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• ICTP Diploma – one year fully  
masters-like programme in 
earth system sciences.

• STEP – sandwich PhD 
programme. joint supervisors, 
6 months visit each year

• Associate programme – junior 
to senior, 3 visits in 6 years.

• Oceangraphy
• Regional climate modelling 
• Aerosols (REGCM)
• Teleconnections (Speedy)
• Health Applications (VECTRI)
• Hydrology (CHYM)
• Solid earth geophysics
• Computing 



Sources of data: stations
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For Satellite – coverage can be less of an issue
(polar or geostationary – resolution, swathe, return times)


 




Satellite – advantages and disadvantages


 


$����	��
!
�����"��
��
*	�����"��
1���
)	�����2�
�������
	�
'���
34

5���
���	�
��6��

�������
�����"�

1������	�"
��
�'���%

���%
���	����4

,���
'�
��
"��
��"	���

	�+����	��
	�

�������	���
��7
�����
��"	���

/�"�
������	��	��

����������
	�
��	�

����������

��������
+��
������%

�������%
	������
���


#���	��
�������	��
�+

��������	�
��	����

����

��������
	�
���

����	����
�����	���

����
���




 


 	��
���	��
�+
����	����.
��"�
����	�	��	��

5���
!
9??@
�	��
19
��"4%
9?A?
�������
13�@
��"4
!

���
���7�	���
�	0
�+
�)
��
�	�"�"�

����
!
$	�	��
��
5���
!
�������
����
�
3�@��"

��,)��
!
388<7�������%
����	���
<8
�	���
����

��
�	���'��
�������%
��	�"
�)
��
����	��

�������
�������	���
3@6=���

(B $
!
�	��%
����
����
�+�	�%
��	�"
"�"�
	+
�����%

�����'	��
����	��	��
�+
�)6�	���'��
�������%

99��
�������	���
)���	��%
38887��������

�)��
!
3@��
�������	��%
9??=7�������%
<
�������

3�3@
!
����	�
���
�������
!
���
"�	����

<&C3
!
���"��%
���%
�)
��
�	���'��
��	�"
"�"�

��	���	��
!
����	��

<&C<
!
	�"����
"�"��
��
���
�+
<&C3What to use?
What is best?  since 2014: GPM@10km!!!



A GPM example

is this better?



But some variables in contrast are difficult to get 
directly from Satellite

• Surface temperature: reliable over oceans using 
microwave.  Some products over land, but 
uncertainty is large and not available daily

• Winds: reasonable over oceans using 
scatterometer data, surface winds over lands not 
possible. Upper level winds from feature tracking 
(cloud, humidity) but uncertainties high.

• Humidity: near surface only indirectly.
• Take home message: most (near) surface 

variables over land very difficult to infer from 
remote sensing
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A supplement source of climate information: analysis
and reanalysis

• To make forecasts of the future weather, 
knowledge of the present state is required

• This “picture” of the atmosphere needs to be 
“balanced” – Simple spatial and temporal 
interpolation of observations doesn’t work

• Hence the development of analysis systems
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Numerical weather prediction models Initial conditions

We introduce the concept of data assimilation by first discusses the
concept of the best linear unbiased estimate of a state variable x at time
t. Let’s assume that we have two observations o1 and o2 of xt , each with
their respective (known) observational error (✏i ):

o1 = xt + ✏1

o2 = xt + ✏2
(73)
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Numerical weather prediction models Initial conditions

We assume the mean statistical properties are known ✏2i = �2
i , and that

the observation errors are unbiased, that is ✏i = 0, and for simplicity and
wlog we assume they are uncorrelated ✏1✏2 = 0.
We can derive an estimate of xt , denoted xa, as a linear combination of
the observations such that xa = xt (the estimate is unbiased), and
�2
a = (xa � xt)2 is minimized (i.e. it is the best estimate):

xa =
�2
2o1 + �2

1o2
�2
1 + �2

2

(74)

(note the indices are reversed, i.e. the estimate with the greater error
contributes least to the state estimate). We can alternatively find this
estimate by calculating the value of xa that minimizes a cost function
J(xa):

J(xa) =
(xa � o1)2

�2
1

+
(xa � o2)2

�2
2

(75)

For Gaussian errors, this is the known as the maximum likelihood estimate.
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Numerical weather prediction models Initial conditions

If we have a vector of data observations ô = (o1, o2, ..., on)T we can
generalize the cost function to

J(xa) = (xa � ô)TP�1(xa � ô) (76)

where P is referred to as the error covariance matrix of ô. the diagonals of
P are the uncertainty in each observation, while the o↵-diagonals elements
are a measure of the correlation between observations (in space and
between di↵erent variables, P is a large matrix!).
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Numerical weather prediction models Initial conditions

For our special case of uncorrelated errors P is a diagonal matrix.

