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___________________ 'ntroduction

In “Nature” 27 January 2016:

“‘DeepMind’s program AlphaGo beat Fan Hui,
the European Go champion, five times out
of five in tournament conditions...”

“‘AlphaGo was not preprogrammed to play
Go: rather, it learned using a general-
purpose algorithm that allowed it to
interpret the game’s patterns.”
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At last — a computer program that
can beat a champion Go player PAGE 484

search algorithm to find its moves based
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an artificial neural network (a deep
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Event classification problem (applied to HEP) HH

The question: what ‘decision boundary’ should we use to accept/reject events as
belonging to event types H1, H2 or H3?

Cuts on the input variables ? Linear Boundaries ? Non-linear Boundaries ?

Methods available (up to 2015): Rectangular cut optimization, Projective likelihood estimation,
Multidimensional probability density estimation, Multidimensional k-nearest neighbor classifier,
Linear discriminant analysis (H-Matrix and Fisher discriminants), Function discriminant
analysis, Predictive learning via rule ensembles, Support Vector Machines, Artificial neural
networks, Boosted/Bagged decision trees (BDT)...
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. Higgs Boson Machine Learning Challenge

e the ATLAS experiment 1o identify the Hiaas boson The Higgs Boson Machine
Learning Challenge was
organized to promote
collaboration between high
energy physicists and data
scientists. The ATLAS
CATLAS 2. b

o 3 A EXPERIMENT 20120530 20:31:28 UTG provided simulated data that
has been used by physicists

in a search for the Higgs
boson.

challenge
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https://www.kaggle.com/c/higgs-boson
https://higgsml.lal.in2p3.fr/

Typical neural network circa 2005

Artificial neuron

f(A)= 135

1+eh

The first layer, known as the input layer, receives the
input variables (x1; x2; ...xd). Each connection to the
neuron is characterised by a weight (w1; w2; ... wd)
which can be excitatory (positive weight) or inhibitory
(negative weight). Moreover, each layer may have a
bias (x0 = 1), which can provide a constant shift to the
total neuronal input net activation (A), in this case a
sigmoid function:
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An ANN mimics the behaviour of
the biological neuronal networks
and consists of an interconnected
group of processing elements
(referred to as neurons or nodes)
arranged in layers.
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Typical neural network circa 2005 HH

The last layer represents the final
response of the ANN, which in the
case of d input variables and nH
nodes in the hidden layer can be

A=3 9 wix; w f(A)= —2 1’0 expressed as:

Artificial neuron

1+eh
nyg d
o=f Zujf(zuz i)
4=0 i—=0

The weights and thresholds are the network parameters, whose values are learned during
the training phase by looping through the training data several hundreds of times. These
parameters are determined by minimising an empirical loss function over all the events N in
the training sample and adjusting the weights iteratively in the multidimensional space, such

that the deviation E of the actual network output o from the desired (target) output y is
minimal



Typical neural network circa 2005 HH

ANN architecture: heuristic selection based on complexity adjustment and parameter estimation

Theoretical basis:

Arnold - Kolmogorov (1957): if fis a
multivariate continuous function,
then f can be written as a finite
composition of continuous functions
of a single variable and the binary
operation of addition

Gorban (1998): it is possible to
obtain arbitrarily exact approx. of
any continuous function of several
variables using operations of
summation and multiplication by
number, superposition of functions,
linear functions and one arbitrary
continuous nonlinear function of one
variable.



Typical neural network circa 2005 HH

ANN architecture: heuristic selection based on complexity adjustment and parameter estimation

An example of a two and three-layer networks with
two input nodes. Given an adequate number of
hidden units, arbitrary nonlinear decision boundaries
between regions R1 and R2 can be achieved

Theoretical basis:

Arnold - Kolmogorov (1957): if fis a
multivariate continuous function,
then f can be written as a finite
composition of continuous functions
of a single variable and the binary
operation of addition

Gorban (1998): it is possible to
obtain arbitrarily exact approx. of
any continuous function of several
variables using operations of
summation and multiplication by
number, superposition of functions,
linear functions and one arbitrary
continuous nonlinear function of one
variable.

