ F = fluorine 18, FDG = fluorodeoxyglucose, HMPAO = hexamethylpropyleneamine oxime, ¹¹¹ In = indium 111, MAA = macroaggregated albumin, MAG3 = mercaptoacetyltriglycine, MDP = methylene diphosphonate, ^{99m} Tc = technetium 99m. ¹ Recommended ranges vary, although most laboratories tend to use the upper end of suggested ranges. ² From reference 74.						

FA Mettler et al Effective Doses in Radiology and Diagnostic Nuclear Medicine: A Catalog Radiology 2008

"Typically many departments use activities near or at the high end of suggested activity ranges to optimize patient throughput and image quality."

This roughly corresponds to a weight-based injection protocol of: 8 MBq/kg

with an upper limit of 740 MBq of ¹⁸F-FDG injected.

Halpern BS *et al* Optimizing inaging protocols for overweight and obese patients... J Nucl Med 2005; 46:603-607 Everaert H et al Optimal dose of 18F-FDG required for whole body PET using an LSO PET camera EJNM 30: 1615-19

Administered Activity and Radiation dose (Germany)

TABLE 2

Summary of Representative Protocols Used Routinely for Whole-Body ¹⁸F-FDG-PET/CT Examinations at 4 German Hospitals Equipped with the Dual-Modality Tomographs Characterized in Table 1

	Scan		Effecti	ve dose (mSv)
Hospital	Туре	Abbreviation	Per scan	Per examination
H1	2 Topograms*		0.8	
	Diagnostic CT with CA	H1-D-CT	18.6	
	PET, 370 MBq ¹⁸ F-FDG	H1-PET	7.0	26.4
H2	Topogram		0.1	
	Low-dose CT	H2-LD-CT	4.5	
	PET, 300 MBg ¹⁸ F-FDG	H2-PET	5.7	
	Diagnostic CT with CA	H2-D-CT	14.1	24.4
H3	Low-dose protocol			
	Topogram		0.2	
	Low-dose CT	H3-LD-CT	1.3	
	PET, 370 MBq 18F-FDG	H3-PET	7.0	8.5
	High-quality protocol			
	Topogram		0.2	
	Diagnostic CT with CA	H3-D-CT	17.6	
	PET, 370 MBq ¹⁸ F-FDG	H3-PET	7.0	24.8
H4	Topogram		0.2	
	Low-dose CT	H4-LD-CT	2.4	
	PET, 370 MBg ¹⁸ F-FDG	H4-PET	7.0	
	Diagnostic CT with CA	H4-D-CT	14.1	23.7

"In anteroposterior and lateral direction; dose indicated represents the dose sum from both topograms.

CA - intravenous CT contrast agent administered for most examinations.

advancing molecular imaging

Brix G et al FH J Nucl Med 2005; 46:608-613

This would roughly corresponds to a weight-based injection protocol of:

5,4 MBq/kg

Administered Activity and Radiation dose (EANM)

Recommended administered activities for most radiopharmaceuticals are generally calculated from a reference administered activity for each radiopharmaceutical for a 70 kg patient and a table or formula that decreases the reference administered activity according to age or body mass.

Gelfand MJ Dose reduction in pediatric hybrid and planar imaging Q J Nucl Med 2010 ;54:379-388.

The implied reference administered activities in the 2007 EANM Pediatric Dose card for a 70 kg patient are an ¹⁸F-FDG administered activity of:

196 MBq when a 3D PET scanner is used

Jacobs F et al FH Eur J Nucl Med 2005 ;32:581-8.

This would roughly corresponds to a weight-based injection protocol of:

2,8 MBq/kg

Variations in PET/CT Methodology for Oncologic Imaging at U.S. Academic Medical Centers: An Imaging Response Assessment Team Survey

128 responses were collected between November 2009 and April 2010

>¹⁸F-FDG administration was based on patient weight on 44% of the sites.

➤The average dose for oncologic studies was 5.2 MBq/kg (range 1.5-7.8 MBq/kg)

➤This translates into an average activity of 390MBq (range 113-585 MBq injected in a 75 kg patient.