P =

✓
�2
2 0
0 �2

1

◆
(77)

which inverted gives

P�1 =
1

�2
1�

2
2

✓
�2
2 0
0 �2

1

◆
=

 
1
�2
1

0

0 1
�2
1

!
(78)

and thus

J(xa) = (xa�o1, xa�o2)

 
1
�2
1

0

0 1
�2
1

!✓
xa � o1
xa � o2

◆
=

(xa � o1)2

�2
1

+
(xa � o2)2

�2
2

(79)
rederiving eqn. 75.
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Numerical weather prediction models Initial conditions

Now the problem of simply basing the state estimate on a number of
direct observations are numerous:

Observations come in a wide variety of forms (high density satellite
information), sparse in situ radiosondes etc

Not all observations are of direct model state variables (e.g.
brightness temperatures and radiances are measured by satellite, not
temperature and humidity directly)

Observations have widely di↵erent error characteristics

A direct combination of variables may lead to a unbalanced initial
state
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Numerical weather prediction models Initial conditions

One solution is to combine the observations with a short term numerical
forecast (3DVAR):

J(xa) = (xa � xf )
TB�1(xa � xf ) + (H(xa)� ô)TE�1(H(xa)� ô) (80)

where xa is now referred to as the analysis, xf is the forecast, H is a
function that transfers the analysis state into the observation space of the
observations and is referred to as the forward model , and B and E are the
forecast and observation error covariance matrix, respectively.
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Numerical weather prediction models Initial conditions

Defining B and in particular E is not straightforward and entails somewhat
ad hoc assumptions about correlations of variables in space and time (Fig.
46).

Figure: Schematic of radius of influence of observations and covariancesAdrian M. Tompkins Climate Modelling and Change April 29, 2019 159 / 203




 


*�
��	�	��	��


�%D


 






 


 


 


 



��	��
�+







 


 
 






 




	�+������

,1988��4





,
19
�
�
4







� )�	��6�	�����
�+

	�+������
+��
���

�������	��
����
�����

��
��
��+	���

� -��
���	���.
��"�

������	���%
+�����
����



Numerical weather prediction models Initial conditions

We can’t solve eqn. directly to calculate xa for which �J = 0, the
problem is simply too big (e.g. inverting the matrix)! Therefore we need
to make an interative approach and to do that we need the calculate the
gradiant of J:

�J(xa) = 2B�1(xa � xf ) + 2HHHTE�1(H(xa)� ô) (81)

Here HHH is the Jacobian of H, referered to as the tangent linear model, and
the transpose matrix HHHT is the adjoint of H. .
Interative incremental approaches to this minimization problem are needed
to make the problem tractable with available computing resources.
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Numerical weather prediction models Initial conditions

The 3DVAR approach assumes all obversations within a time window
(typically 6 hours, e.g. in the earlier ECMWF implementation) are made
at the same time, but this leads to errors as systems are advected. 4DVAR
generalize this by accounting for the time of the observations. The window
( 12 hours in ECMWF) is divided into one hour slots, and compared with
a trajectory using the tagent linear and adjoint codes, that is, the state
vectors are a function of time.

Figure: Schematic of 4DVAR approach (schematic taken from ECMWF website)
Adrian M. Tompkins Climate Modelling and Change April 29, 2019 161 / 203



Numerical weather prediction models Initial conditions

Thus the summary of the process is

perform outer loop xf

reject observations for which
H(xf )i � oi is excessive
(observation departures too
large = bad data? ).

perform minimization of J(xa)
to get first xa

Make new outer loop nonlinear
integration xf starting from
revised xa

Repeat above until convergence
(in practise nouter=3).

Take final analysis from desires
time points within window

Figure: Schematic of 4DVAR approach
2 (schematic taken from ECMWF
website)

Note fluxes must be derived from
nonlinear model integration (or short

forecast).
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Example: ERA5 surface temperature from C3S toolbox



Let’s take a look at 

the monitoring

https://www.ecmwf.int/en/forecasts/charts/m

onitoring/dcover?facets=undefined&time=201

9052406,0,2019052406&obs=synop-

ship&Flag=all
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Only about 6% of 
available observations 
are used

Satellite data usage at ECMWF
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But what is REanalysis?

• Operational forecasting systems change their 
systems 3 or 4 times a year
– New observation sources to be incorporated
– Improvements to the physics in the forecast models 
– Improvements to the data assimilation techniques.

• This means that the analyses are not “coherent” 
in time
– e.g. Could a temperature trend be due to changes in 

data and/or assimilation system
• One way to improve the coherency in reanalysis: 

The same system is run for all past dates. 
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• Reanalysis of ERA-40 uses a model 
cycle that was operational in 2000

• Reanalysis of ERA-Interim uses a model 
cycle that was operational in 
approximately 2006

• ERA5 uses a model from 2017

Improvements in model and assimilation software

1979 2006 present

New satellite
 data platforms

operational analysis

No Improvements in model and assimilation software – fixed at 2006
New platforms only til 2006 in general

RE-analysis



ERA5 – A product of EU Copernicus programme
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processes and skill...



