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Abstract These lecture notes are attended for a course at Sissa in september
2019: they contain more material than what we will cover but hopefully we will
be able to discuss the topics of the 5 chapters of the notes. Their goal is to
put together the asymptotic analysis of several highly correlated systems such
as the eigenvalues of random matrices or random tilings that can be attacked
by similar tools, namely the derivation and analysis of the Dyson-Schwinger or
loop equations. More complete notes were published by the AMS.
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1 Introduction

1.1 Some historical references
These lecture notes concern the study of the asymptotics of large systems of par-
ticles in very strong mean field interaction and in particular the study of their
fluctuations. Examples are given by the distributions of eigenvalues of Gaus-
sian random matrices, β-ensembles, random tilings and discrete β-ensembles, or
several random matrices. These models display a much stronger interaction be-
tween the particles than the underlying randomness so that classical tools from
probability theory fail. Fortunately, these model have in common that their
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correlators (basically moments of a large class of test functions) obey an infi-
nite system of equations that we will call the Dyson-Schwinger equations. They
are also called loop equations, Master equations or Ward identities. Dyson-
Schwinger equations are usually derived from some invariance or some symme-
try of the model, for instance by some integration by parts formula. We shall
argue in these notes that even though these equations are not closed, they are
often asymptotically closed (in the limit where the dimension goes to infinity)
so that we can asymptotically solve them and deduce asymptotic expansions
for the correlators. This in turn allows to retrieve the global fluctuations of the
system, and eventually even more local information such as rigidity.

This strategy has been developed at the formal level in physics [2] for a long
time. In particular in the work of Eynard and collaborators [47, 46, 45, 14], it
was shown that if one assumes that correlators expand formally in the dimen-
sion N , then the coefficients of these expansions obey the so-called topological
recursion. For instance, in [25, 26], it was shown that assuming a formal expan-
sion holds, Dyson-Schwinger equations induce recurrence relations on the terms
in the expansion which can be solved by algebraic geometry means. These
recurrence relations can even be interpreted as topological recursion, so that
the coefficients of these expansions can be given combinatorial interpretations.
In fact, it was realized in the seminal works of t’Hooft [82] and Brézin-Parisi-
Itzykson-Zuber [39] that moments of Gaussian matrices and matrix models can
be interpreted as the generating functions for maps. One way to retrieve this
result is by using Dyson-Schwinger equations and checking that asymptotically
they are similar to the topological recursion formulas obeyed by the enumera-
tion of maps, as found by Tutte [86]. In this case, one first need to analyze the
limiting behavior of the system, given by the so-called equilibrium measure or
spectral curve, and then the Dyson-Schwinger equations, that is the topological
recursion, will provide the large dimension expansion of the observables.

The study of the asymptotics of our large system of particles also starts with
the analysis of its limiting behaviour. I usually derive this limiting behaviour
as the minimizer of an energy functional appearing as a large deviation rate
functional [7], or in concentration of measure estimates [68], but, according to
fields, people can prefer to see it as the optimizer of Fekete points [76], or as the
solution of a Riemann-Hilbert problem [33]. This study often amounts to the
analysis of some equation. The same type of analysis appears in combinatorics
when one counts for example triangulations of the sphere. Indeed, it can be seen,
thanks to Tutte surgery [86], that the generating function for this enumeration
satisfies some equation. Sometimes, one can solve explicitly this equation, for
instance thanks to the quadratic method and catalytic variables [20, 23] or [51,
Section 2.9]. In our models, we will also be able to derive equations for our
equilibrium measure thanks to Dyson-Schwinger equations. But sometimes,
these equations may have several solutions, for instance in the setting of a
double well potential in β-models. The absence of uniqueness of solutions to
these equations prevents the analysis of many interesting models, such as several
matrix models at low temperature. In good cases such as the β-models, we may
still get uniqueness for instance if we add the information that the equilibrium
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measure minimizes a strictly convex energy. Dyson-Schwinger equation can then
be regarded as the equations satisfied by the critical points of this energy.

The Dyson-Schwinger equations will be our key to get precise informations
on the convergence to equilibrium, such as large dimension expansion of the free
energy or fluctuations. These types of questions were attacked also in the Rie-
mann Hilbert problems community based on a fine study of the asymptotics of
orthogonal polynomials [50, 31, 40, 10, 22, 32]. It seems to me however that such
an approach is more rigid as it requires more technical steps and assumptions
and can not apply in such a great generality than loop equations. Yet, when
it can be used, it provides eventually more detailed information. Moreover, in
certain cases, such as the case of potentials with Fisher Hartwig singularities,
Riemann Hilbert techniques could be used but not yet loop equations [60, 34].