Sites that did not use a weight-based activity injection (56%) had established maximum activity limits averaged across sites: 465 MBq (range 370-666 MBq) for 3D PET

The average emission acquisition time per bed position was 3.2 min (min=1 min; max=10 min)

> Emission acquisition times dependent on patient weight at 34% of sites.

Variations in Clinical PET/CT operations: results from an International survey of active PET/CT users

15 institutions surveyed

➤The average administered ¹⁸F-FDG dose for adult varies from 259 to 740 MBq. At least two institutions gives as much as 925 MBq.

➢For those sites (only 3) that reported dose per kilogram, the range is 5.2-8.1 MBq

➤The acquisition was 3D for 8 systems (Siemens) and 2D for 13 systems (GE)

Duration of the emission acquisition per bed position for whole-body scans ranges from 2 min to 7 min.

Beyers T et al J Nucl Med 2011 ;52:303-310.

Patient Name:

Study Name: TOMOSCINT GLOBALE CORP Study Date: 08-Jun-10

Effective Dose in Nuclear Medicine Studies and SPECT/CT: Dosimetry Survey Across Quebec Province

Suggestion of a national diagnostic reference level for 18F-FDG/PET scans in adult cancer patients in Brazil

Original article

A national survey of computed tomography doses in hybrid PET-CT and SPECT-CT examinations in the UK

Gareth R. Iball^a, Natalie A. Bebbington^{b,c}, Maria Burniston^d, Sue Edyvean^e, Louise Fraser^f, Peter Julyan^g, Nasreen Parkar^f and Tim Wood^{h,i}

Table 4 Effective doses for radiopharmaceutical and computed tomography exposures for the six examinations with achievable doses presented in Table 3

Radiation Dose from Whole-Body F-18 Fluorodeoxyglucose Positron Emission Tomography/computed Tomograhy: Nation wide Survey in Korea

Radiation Dose from Whole-Body F-18 Fluorodeoxyglucose Positron Emission Tomography/computed Tomograhy: Nation wide Survey in Korea

Fig. 3. Distribution of injected FDG activity (A), CTDIvol (B), and DLP (C) of each PET/CT examination.

Report of a nationwide survey on actual administered radioactivities of radiopharmaceuticals for diagnostic

Hiroshi Watanabe Annals of Nuclear Medicine 2016

Diagnostic reference levels for 18 F-FDG whole body PET/CT procedures: Results from a survey of 12 centres in Australia and New Zealand

 $DRL_{A}= 333 \text{ MBq}$ $DRL_{ED}= 5.6 \text{ mSv}$ $DRL_{CTDI}=4.4 \text{ mGy}$ $DRL_{DLP}= 474 \text{ mGy cm}$ $DRL_{EDCT}=4.7 \text{ mSv}$

 $DRL_{A}= 332 \text{ MBq}$ $DRL_{ED}= 5.6 \text{ mSv}$ $DRL_{CTDI}=13.7 \text{ mGy}$ $DRL_{DLP}= 1319 \text{ mGy cm}$ $DRL_{EDCT}= 10.9 \text{ mSv}$

Alkhybari E et al J Med Imaging Rad Oncol 2019

Current Australian diagnostic reference levels for nuclear medicine DRLs for general nuclear medicine, PET and the CT

component of SPECT/CT and PET/CT

https://www.arpansa.gov.au/research-and-expertise/surveys/nationaldiagnostic-reference-level-service/current-australian-drls-update/nm

FDG scanning in PET is one of the few nuclear medicine procedures where weight correction is used routinely at the majority of Australian imaging facilities. However, there were a number of the submissions to the NDRL survey from facilities that clearly didn't conduct weight correction. As a result, two DRLs for whole body FDG scans have been issued.

Category	Pharmaceutical	25th percentile (MBq)	Median (MBq)	DRL (MBq)
Body	F-18 FDG	225	250	310
Body (weight corrected)	<u>F-18 FDG</u>	2.5 x kg + 75	2.5 x kg + 100	2.5 x kg + 125
Brain	F-18 FDG	200	220	250

Current Australian diagnostic reference levels for nuclear medicine DRLs for general nuclear medicine, PET and the CT

component of SPECT/CT and PET/CT

https://www.arpansa.gov.au/research-and-expertise/surveys/nationaldiagnostic-reference-level-service/current-australian-drls-update/nm

CT scans

The DRLs below are for CT scans conducted for the purposes of attenuation correction or localisation in conjunction with a PET scan.