These gains can only be realized if these 
systems and/or initialization that is not 
in the shorter range system 



The Madden-Juilian Oscilliation



This is important as the MJO skill has been improving 
in models

especially in the convective parameterization helped to increase
the limit of MJO predictive skill by 2 weeks over the past decade.
Demonstrating skill in predicting the MJO is an important step

for sub-seasonal prediction of tropical cyclones, but it is also
important for the dynamical models to be able to simulate the
impact of the MJO on the tropical cyclones that are produced by
the model. In order to assess if S2S models can reproduce this
modulation of tropical cyclone activity by the MJO, the model-
simulated tropical cyclones have been tracked24 in each model
ensemble forecast. Since the S2S database output are gridded at a
1.5-degree resolution, the model tropical cyclones tend to be
weaker than observed. The threshold for 10-meter maximum wind
has been adjusted for each model so that the total climatological
density of simulated tropical cyclones matches the observations.
Longer model integrations would be needed to assess the realism
of other characteristics of simulated tropical cyclones (e.g. tropical
cyclone interannual variability). This tracking has been applied to
eight S2S model reforecasts which were chosen because of their
large re-forecast frequency and ensemble size and their skill to
predict the evolution of the MJO: ECMWF, NCEP, JMA, BoM, UKMO,
CMA, ECCC and CNRM. Work is ongoing to extend this study to the
other S2S models. The density of tropical cyclone tracks (number
of tropical cyclones passing within 500 km, normalized by the total
number of tropical storms over the whole basin) has been
calculated for each model. All eight S2S models display more (less)
tropical cyclone activity over the Indian Ocean and less (more)
tropical cyclone activity over the South Pacific and near the
Maritime Continent when there is an MJO in phase 2 or 3 (6 or 7)
in the model (Fig. 2), which is consistent with observational
studies17 and with previous modeling studies.25 This result
suggests that the models are capable of reproducing very well
the modulation of tropical cyclones in the southern Hemisphere
by the MJO, even if the model resolution is very coarse (BoM has a
resolution of the order of 200 km). Therefore, even if the
dynamical models considered in Fig. 2 are not able to predict
the occurrence of a given storm at a precise location 3 to 4 weeks
in advance, they are likely to have some skill in predicting an
increase or decrease of tropical cyclone activity over a large
domain and a sufficiently large period of time. For example at
ECMWF sub-seasonal forecasts of tropical cyclone activity are
produced over weekly mean periods and each ocean basin.
Verification of these forecasts26,27 suggests some skill up to at
least 2 weeks over most of the basins, and up to week 3 over the
South Indian ocean.

Extending upward from the more-mature medium range
weather forecasting of individual tropical storms, the results
above suggest that there is a potential opportunity to extend
tropical cyclone forecasting to longer lead times, using probabil-
istic forecasts of tropical cyclone density or landfall. In the context
of humanitarian aid and disaster preparedness, the Red Cross
Climate Centre/IRI have proposed a “Ready-Set-Go” early-warning
concept for taking action based on forecasts from weather to
seasonal, in which seasonal forecasts are used to begin monitor-
ing of sub-seasonal and short-range forecasts, update contingency
plans, train volunteers, and enable early warning systems
(“Ready”); sub-monthly forecasts would be used to alert volun-
teers, warn communities (“Set’); and, weather forecasts are then
used to activate volunteers, distribute instructions to commu-
nities, and evacuate if needed (“Go”). This seamless forecasts to
action paradigm could be applied to tropical cyclones prediction.
Figure 3 shows an example of Ready-Set-Go paradigm for the
prediction of tropical cyclone Yasi, which made landfall in
northern Queensland, Australia on 3 February 2011, as a severe
Category 5 causing major damage to affected areas. The storm
caused an estimated AU$3.5 billion (US $3.6 billion) in damage,
making it the costliest tropical cyclone to hit Australia on record
(source https://en.wikipedia.org/wiki/Cyclone_Yasi). Figure 3 sug-
gests that sub-seasonal forecasts could have provided useful
information in a seamless prediction of tropical cyclone activity
from seasonal forecasts. At the seasonal time scale (ready), the
model predicted, as early as 1st November, that the December-
March tropical cyclone season in the Australian basin would likely
be more active than normal, and that this signal was statistically
significant within the 10% level of confidence. This seasonal
forecast was consistent with La Niňa conditions, which prevailed
during the 2010–2011 austral summer (more tropical cyclone
activity over the Australian basin and less tropical cyclones in the
South Pacific). At the sub-seasonal time scale, the forecast issued
on 13 January for the 26 January–4 February period predicted
20–30% chance of tropical cyclone landfall in the Queensland
area, which is well above the climatological probability, adding
more geographical and temporal specificity to the forecast of a
landfall, and increasing its confidence. At the medium range time
scale, the probability of landfall from a 5–12 day forecast issued on
January 27 reaches 90% which should trigger some action such as
activating volunteers, distributing instructions to communities,
and evacuating if needed. This type of seamless forecasts could be
a possible contribution of sub-seasonal forecasts to climate service
development within the Global Framework for Climate Services
(GFCS).

