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The Concept of Probability

Many processes in nature have uncertain outcomes.

A random process is a process that can be reproduced, to some
extent, within some given boundary and initial conditions, but whose
outcome is uncertain.

For example, qguantum mechanics phenomena have intrinsic
randomness.

Probability is a measurement of how favored one of the possible
outcomes of such a random process is compared with any of the
other possible outcomes.




The Meaning of Probability: 2 approaches

* Frequentist probability is defined as the fraction of the number of
occurrences of an event of interest over the total number of possible
events in a repeatable experiment, in the limit of very large number
of experiments.

« Bayesian probability measures someone’s degree of belief that a
statement, and it makes use of an extension of the Bayes theorem:
the probability of an event A given the condition that the event B has
occurred Is given by:

PAjB)y = —202)
P(B) :
* The conditional probability is equal to the A

area of the intersection divided by the area if B



A Word on Simulation

* What a (computer) simulation does:
* Applies mathematical methods to the analysis of complex,
real-world problems
* Predicts what might happen depending on various
actions/scenarios

» Use simulations when
* Doing the actual experiments is not possible
* The cost in money, time, or danger of the actual experiment is
prohibitive (e.g. nuclear reactors)
* The system does not exist yet (e.g. an airplane)
 Various alternatives are examined (e.g. hurricane predictions)



Why we need and have so much data at LHC?

An example for illustration

Correct dice Manipulated dice
every number has numbers 1..5 probability <1/6

probability 1/6 number é probability > 1/6



Why we need and have so much data at LHC?

Role the dice and record the number in a bar chart
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Why we need and have so much data at LHC?
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Monte Carlo Method

* A numerical simulation method which
uses sequences of random numbers
to solve complex problems




What Monte Carlo does?

* MC assumes the system is described by probability
density functions (PDF) which can be modeled with no need
to write down equations

* These PDF are sampled randomly, many simulations are
performed and the result is the average over the number
of observations



Monte Carlo in High Energy Physics

* In HEP (in particular in hadron collider physics) MC are
very useful:

» To generate simulated collision events:
* Quantum Field Theory obey probability laws
* Proton PDF's have to be taken into account
* Final state kinematical distributions with many alternatives
(correlation of observables might be a problem...)
-+ Complex soft and non-perturbative QCD
(parton shower and hadronization)

» To simulate the response of the detector:

* Particle interaction with matter can be complicated
* Huge number of different detector components



What to do with Monte Carlo events?

» To test performances:
* Perform feasibility studies before looking at Data
* Predict the performances of the detector

* To compare with real collision Data to extract physics
results:
* Background modeling
- Signal selection efficiency (acceptance) determination



Example: Higgs discovery at ATLAS
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Collision Event Simulation

- Different steps are required:

Start by determining the hard process:
1) Choice of the interesting process to generate (start
from a generic pp collision would be inefficient...)
2) Randomly generate kinematics of initial and final states
(using PDF's for initial state)

Evolve the final state:
3) Decays of heavy particles according to BR's
4) Parton shower evolution
5) Hadronization of partons to form particles






Practical example: estimating the value of m
using the Monte Carlo method

* Q: How to estimate a value of 11 using the Monte Carlo
method?



Practical example: estimating the value of m
using the Monte Carlo method

* Q: How to estimate a value of 11 using the Monte Carlo
method?

* A: Generate a large number of random points and see
how many fall in the circle enclosed by the unit square.



Practical example: estimating the value of m
using the Monte Carlo method

* A: Generate a large number of random points and see
how many fall in the circle enclosed by the unit square

 Build a circle of radius 0.5, enclosed by a 1 x 1 square.
The area of the circle is: TTR? = 1/4

* The area of the square is 1.

* |If we divide the area of the circle,
by the area of the square we get: 11/4



Practical example: estimating the value of m
using the Monte Carlo method

* Generate a large number of uniformly distributed random
points and plot them on the graph. These points can be In
any position within the square i.e. between (0,0) and
(1,1).

« If they fall within the circle, they are coloured red,
otherwise they are coloured blue.



Practical example: estimating the value of m
using the Monte Carlo method

* We keep track of the total number of points, and the
number of points that are inside the circle.

* |If we divide the number of points within the
circle, Ninner, by the total number of points, Ntotal, we
should get a value that is an approximation of the ratio of
the areas we calculated above, 11/4

N inner
N, total

T4

* With a small number of points, the
estimation is not very accurate, but <

with thousands of points, we get closer
to the actual value —


https://academo.org/demos/estimating-pi-monte-carlo/
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A word on statistics
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Counting events

Consider N total events, select good events with probability p.
Probability to get n good events ?

Binomial distribution : P(n ; N, p) = CI':I p"(l— p)N—n
Mo =P N trials
Variance = N-p(1 - p) e o

‘ \ A
\ n good events //"

However suppose p<< I, N> 1, andlet A=Np:
— [.e. very rare process, but very many frials so still expect to see good events

Poisson distribution: P(n;A)=e™" 7‘—’
Mean = A n.
Variance = A = RMS = VA (1-p)




Counting events

Consider N total events, select good events with probability p.
Probability to get n good events ?

Binomial distribution : P ( n;N, p) CN p" ( 1— p)N—n
Mo =P N trials
Variance = Np(1 - p) oy

\ A
\ n good events //"

However suppose p<< I, N> 1, andlet A=Np:
— [.e. very rare process, but very many frials so still expect to see good events

Poisson distribution: P(n;A)=e™" 7‘—,
Mean = A n.
Variance =A = RMS = \l*)\ (1-p)

For n expected events, the uncertainty is Yn




Rare processes at the LHC

HEP : almost always use Poisson

distributions. Why ?

ATLAS :

* Eventrate ~ 1 GHz
(L~ 10 ems'= 10np/5:0..210° nb; )

* Trigger rate ~ 1 kHz

(Higgs rate ~ 0.1 Hz)
=p~10°<K1(p,,, ~ 107

A day of data: N ~ 10 > 1

= Poisson regime!

(Large N = design requirement,
to get not-too-small 2=Np...)
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Probability to find something new

In one year, the LHC provides ~10' pp collisions

An observation of ~ 10 events could be a discovery of new physics.

Searching for a needle in a haystack?

3

" P Tcal fecdleys mm ; needle : haystack = 1: 10"
* typical haystack: 50 m

= Looking for new physics at the LHC is like
looking for a needle in thousands of haystacks ...



QUESTIONS