Region	25th percentile (mGy.cm)	50th percentile (mGy.cm)	DRL (mGy.cm)
Head/Brain	75	125	325
<u>Whole body</u> (Eyes - Thighs)	325	430	540
<u>Whole body</u> (Vertex - Toes)	495	655	985

Alkhybari E et al Determining and updating PET/CT and SPECT/CT diagnostic reference levels: A systematic review. Rad Prot Dosim 2018

Table 2. Summary of hybrid PET/CT DRL methods.

Authors	Authors Procedure		Radiotracer	Scan range	Characteristic of	tic of DRL dosimetry value		E (mSv)		
(Country & Year)		indication			patient sample	A(MBq) [MBq/kg]	CTDI _{vol} (mGy) and DLP (mGy.cm)	A	СТ	Total
Kwon <i>et al</i> ⁽¹⁵⁾ . (KO 2016)	Whole body	_	¹⁸ F-FDG	Base of skull-	10 per each	370 [5 89 + 1 46]	5.96 and 560	5.89	6.26	12
Etard <i>et al</i> ⁽²⁷⁾ . (FR, 2012)	Whole body	_	¹⁸ F-FDG	At least neck- thigh	20 (50–100 kg)	[3.50] 350 [4.3] 250 [3.5 TOF]	8 and 750	5.7	8.6	14
Iball <i>et al</i> ⁽¹⁸⁾ . (UK, 2017)	Half body	Tumour Infection/ Inflammation	¹⁸ F-FDG	Base of brain- mid thigh	30 per each exam	_	4.3 and 400	7.6	6.5	14
Roch <i>et al</i> ⁽²⁰⁾ . (FR, 2017)	Whole body	- -	¹⁸ F-FDG	_	30 per each exam	350 260	-	_	_	– – – –
Watanabe <i>et al</i> ⁽²¹⁾ . (IP. 2016)	Tumour	Tumour	¹⁸ F-FDG HP	_	_	[3.6 TOF] 235 [2-5]	_	_	_	
(31, 2010)	Tumour	Tumour	¹⁸ F-FDG (Delivery)	_		252 [2–5]	_	-	-	– Н Ү <i>Ь</i> /
	Tumour	Tumour	¹⁸ F-FDG HP	_		227	_	_	_	- 1K
	Brain	_	¹⁸ F-FDG	_		255	_	_	_	- 1
			(Delivery)							T
		_	¹⁵ O-CO ₂ g: 2D	_		7500	_	_	_	– Ę
		-	$^{15}\text{O-O}_2$ g: 2D	-		4500	-	-	_	-
		_	¹⁵ O-CO g: 2D	-		3000	-	_	_	-
(21)		_	¹⁵ O-CO ₂ g: 3D	_		2888	_	_	_	-
Watanabe <i>et al</i> ⁽²¹⁾ .	_	_	$^{15}\text{O-O}_2$ g: 3D	_	_	6600	-	_	-	-
(JP, 2016)	-	-	¹⁵ O-CO g: 3D	-	-	7125	-	_	_	_
	Myocardial/	_	¹⁸ F-FDG H	_	_	221	-	_	_	_
	Metabolism Myocardial/ Metabolism	_	¹⁸ F-FDG D	_	_	251	_	_	_	_
	Myocardial/ Perfusion	_	¹³ N-NH3	_	_	718	_	_	_	_
Jallow <i>et al</i> ⁽²³⁾ . (US, 2016)	Oncology	_	¹⁸ F-FDG	-	2010–14: 35, 65, 76, 42 and 14 cases	_	9.8, 9.8, 10.2, 9.7 and 9.7	_	_	_

Alkhybari E et al Determining and updating PET/CT and SPECT/CT diagnostic reference levels: A systematic review. Rad Prot Dosim 2018