PREDICTION OF THE 2010 RUSSIAN HEAT WAVE
Long-lasting heat waves, which can last from a week to several
months enter into the category of extreme climate events where
sub-seasonal forecast could potentially be used to predict the
onset, evolution and decay a few weeks in advance. This section
will discuss the predictability of a specific heat wave event: the
2010 Russian heat wave. This heat wave was the strongest ever
recorded over the past 30 years.28 It caused an estimated 55,000
deaths and caused wildfires, the worst drought over Russia in
nearly 40 years and the loss of at least millions hectares of crops.
The heat wave which lasted a few months (May–August 2010),

was particularly intense during the week of 1–7 August 2010,
where the weekly 2-m temperature anomalies over Russia reached
a record value of +5 C (exceeding the heat wave over France in
2003). Re-forecasts from the S2S database have been used to
assess the capability of state-of-the-art extended range forecasts
to predict this specific event. 2-m temperature anomalies have
been computed relative to the model climatology from 1999 to
2009 and averaged over the area 20E–50E, 45N–70N where this
event took place. According to Fig. 4, ECMWF ensemble forecasts

Fig. 1 MJO forecast skill. Forecast lead time (days) when the MJO
bivariate correlation reaches 0.5 (yellow bars) or 0.6 (orange bars) for
10 model re-forecasts from the S2S database covering the common
period 1999–2010. The black vertical bars represent the 10% level of
confidence for a bivariate correlation of 0.6 using a 10,000 re-
sampling bootstrap technique

The sub-seasonal to seasonal prediction project (S2S) and…
F Vitart and AW Robertson

3

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2018) �3�



Seasonal prediction: 
ENSO

Figure 13: SST anomaly on 26. Nov 2015. Source:
http://www.ospo.noaa.gov/data/sst/anomaly/2015/anomnight.11.26.2015.gif.

The typical sea surface temperature anomaly for an El Nino event is shown in
Fig. 19. A warming of typically more than 1K is occuring in the eastern Pacific and
surrounded by a cooling (so-called Horse-shoe pattern).

Fig. 20 shows the typical (composite) response of the atmosphere (rainfall [or
heating!], and low-level winds) to the typical (composite) El Nino SST anomaly of
Fig. 19.

The response in the central equtorial Pacific is a weakening of the trade winds,
which is the positive atmospheric feedback, because a initial warm anomaly in the
eastern Paficic will cause a response that is strengthening the original SST anomaly
(why?). What is the typical period of ENSO? We will try to understand this at-
mospheric response and the subsequent ocean response in the following subsections
from a more theoretical point of view.

6.2 Atmospheric response to SST or heating anomaly

Kelvin and equatorial Rossby-gravity waves are also relevant for shaping the sta-
tionary response to an equatorial heating, so-called Gill response (Gill, 1980). In

45



La Nino and El Nino conditions

Figure 16: La Nina conditions in the Pacific with strong trade winds (black ar-
rows) pushing surface water toward the west (white arrows) and heavy rain in the
west driving the atmospheric circulation (black arrows). Colors give temperature
of the ocean surface, red is hottest, blue is coldest. From: NOAA Pacific Marine
Environmental Laboratory.

boundary h2

∫ h2(x,y,t)

z

∂p2
∂z

dz = −
∫ h2(x,y,t)

z
ρ2gdz , or (171)

p2(h2)− p2(x, y, z, t) = −ρ2g[h2(x, y, t)− z] . (172)

Then we apply the horizontal gradient

∇p2(h2) = ∇p2(x, y, t) − ρ2g∇h2(x, y, t) , (173)

noting that the horizonatal pressure gradient is independent on the vertical position.
Next we integrate further in layer 1

∫ z

h2(x,y,t)

∂p1
∂z

dz = −
∫ z

h2(x,y,t)
ρ1gdz , or (174)

p1(x, y, z, t) − p1(h2) = −ρ1g[z − h2(x, y, t)] . (175)

48

Figure 17: El Nio conditions in the Pacific with weak or reversed trade winds in
the west (black arrows) allowing surface water to surge eastward (white arrows) and
with heavy rain in the central equatorial Pacific driving the atmospheric circulation
(black arrows). Colors give temperature of the ocean surface, red is hottest, blue is
coldest. From: NOAA Pacific Marine Environmental Laboratory.

We again apply the horizontal gradient

∇p1(x, y, t) = ∇p1(h2) + ρ1g∇h2(x, y, t) , (176)

Continuity demands that p1(h2) = p2(h2), therefore inserting 176 into 173 leads
to:

∇p1(x, y, t) = ∇p2(x, y, t)− (ρ2 − ρ1)g∇h2(x, y, t) . (177)

Assuming the lower layer motionless and without pressure gradient ∇p2(x, y.t) = 0
and H = h1 + h2 = const (rigid lid; an approximation here), and therefore ∇h1 =
−∇h2 we get

∇p1(x, y, t) = (ρ2 − ρ1)g∇h1(x, y, t) , (178)

or
1

ρ1
∇p1(x, y, t) =

ρ2 − ρ1
ρ1

g∇h1(x, y, t) . (179)

The pressure gradient in the upper layer can be, to a first approximation, expressed
in terms of the change in density between lower and upper layer and the gradient
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Thermocline deepens to the as as a result of the Eastward 
propagating Ocean Kelvin wave



S2S week 3-4 correlation
high skill over ENSO region

But does it beat persistence?



Seasonal Forecasting systems Eurosip

Why so many lines?
What are the causes of the uncertainty?



Seasonal Forecasting systems Eurosip

Initial Condition uncertainty (from where?)

Model physics uncertainty

How are these treated?