Neural Network is an universal
approximator for any continuous
function 8
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Differentiable Neural Computer (DNC)
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Kohonen Network (KN)

Deep neural network circa 2020

DNN architecture: Structure of the networks,
and the node connectivity can be adapted for
problem at hand

Convolutions: shared weights of neurons, but
each neuron only takes subset of inputs

Difficult to train, only recently possible with large
datasets, fast computing (GPU) and new training
procedures / network structures


http://www.asimovinstitute.org/neural-network-zoo/

Decision boundaries with TensorFlow H

Orange shows negative values

Bue shows positive values

SpResorass - The data points (represented by small circles)
,’!.".;'.:fi-‘.".‘;.‘,. are initially colored orange or blue, which
(3 AL ! s .
SEOTOY correspond to positive one and negative one.
|
0

Colors shows
data, neuronand !
weight values.
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https://playground.tensorflow.org/

Machine learning usage at the LHC

* In analysis:

— Classifying signal from background, especially in
complex final states

— Reconstructing heavy particles and improving the
energy / mass resolution

* In reconstruction:

— Improving detector level inputs to reconstruction
— Particle identification tasks

— Energy / direction calibration

* In the trigger:
— Quickly identifying complex final states

* In computing:
— Estimating dataset popularity, and determining
needed number and best location of dataset replicas
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ML@LHC: object reconstruction and calibration ”H

BDT used for photon at CMS for ID (classification)
and energy reconstruction (semi- parametrlc regressmn)
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ML@LHC: object identification ||H

BDT for hadronic tau at CMS for ID (classification), at
ATLAS for ID & energy callbratlon (regressmn)

T, identification efficiency
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ATLAS differentiate different decay modes of already
identified tau by counting pi® PERF-2014-06.

Tau group was first in
ATLAS to introduce a

BDT ID at trigger level. 13



ML@LHC: b-jet identification ||H

Deep neural network (DNN) vs BDT for b-tagging.
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ML@LHC: candidate particle reconstruction ”H

Example of BDT classification to choose which jets to
group to reconstruct Higgs or top quark candidate mass.
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ML@LHC: jet classification ||H

Convolutional neural networks (CNN) classify jet images,
like in the quark/gluon tagger (ATL-PHYS-PUB-2017-017).

Gluon Jet Rejection

Convolutional neural networks assume (translational) invariances as found in images.
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Quark Jet Efficiency

Images are scanned with (learned) filter matrices.

Quark Jet Efficiency
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________________ Datafomatsj

TMVA TensorFlow Theano Scikit R Spark VW [LibFM RGF Torch

Learn ML

ROOT [T, C] v o through conversion into other formats, see Table 2 |
CSV [F] v v v v v X X X v
1ibSVM [M] X v X
VW [M] v
RGF [M] v
NumPy [R] [65] v v v v v X X p v
Avro [S, R] v v
Parquet [S, C] v v
HDF5 [S] X X X v
R df [R] v

PyROOT Python extension module that allows the user to interact with ROOT data/classes. [69]

root_numpy | The interface between ROOT and NumPy supported by the Scikit-HEP community. [65]
root_pandas | The interface between ROOT and Pandas dataframes supported by the DIANA /HEP project. [70]

uproot A high throughput I/O interface between ROOT and NumPy. [71]

c2numpy Pure C-based code to convert ROOT data into Numpy arrays
which can be used in C/C++ frameworks. [72]

root4j The hep.io.root package contains a simple Java interface for reading ROOT files.
This tool has been developed based on freehep-rootio. [73]

root2npy The go-hep package contains a reading ROOT files.

This tool has been developed based on freehep-rootio. [73]
root2hdf5 Converts ROOT files containing TTrees into HDF5 files containing HDF5 tables. [74]

17


https://arxiv.org/pdf/1807.02876.pdf
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