Authors	Procedure	Clinical	Radiotracer	Scan range	Characteristic of	DRL dos	imetry value		E (mSv	1)
(Country & fear)		indication			patient sample	A(MBq) [MBq/kg]	CTDI _{vol} (mGy) and DLP (mGy.cm)	A	СТ	Total
Willegaignon $et al^{(22)}$	Oncology/	Tumour/ Inflammation	¹⁸ F-FDG	_	_	370	6.76 ± 1.08	_	_	_
(BR 2015)	Brain	_	¹⁸ F-FDG	_		350	5.11 ± 1.52	_	_	_
(BR, 2013)	Bone	_	¹⁸ F-NaF	_		370	7.30 ± 0.30	_	_	_
Alessio <i>et al</i> ^{(19).}	Whole body	-	¹⁸ F-FDG	_	$1-5 (4.3 \pm 1.3)$	592	_	_	_	-
Oliveria <i>et al</i> ⁽²⁶⁾ . (BR 2013)	¹⁸ F-FDG pet	Cancer	¹⁸ F-FDG	-	_	387.7 [5-5-4]	-	_	_	-
(BR, 2013) Roch <i>et al</i> ⁽²⁵⁾ . (FR, 2013)	¹⁸ F-FDG PET	_	¹⁸ F-FDG	_	20 (60-80 kg)	350 and 337	_	_	_	
Botros <i>et al</i> ⁽²⁸⁾ .	Whole body	Tumour	¹⁸ F-FDG	_	20 per exam or	385	_	_	_	_ ~
(AU & NZ, 2009)	Brain	_	¹⁸ F-FDG	_	facility guidance	385	_	_	_	- 2
	Myocardial Viability	-	¹⁸ F-FDG		level for 70–80 kg	370	_	_	_	
Hart <i>et al</i> ⁽²⁹⁾ . (UK 2005)	Tumours	Tumour	¹⁸ F-FDG	_	_	400	_	7	_	
(OR, 2003) Brix <i>et al</i> ⁽³⁰⁾ .	Oncology	_	¹⁸ F-FDG	_	_	370	_	7	_	
(DE, 2002)	Neurology	_				(2D) 200 (3D)	-	3.8	_	
	Cardiology	_								
	Other application	-								÷

Note: TOF = Time of flight, ¹⁵O-CO₂ = Oxygen-15 carbon dioxide, ¹⁵O-CO = Oxygen-15 carbon monoxide, HP = hospital product, g = gas, ¹³N-NH₃ = Nitrogen-13 ammonia, NaF = Sodium Fluoride, A = administered activity.

Summary DRLs PET

Country	Activity (MBq)	Act Conc. (MBq/kg)	ED (mSv)
Quebec	<mark>444</mark>	6.3	<mark>8.4</mark>
Brasil	371	<mark>5.3</mark>	7.0
Croatia	<mark>232</mark>	3.3	<mark>4.3</mark>
South Korea	<mark>368</mark>	<mark>5.6</mark>	7.0
Japan	<mark>240</mark>	3.4	4.6
New Zealand	<mark>333</mark>	4.8	<mark>5.6</mark> (6.3)
Australia	<mark>300</mark>	<mark>2.5 x kg+100</mark>	5.7
France	<mark>350</mark>	<mark>4.3</mark>	6.6
	<mark>250</mark>	<mark>3.5</mark>	4.8

Summary DRLs CT

Country	CTDI (mGy)	DLP(mGy cm)	ED (mSv)
Brasil	<mark>6.8</mark>		
South Korea	<mark>6.0</mark>	<mark>561</mark>	
New Zealand	<mark>13.7</mark>	<mark>1319</mark>	<mark>10.9</mark>
Australia	<mark>4.4</mark>	<mark>474</mark>	<mark>4.7</mark>
France	<mark>8.0</mark>	<mark>750</mark>	<mark>8.6</mark>
UK	<mark>4.3</mark>	<mark>400</mark>	<mark>6.5</mark>

WHY DRLs vary?

Installation Year

Table 3. Radiation dose of FDG PET/CT according to installation year

Installation year	No.	FDG activity, MBq/kg	CTDI _{vol} , mGy	DLP, mGy∙cm
2000-2005	13	6.10 ± 1.19	6.04 ± 2.58	514.5 ± 246.5
2006-2010	50	5.30 ± 1.22	4.87 ± 2.85	460.7 ± 241.2
2011-2015	42	4.60 ± 0.85	3.95 ± 1.97	369.6 ± 185.4
P value		< 0.001	< 0.001	< 0.001

CTDI_{vol}, volume computed tomography dose index; DLP, dose-length product; FDG, F-18 fluorodeoxyglucose.