An introduction to the ECMWF framework

10 days 
Deterministic run (highest resolution)

15 days 

51
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em
be

rs
 

7 months

51
 m

em
be

rs
 

Seasonal forecast (even 
lower resolution)

13 months (4 times/year)

48 days (twice per week) 
extended EPS (progressive 
intermediate resolution)

Dynamic “on the fly” 
hindcast
20 previous years 

Fixed hindcast period 



Why do we need the hindcast suite?

time

Real world
Forecast
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Why do we need the hindcast suite?

time

Real world
Forecast

[ Real ] Model world!

Corrected
Forecast



Example for temperature forecasts from SYS5



Hindcast Strategies
• “On the fly” – Each forecast is 

accompanied by a set of 
hindcasts starting on the same 
date for the previous N years
– GOOD: same model version and 

set up
– GOOD: Always same start date
– BAD: Expensive to run, smaller 

ensemble sizes 

• “Fixed” – Hindcast data 
set run once for a 
particular model cycle
– GOOD: Cheaper (if 

system not updated too 
frequently), larger 
ensemble sizes possible

– BAD: Not always 
matching dates 

15/03/2015

15/03/2014

15/03/2013

15/03/2012

18/03/2015

18/03/2014

18/03/2013

18/03/2012

18/03/2011

ALSO: “Burst” (large ensemble on set days) versus “lagged” 
(trickle of few forecasts each day) [see Bill’s lecture]
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Figure 2. Schematic showing the difference between weekly and daily initialization and the additional members used for the sub-seasonal forecast. The diagram
shows how the four forecast members initialized each day are combined in a lagged ensemble. Sub-seasonal products are generated from 7 days of forecast members.
Seasonal products use 3 weeks of forecast members in the ensemble. Each week a hindcast set for a given initialization date is completed. The same hindcast is used to
bias correct both seasonal and sub-seasonal products.

it is initialised, and the construction of the ensemble used to
generate products issued by the Met Office. The previous system
was described in Arribas et al. (2011) and many of the details are
still relevant.

2.1. Model configuration

The coupled HadGEM3 model used in the seasonal forecast
system consists of the following components:

• Atmosphere: MetUM (Walters et al., 2011; Brown et al.,
2012), Global Atmosphere 3.0

• Land surface: Joint UK Land Environment Simulator
(JULES; Best et al., 2011), Global Land 3.0

• Ocean: NEMO (Madec, 2008), Global Ocean 3.0
• Sea-ice: The Los Alamos Sea Ice Model (CICE; Hunke and

Lipscomb, 2010), Global Sea-Ice 3.0

The dynamical core of the UM (called NewDynamics) uses
a semi-implicit semi-Lagrangian discretization to solve the
fully compressible, non-hydrostatic atmospheric equations of
motion. The stochastic physics scheme Stochastic Kinetic Energy
Backscatter v2 (SKEB2; Bowler et al., 2009) is included to represent
unresolved processes and provide small grid-level perturbations
during the model integration. Climate forcings (e.g. methane,
CO2, etc.) are set to observed values up to the year 2005;
after this point the emissions follow the Intergovernmental
Panel on Climate Change (IPCC) RCP4.5 scenario. Climatologies
with a seasonal variation are used for other aerosols (biogenic
aerosols, biomass burning, black-carbon, sea salt, sulphates, dust,
and organic carbon fossil fuels). These climatologies have been
generated from a climate simulation using HadGEM2 (except dust
which is from a HadGEM1a run). The Stratosphere–troposphere
Processes And their Role in Climate (SPARC; Cionni et al., 2011)
observational climatology is used for ozone, which includes a

seasonal cycle. The solar forcing is the same in the forecast and
hindcast, with an interannual variation.

2.1.1. Global Atmosphere 3.0

A detailed description of the Global Atmosphere 3.0 configuration
is given in Walters et al. (2011) where the developments between
version 2.0 and 3.0 are also discussed. The basis of this science
configuration has been adopted by all the operational global
models used in the Met Office (although the configurations
are not exactly the same due to unavoidable temporal and spatial
resolution differences). There have been numerous changes to the
physical parametrizations used in the coupled model since Global
Atmosphere 2.0: introduction of cloud inhomogeneity, reduction
of spurious drizzle, reduction of spurious deep convection,
introduction of the JULES land surface model (Blyth et al.,
2006), and the facility to read iceberg calving ancillary data.

2.1.2. High-resolution model

The higher-resolution version of HadGEM3 used in the GloSea5
system uses the Global Atmosphere 3.0 configuration. Most of
the physical parametrizations remain the same between the two
resolutions. The high-resolution model requires a reduced time
step and altered diffusion settings to increase stability. In the
ocean model with the ORCA 0.25 grid, some of the major closed
seas (Great Lakes, Lake Victoria, Caspian Sea and the Aral Sea)
are included.

The resolution of the HadGEM3 model used in GloSea4 was
N96L85 ORCA 1 L75; in GloSea5 it has been increased to N216L85
ORCA 0.25 L75. This means that the horizontal resolution in the
atmosphere has increased from 1.88◦×1.25◦ to 0.83◦×0.56◦

(i.e. approximately 120 km in midlatitudes to 50 km). Figure 1
compares the orography used in the GloSea4 and GloSea5

c⃝ 2014 The Authors and Crown copyright. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. 141: 1072–1084 (2015)

The Met 
Office 
system

• Four forecast members 
initialized each day are 
combined in a lagged 
ensemble. 

• Sub-seasonal products are 
generated from 7 days of 
forecast members. 

• Seasonal products use 3 
weeks of forecast members 
in the ensemble. 

• Each week a hindcast set for 
a given initialization date is 
completed. 

• The same hindcast is used to 
bias correct both seasonal 
and sub-seasonal products. 

from 
MacLachlan
et al, QJRMS, 

2015



Seasonal forecasting within the C3S

• The C3S seasonal forecast products are based on data 
from several state-of-the-art seasonal prediction 
systems. 

• Multi-system combinations, as well as predictions from 
the individual participating systems, are available. 

• The centres currently providing forecasts to C3S are 
– ECMWF, 
– The Met Office
– Météo-France
– DWD
– CMCC



SYSTEM FORECASTS HINDCASTS
ENSEMBLE SIZE and
START DATES

PRODUC
TION

ENSEMBLE SIZE and
START DATES

PRODUCTION

ECMWF System 4
(CDS system: 4)

51 members start 
on the 1st

real-time 15 members start on the 1st fixed dataset

SEAS5
(CDS system: 5)

51 members start 
on the 1st

real-time 25 members start on the 1st fixed dataset

Météo-France System 5
(CDS system: 5)

51 members (a)

26 start on the 
first Wednesday 
after the 19th

25 start on the 
first Wednesday 
after the 12th

real-time 15 members start on the first 
Wednesday after the 19th (a)

fixed dataset

System 6
(CDS system: 6)

51 members
1 starts on the 1st
25 start on the 

25th
25 start on the 

20th

real-time 25 members
1 starts on the 1st
12 start on the 25th
12 start on the 20th

fixed dataset

Met Office GloSea5 (b)

(CDS system: 12,13, 
14 (d))

2 members start 
each day
(c)

real-time 7 members on the 1st
7 members on the 9th
7 members on the 17th
7 members on the 25th

on-the-fly
produced around 4-
6 weeks in advance

CMCC SPSv3
(CDS system: 3)

50 members start 
on the 1st

real-time 40 members start on the 1st fixed dataset

DWD GCFS2.0
(CDS system: 2)

50 members start 
on the 1st

real-time 30 members start on the 1st



Bewildering array of data access choices

FTP server
(NCEP)

Web Portal
data order
(NOAA)

Web Portal
graphical interface
(Climate explorer)

Thredds
servers
(ISIMIP)

Python API
data interface
(ECMWF,  C3S)

remote processing 
toolboxes 
(IRIDL, C3S)



Common go-to locations, many of which will be 
introduced this week 

• Now: observations
– IRI data library
– Data originator portal

• Reanalysis (ERAI/ERA5)
– ECMWF
– Copernicus C3S

• Short range (TIGGE)
– ECMWF (research only, not real time)

• Subseasonal S2S
– ECMWF (research only, not real time)

• Seasonal 
– NMME (USA systems, monthly)
– CHFP (global centres, monthly, hindcast only)
– ECWMF (EUROSIP)
– Copernicus C3S

• Decadal to Climate change (CMIP)
– CMIP on the earth system grid (ESG)
– KNMI climate explorer
– Copernicus C3S

Where is the 
data?



TIGGE: the THORPEX Interactive Grand Global 
Ensemble

• TIGGE is a key component of THORPEX (the Observing 
System Research and Predictability Experiment): a 
World Weather Research Programme (WWRP) 
programme to accelerate the improvements in the 
accuracy of 1-day to 2 week high-impact weather 
forecasts. 

• The TIGGE archive consists of ensemble forecast data 
from ten global NWP centres, starting from October 
2006

• Available for scientific research (not real-time)
• THORPEX programme finishes at the end of 2014, 

TIGGE will continue for a further 5 years, when its 
future will be reviewed.



Data portal: http://apps.ecmwf.int/datasets/data/tigge/







3. The TIGGE ensembles 

The 9 TIGGE operational, medium-range, global ensembles use different methodologies to 
simulate initial-time and model uncertainties. Every day, the 7 ensembles that are still 
operational, put 436 forecasts into the TIGGE archive. These forecasts have horizontal 
resolution ranging from about 210 km to about 32 km, and forecast length between 10 and 
16 days. They all simulate initial/observation and model uncertainties in different ways. 

Initial unc. # Vert Lev Fcst  # pert #runs # mem 

method (area) (TOA, hPa) length (d) mem per day (UTC) per day
BMRC (AU) SV(NH,SH) NO TL119 (1.5°; 210km) 19 (10.0) 10 32 2 (00/12) 66 Sep-07/Jul-10
CMA (CHI) BV(globe) NO T213 (0.56°; 70km) 31 (10.0) 10 14 2 (00/12) 30 May-07
CPTEC (BR) EOF(40S:30N) NO T126 (0.94°, 120km) 28 ( 0.1) 15 14 2 (00/12) 30 Feb-08

TL639 (0.28°; 32km) 0-10
TL319 (0.56°; 65km) 15/32

JMA (JAP) SV(NH, TR, SH) YES TL479 (0.38°; 50km) 60 ( 0.1) 11 25 2 (00/12) 52 Aug-11
KMA(KOR) ETKF(globe) YES N320 (0.35°; 40km) 70 ( 0.1) 10 23 4 (00/06/12/18) 96 Dec-07
MSC (CAN) EnKF(globe) YES 600x300 (0.6°, 75km) 40 ( 2.0) 16/32 20 2 (00/12) 42 Oct-07

T254 (0.70°; 90km) 0-8
T190 (0.95°; 120km) 8-16

UKMO (UK) ETKF(globe) YES N216 (0.45°; 60km) 70 ( 0.1) 15 23 2 (00/12) 48 Oct-06/Jul-14

Centre Model 
unc. 