Kwoon H et al J Kor Med Sci 2016

TOF capability

TOF capability

There are different ways to use the improved SNR associated with TOF PET and additional advantages associated with TOF reconstruction that derive from the time and spatial information carried by TOF data:

1. TOF can provide better image quality and improved lesion detection,

2. the scan time can be shortened while keeping the same image quality with better clinical workflow and added comfort for the patient,

3. the dose to the patient can be reduced with the same scan time and image quality.

Conti, EJNMMI 2011

TOF capability

	DRL dosimetry value			
	A (MBq)	A (MBq/Kg)		
Non TOF	<mark>350</mark>	<mark>4.3</mark>		
TOF	<mark>250</mark>	<mark>3.5</mark>		

Etard C National survey of patient doses from whole-body FDG PET-CT examinations in France in 2011. Rad Prot Dosim 2012

Managing weight: Activity vs time

Optimizing Injected dose in clinical PET by accurately modeling the counting rate response functions specific to individual patient scans

Patient NECR versus weight

Optimal NECR decreases rapidly (1,4%/Kg) with increasing weight. The only solutions for heavier patients is to scan them longer!!!

Plots of estimated NECR values at 90% or 95% of peak SNR, versus patient weight, for all scans.

Optimizing Injected dose in clinical PET by accurately modeling the counting rate response functions specific to individual patient scans

Fig.5 Plots of estimated optimal dose vs patient weight standardized at 60 min

It appears that the average optimal dose increases only slightly (0.7-1.1 MBq/kg) with weight, suggesting that poorer image quality in larger patients generally cannot be overcome by increasing D_{inj} significantly in proportion to patient weight. The common (8 MBq/kg) recipe wastes dose for heavier patients!!!

> Optimal dose for LSO Pico-3D scanner at 70 kg = 524 MBq

Impact of target-to-background ratio, target size, emission scan duration, and activity on physical figures of merit for a 3D LSO-based whole body PET/CT scanner

The dependence of CNR on A_{acq} appears to be slight in the range explored (from 92.3 to 370.5 MBq)

CNR increases more quickly with increasing ESD, T/B ratio and sphere ID

Example

A sphere of 10 mm ID with a T/B ratio of 10 imaged with emission scan duration (ESD) of 120 s and a global activity at the start of acquisition Aacq of 185 MBq.

According to regression equation, we will expect a CNR of 5.78.

Doubling the Aacq to 370 MBq will move up CNR to 7.17 a 24% increase.

Doubling ESD to 240 s will move up CNR to 8.33 a 44% increase.

To increase CNR Is much more effective to increase ESD

Than injecting an higher activity of ¹⁸FDG

The effect of activity outside the field of view on image quality for a 3D LSO-based whole body PET/CT scanner

R. Matheoud et al Phys Med Biol 2009 54:5861-5872

Image quality in whole-body PET imaging might be affected by presence of activity outside the field of view (FOV). Outside FOV activity might results in increased dead time and random and scatter fractions, thereby influencing noise equivalent count rate (NECR) and image quality

The purpose of this study was to investigate and quantify the influence of outside FOV activity on image quality of a 3D LSO whole-body PET/CT scanner. Contrast-to-noise ratio (CNR) was the figures of merit used to characterize image quality and quantitative accuracy of PET scans.

Contrast-to-noise ratio (CNR)

DISCUSSION AND CONCLUSIONS

- There is a significant decrease of CNR with increasing outside FOV activity in the range explored.
- Noteworthy ESD and A_{c,out} convey a similar explanatory power on CNR variance
- This suggests the possibility of counterbalancing the effect of elevated outside FOV activity by modulating ESD in individual bed positions.
- Intuitively ESD and A_{c,bkg} should have similar effects on CNR. Both of them increase the total number of events although in different ways.
- Nevertheless it must be recognized that increasing A_{c,bkg} do not appear to be a valid strategy in order to raise CNR, since an increment in A_{c,bkg} is likely to be accompanied by a corresponding increment in A_{c,out} and these two variables act in opposite direction with respect to CNR.