Truncation      
(degrees, km)

In TIGGE since 

ECMWF (EU) SV(NH, SH, TC) + 
EDA(globe)

YES 91 ( 0.1) 50 2 (00/12)

4 (00/06/ 12/18) 84 Mar-07

102 Oct-06

NCEP (USA) ETR(globe) YES 28 ( 2.7) 20



TIGGE data flows
• The ensemble prediction data is transferred from the data providers to 

one of the data centres (using LDM, FTP or HTTP). 
• After checking, the data is then sent on to the other data centres.
• The data is archived and made available to users 48 hours after initial 

forecast time.



TIGGE features
• All data are archived at native 

resolution (on native grid when 
possible)

• Data may be interpolated on 
any limited-area lat-lon grid 
defined by the user just before 
download

• Field names, definitions, units, 
accumulation times, (etc.) are 
fully standardized

• Data gaps are continuously 
monitored and every effort is 
made to repair them quickly 

• All data provided in GRIB2 
(WMO standard data format)

Slide 62AMS - IIPS - 2012

NCAR

EPS 1 EPS 2 EPS n

academic NHMS other
users

Predictability 
science Applications

ECMWF CMA



• Daily real-time forecasts + re-forecasts: 48 to 62 days 
lead time

• 3 weeks behind real-time
• Common grid (1.5x1.5 degree)

• Variables archived: about 80 variables including ocean 
variables, stratospheric levels and soil moisture and 
temperature

• Archived in GRIB2 – NETCDF conversion planned
• Database opened in May 2015, now 9 models available

Subseasonal to Seasonal (S2S) Database



Contributing centres to S2S

BoM

NCEP

EC HMCR

JMA
KMA

CMA

ECMWF

Météo
France

UKMO

Data provider (11) Archiving centre (2)

ISAC



Time-
range

Resol. Ens. Size Freq. Hcsts Hcst length Hcst Freq Hcst Size

ECMWF D 0-46 T639/319L91 51 2/week On the fly Past 20y 2/weekly 11

UKMO D 0-60 N216L85 4 daily On the fly 1989-2003 4/month 3

NCEP D 0-44 N126L64 4 4/daily Fix 1999-2010 4/daily 1

EC D 0-35 0.6x0.6L40 21 weekly On the fly Past 15y weekly 4

BoM D 0-60 T47L17 33 weekly Fix 1981-2013 6/month 33

JMA D 0-34 T159L60 50 weekly Fix 1979-2009 3/month 5

KMA D 0-60 N216L85 4 daily On the fly 1996-2009 4/month 3

CMA D 0-45 T106L40 4 daily Fix 1992-now daily 4

Met.Fr D 0-60 T127L31 51 monthly Fix 1981-2005 monthly 11

CNR D 0-32 0.75x0.56 L54 40 weekly Fix 1981-2010 6/month 1

HMCR D 0-63 1.1x1.4 L28 20 weekly Fix 1981-2010 weekly 10

S2S partners

See ICTP S2S school: http://indico.ictp.it/event/a14264/  



NMME



NMME
• Read the user guide!
• Refer to Kirtman et al. 2014 BAMS article
• Who is involved?

– NOAA NCEP CFSv1 (retired October, 2012)
– NOAA NCEP CFSv2
– IRI ECHAMA and ECHAMF (retired August, 2012)
– NASA Goddard Space Flight Center (GSFC) GEOS5
– NCAR/University of Miami CCSM3.0
– GFDL CM2.1
– GFDL CM2.5 [FLORa06 and FLORb01] (joined March, 2014) 
– Environment Canada CanCM3 and CanCM4 (joined September, 

2012) 
• Each real-time forecast available by the 9th of the month

http://journals.ametsoc.org/doi/abs/10.1175/JCLI3812.1
http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00823.1
http://journals.ametsoc.org/doi/abs/10.1175/MWR3016.1
http://journals.ametsoc.org/doi/abs/10.1175/2009MWR2672.1
http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-12-00216.1


What’s available for real-time?
• Spatial anomaly forecasts

– one-month: ensemble mean monthly anomaly forecasts for each model 
based on their climatology from the hindcasts. The models are equally 
weighted, meaning the ensemble means for each model are calculated first, 
then averaged together to form the multi-model mean. Forecasts for the 
following seven months are available. (also 3 month averages)

• Skill maps are based on the monthly/three-month anomaly correlation for 
each variable's ensemble mean from the 1982-2010 hindcasts. Skill maps 
are available for the individual models and for the NMME.

• Nino Plumes
• International MME: EUROSIP (maps only, no digital data)
• Experimental probability forecasts: probability forecasts are a different 

representation of the model data, and are prepared in parallel to the the 
anomaly forecasts.

• Preview of additional variables: Five variables are available in "preview" 
mode: 200 mb height, maximum and minimum 2 m surface temperature, 
runoff, and soil moisture. 

• Preliminary real-time verification: Skill assessments of the real-time 
forecasts are updated monthly between the 6th - 8th.

http://www.cpc.ncep.noaa.gov/products/NMME/monanom.shtml
http://www.cpc.ncep.noaa.gov/products/NMME/seasanom.shtml
http://www.cpc.ncep.noaa.gov/products/NMME/iMMEindex.shtml
http://www.cpc.ncep.noaa.gov/products/NMME/probindex.shtml
http://www.cpc.ncep.noaa.gov/products/NMME/model_monanon_plus.shtml
http://www.cpc.ncep.noaa.gov/products/NMME/verif/


Hindcasts (phase 1)

• Each model has a complete set of retrospective 
forecasts for 1982-2010 (CFSv1=1982-2009)

• These hindcasts are used for model calibration and for 
studies. 

• Only monthly means are available, for the three 
variables: sea-surface temperature, 2 meter 
temperature, and precipitation rate, at a global, 1-
degree latitude by 1-degree longitude resolution.

• The phase 1 hindcasts are available on the IRI
datalibrary: 
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NM
ME/

http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/


Hindcasts phase 2

• Many more variables are available on the earth system 
grid: 
https://www.earthsystemgrid.org/search.html?Project
=NMME

• Hindcast period covers 1980-2015 but the core period 
is 1982-2012

• Files can be:
– downloaded through a Web Browser,
– downloaded in bulk via a WGET script,
– requested from the Deep Storage Archives (SRM).

• list of variables available here: 
http://www.cpc.ncep.noaa.gov/products/ctb/nmme/N
MME_Data_Strategy.pdf

https://www.earthsystemgrid.org/search.html?Project=NMME
http://www.gnu.org/s/wget/
http://www.cpc.ncep.noaa.gov/products/ctb/nmme/NMME_Data_Strategy.pdf


Real time forecasts:
• These are available on an ftp archive: 

ftp://ftp.cpc.ncep.noaa.gov/NMME/realtime_anom/
• Access through the web interface or ftp
• To retrieve absolute fields, then you need the climatologies: 

ftp://ftp.cpc.ncep.noaa.gov/NMME/clim/

ftp://ftp.cpc.ncep.noaa.gov/NMME/realtime_anom/
ftp://ftp.cpc.ncep.noaa.gov/NMME/clim/


Data locations for realtime

CFSv2/2011110800/prate.2011110306.01.CFSv2.anom.avrg.1x1.grb

MODEL

FORECAST ISSUE DATE

VARIABLE
(rain, temperature, SST)

FORECAST START DATE

ENSEMBLE
MEMBER

OBVIOUS!



CHFP: Climate-system Historical Forecast Project 



CHFP

• A WGSIP (working group on [sub]seasonal to 
internannual[decadal] prediction) project

• Idea is to create a long-term archive for seasonal 
prediction model’s hindcast (reforecast) datasets.

• No operational data archived, used as a research 
tool

• Idea is for a “living” archive, that is updated as 
newer model versions come online to document 
long-term improvements in seasonal prediction

• http://www.wcrp-climate.org/wgsip-chfp/chfp-
data-archive

• http://chfps.cima.fcen.uba.ar/

http://www.wcrp-climate.org/wgsip-chfp/chfp-data-archive
http://chfps.cima.fcen.uba.ar/


What is in there?

• 4 start 
dates a year

• Mostly 
monthly 
mean 
variables

• limited daily 
data 



Web data interface



KNMI climate explorer

• Provides easy access to CMIP3
(daily&monthly) and CMIP5 (monthly) model 
output

• Some observational data also available
• Simple functionality allow online calculation 

of anomalies, trends and apply filters.
• Simple exercise sheet on the s2s clima-dods

site



http://climexp.knmi.nl

http://climexp.knmi.nl/


variable (tas=T2m,pr=precip)

Ensemble number
model

Emission 
Scenario



EUROSIP multi-model ensemble

• Four seasonal forecast  models archived at ECMWF:

– ECMWF – SYSTEM 4

– Met Office – HADGEM model, Met Office ocean analyses

– Météo-France – Météo-France model, Mercator ocean analyses

– NCEP – CFSv2

• Unified system

– Real-time since mid-2005

– All data in ECMWF operational archive

– Common operational schedule (products released at 12Z on 15
th

)

– Recent changes at Met Office have limited the system somewhat

– See “EUROSIP User Guide” on web for details, and also the ECMWF 

Newsletter article (Issue No. 118, Winter 2008/09)



EUROSIP web products



EUROSIP data

• Individual model data archived in MARS

– NEW! Available in realtime, with ECMWFAPI and 

C3S API access...

– C3S toolbox beta release for remote processing

• Multi-model data products

– Created and archived in MARS

– Available for dissemination, also for commercial 

customers



Observations and IRI data library

data repository – data visualization - data analysis 
tool - Q: What are the advantages and disadvantages 
of such a platform?