Count rate analysis from clinical scans in PET with LSO detectors

Figure 2. Percentage missing activity to get the maximum PNECR value for various bed positions.

Figure 3. Dependence of the duration of single bed-scan on patient weight.

Normalizing the counts at PNECR(max) for the 70 kg patient, the bed duration for a 90 kg patient should be 230s which is approximately 30% longer. Although the analysis indicated that the fast scanner electronics allow using higher administered activities, this would involve poor improvement in terms of NECR. Instead, attending to higher bed duration for heavier patients may be more useful. Since the gain in terms of PNECR is so low, from the patient exposure point of view it could seem unjustified to inject higher activities than those currently administered.

Comparison of Imaging Protocols for 18F-FDG PET/CT in overweight patients: Optimizing Scan duration versus administered Dose

Masuda et al *J Nulc Med* 2009 50: 844-848

The major finding of this study was that an extended acquisition time effectively maintained the quality of 18F-FDG PET/CT images of overweight patients. In contrast, an increased dose of up to 2.5 fold higher than 3.7 MBq/kg did not improve image quality. Our findings suggest that only scanning for prolonged periods can maintain the quality of images of heavier patients.

G1 (<or=59 kg), G2 (60-69 kg), G3 (70-84 kg), and G4 (>or=85 kg)

G2 dose (5.59 ± 0.19 MBq/kg), G3 dose (7.29 ± 0.33 MBq/kg), G4 dose (8.88 ± 0.43 MBq/kg.)

G2 time (3 min/bed position), G3 time (4 min/bed position), and G4 time (5 min/bed position).

Impact of phantom size on variance/noise

various diameters. Images were taken from the simulation applying a linear relationship between weight and administered activity. The region of interest to derive SNR is indicated by the red contour.

$A = c/t^*m^2$

At 'low' activities image noise (or SNR) approximately varies quadratically with body weight, thus by quadratically adaption activity with weight the image quality remains approximately constant.

A= 0.023 m^{2.047}MBq De Grooth EH EJNMMI Res 2013;

Optimization of acquisition protocols in PET Conclusions

•There are no experimental evidence of the fact that raising the administered activity linearly with body weight brings a significant improvement of the figures of merit more related with Image quality such as NECR or CNR.

•The role of emission scan duration and of administered activity in the increase of CNR are not equivalent.

•An increase of ESD, in the range of activities clinically administered, brings to a significant improvement in the image quality, in particular for obese patients.

•It seems reasonable to adopt protocols of administered activity which stay on the inferior range of international guidelines (Fixed activity of 250 MBq) and adjust the ESD according to the body weight (BMI>30 ESD=4-5 min Non TOF, ESD 2 min TOF).

SNR – weight relation seems independent of TOF vs non TOF and use of resolution modeling in reconstruction

Figure 4 SNR_{norm} versus body mass. Signal-to-noise ratio normalized for the administered FDG dose and scan time per bed position (SNR_{norm}) versus body mass. Besides the best fits through the data, also their 95% confidence intervals are shown, and the best fit with the value of the parameter *d* fixed to 1 for (**A**) the Biograph TruePoint (TP) and for the Biograph mCT for three different reconstructions: (**B**) OSEM3D, (**C**) OSEM3D + PSF and (**D**) OSEM3D + PSF + TOF. The fit with the parameter *d* fixed to 1 corresponds to the situation where SNR_L can be kept constant by a quadratic relation between dose and body mass.

De Grooth EH EJNMMI Res 2013;

DRL's variability in Nuclear Cardiology

2009

Nuclear Medicine

Table 5

Effective Doses for Adults from Various Nuclear Medicine Examinations

Examination*	Effective Dose (mSv)	Administered Activity (MBq) ⁺
Cardiac rest-stress test (semTc-sestamibi 1-day protocol)	9.4	1100
Cardiac rest-stress test (99mTc-sestamibi 2-day protocol)	12.8	1500
Cardiac rest-stress test (Tc-tetrofosmin)	11.4	1500
Cardiac ventriculography (99mTc-labeled red blood cells)	7.8	1110
Cardiac (¹⁸ F-FDG)	14.1	740

Mettler et al. Effective Doses in Radiology and Diagnostic Nuclear Medicine: A Catalog. Radiology 2009

Summary

- Reconstruction Algorithms for Fast Imaging with Standard MPI Systems
 - Astonish (Philips Healthcare)
 - Evolution for Cardiac, EfC (GE Medical Systems)
 - Flash3D (Siemens Medical Solutions)
 - Wide-beam reconstruction, WBR, by a third-party vendor (UltraSPECT)
- New hardware for optimized MPI.
 - Spectrum Dynamics D-SPECT
 - General Electric Discovery NM 530 c
 - Siemens IQ•SPECT

D-SPECT gamma camera

Solid state design

Semi conductor: Cadmium Zinc Telluride (CZT)

□ Square tungsten parallel hole collimator

2.46 mm on its side -large in comparison to conventional collimators

9 independently addressable detectors
Region of interest (ROI) centric scanning
Wide solid angle tungsten collimators

□ No perceivable motion

□ No need to rotate the camera around the patient

□ No need to rotate patient in front of the camera

□ Acquisition

1-min scout scan for the 9 detectors
each detector assembly fanning within the limits determined by the scout scan.

Figure 1. Detector Configuration and ROI-Centric Scanning

The system uses 9 collimated, pixilated cadmium zinc telluride detector columns, mounted vertically in 90° geometry. Data are acquired by the detector columns rotating in synchrony, focusing on the region of interest (ROI) (the heart).

Discovery NM 530c - General Electric

Solid state design

- Semi conductor: Cadmium Zinc Telluride (CZT)

Array of 19 pinhole detectors

 The detector assembly is mounted on a gantry that allows for patient positioning in the supine or prone position

No motion

 All the 19 pinholes simultaneously imaging the heart with no moving parts during data acquisition

Pinhole collimation and miniaturization of the detector enable proximity to the heart with minification of the heart image, utilizing most of the detector surface to cover the heart projection.

Multiple Confocal Collimator Design (IQ-SPECT)

Siemens has introduced to the field the use of confocal collimators with dedicated reconstruction software: It uses a combination of converging collimators, modified cardio-centric acquisition and special reconstruction methods, with scan times as low as 4 minutes per acquisition. For increased sensitivity and resolution, the fields of view of these collimators are most convergent at their center, whereas the convergence is relaxed toward the edge of the field of view. The advantage of this approach is that it can be used by Siemens' existing dual-detector systems.

Confocal collimators

Cardio-centric acquisition

Dosimetry in MPI

A study simulated reduced radiation protocols in 79 patients, who were imaged with a solidstate scanner for 14 min with 802.9 ± 199.8 $MBq (21.7 \pm 5.4 mCi)$ of 99mTc injected at stress (18). There was no significant difference in quantitative perfusion or functional measurements even with simulated activity corresponding to an effective radiation dose of less than 1 mSv, as outlined in Figure.

Patient with abnormal perfusion in low-dose simulation study performed by Nakazato et al. Piotr J. Slomka et al. J Nucl Med 2019;60:1194-1204

Dosimetry in MPI

The lowest total radiation exposure with current SPECT MPI (~1 mSv) can be accomplished clinically by performing stress-only imaging with a solid-state camera system.

stress-only protocols dramatically shorten total study times to as low as 30–45 min,

Patient with abnormal perfusion in low-dose simulation study performed by Nakazato et al. Piotr J. Slomka et al. J Nucl Med 2019;60:1194-1204

Evolution of typical Effective doses in Cardiology procedures 2009-2019

Conclusions

- Despite nearly 30 years of existence, DRLs for adults have been confined to representative standard patient or phantom. Larger fractions of patients are currently non-standard.
- DRLs were developed for a defined technology, and it was envisaged that they would be updated when technology changes. The point is that different technologies can coexist for a certain time period providing DRL's which can be different for an order of magnitude or even more.
- Many administration schemed in NM are weight based. This introduce a source of variation in DRLs depending on the weight composition of the sample.