To study the asymptotic properties of our models we need to get one step
further than the formal approach developped in the physics litterature. In other
words, we need to show that indeed correlators can expand in the dimension up
to some error which is quantified in the large N limit and shown to go to zero.
To do so, one needs in general a priori concentration bounds in order to expand
the equations around their limits. For β-models, such a priori concentration
of measure estimates can be derived thanks to a result of Boutet de Monvel,
Pastur and Shcherbina [21] or Maida and Maurel-Segala [68]. It is roughly
based on the fact that the logarithm of the density of such models is very
close to a distance of the empirical measure to its equilibrium measure, hence
implying a priori estimates on this distance. In more general situations where
densities are unknown, for instance when one considers the distributions of the
traces of polynomials in several matrices, one can rely on abstract concentration
of measures estimates for instance in the case where the density is strictly log-
concave or the underlying space has a positive Ricci curvature (e.g SU(N)) [55].
Dyson-Schwinger equations are then crucial to obtain optimal concentration
bounds and asymptotics.

This strategy was introduced by Johansson [61] to derive central limit the-
orems for β-ensembles with convex potentials. It was further developped by
Shcherbina and collaborators [1, 79] and myself, together with Borot [11], to
study global fluctuations for β-ensembles when the potential is off-critical in
the sense that the equilibrium has a connected support and its density vanishes
like a square root at its boundary. These assumptions allow to linearize the
Dyson-Schwinger equations around their limit and solve these linearizations by
inverting the so-called Master operator. The case where the support of the
density has finitely many connected component but the potential is off-critical
was adressed in [77, 12]. It displays the additional tunneling effect where eigen-
values may jump from one connected support to the other, inducing discrete
fluctuations. However, it can also be solved asymptotically after a detailed
analysis of the case where the number of particles in each connected compo-
nents is fixed, in which case Dyson-Schwinger equations can be asymptotically
solved. These articles assumed that the potentials are real analytic in order
to use Dyson-Schwinger equations for the Stieltjes functions. We will see that
these techniques generalize to sufficiently smooth potentials by using more gen-
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eral Dyson-Schwinger equations. Global fluctuations, together with estimates of
the Wasserstein distance, were obtained in [65] for off-critical, one-cut smooth
potentials. One can obtain by such considerations much more precise estimates
such as the expansion of the partition function up to any order for general off-
critical cases with fixed filling fractions, see [12]. Such expansion can also be
derived by using Riemann-Hilbert techniques, see [41] in a perturbative setting
and [27] in two cut cases and polynomial potential.

But β-models on the real line serve also as toy models for many other mod-
els. Borot, Kozlowski and myself considered more general potentials depending
on the empirical measure in [15]. We studied also the case of more compli-
cated interactions (in particular sinh interactions) in [16] : the main problems
are then due to the non-linearity of the interaction which induces multi-scale
phenomenon. The case of critical potentials was tackled recently in [36]. Also
Dyson-Schwinger (often called Ward identities) equations are instrumental to
study Coulomb gas systems in higher dimension. One however has to deal with
the fact that Ward identities are not nice functions of the empirical measure
anymore, so that an additional term, the anisotropic term, has to be controlled.
This could very nicely be done by Leblé and Serfaty [66] by using local large
deviations estimates. Recently we also generalized this approach to study dis-
crete β-ensembles and random tilings [13] by analyzing the so-called Nekrasov’s
equations in the spirit of Dyson-Schwinger equations.

The same approach can be developed to study multi-matrix questions. Orig-
inally, I developed this approach to study fluctuations and large dimension ex-
pansion of the free energy with E. Maurel Segala [52, 53] in the context of
several random matrices. In this case we restrict ourselves to perturbations of
the quadratic potential to insure convergence and stability of our equations. We
could extend this study to the case of unitary or orthogonal matrices following
the Haar measure (or perturbation of this case) in [28, 54]. This strategy was
then applied in a closely related setting by Chatterjee [24], see also [30].

Dyson-Schwinger equations are also central to derive more local results such
as rigidity and universality, showing that the eigenvalues are very close to their
deterministic locus and that their local fluctuations does not depend much on
the model. For instance, in the case of Wigner matrices with non Gaussian
entries, a key tool to prove rigidity is to show that the Stieltjes transform ap-
proximately satisfies the same quadratic equation than in the Gaussian case
up to the optimal scale [43, 42, 4]. Recently, it was also realized that closely
connected ideas could lead to universality of local fluctuations, on one hand by
using the local relaxation flow [43, 67, 18], by using Lindenberg strategy [80, 81]
or by constructing approximate transport maps [79, 5, 49]. Such ideas could
be generalized in the discrete Beta ensembles [59] where universality could be
derived thanks to optimal rigidity (based on the study of Nekrasov’s equations)
and comparisons to the continuous setting.

5



1.2 A toy model
Let us give some heuristics for the type of analysis we will do in these lectures
thanks to a toy model. We will consider the distribution of N real-valued
variables λ1, . . . , λN and denote by

µ̂N =
1

N

N∑
i=1

δλi

their empirical measure : for a test function f , µ̂N (f) = 1
N

∑
f(λi). Then, the

correlators are moments of the type

M(f1, . . . , fp) = E[

p∏
i=1

µ̂N (fi)]

where fi are test functions, which can be chosen to be polynomials, Stieltjes
functionals or some more general set of smooth test functions. Dyson-Schwinger
equations are usually retrieved from some underlying invariance or symmetries
of the model. Let us consider the continuous case where the law of the λi’s is
absolutely continuous with respect to

∏
dλi and given by

dPVN (λ1, . . . , λN ) =
1

ZVN
exp{−

N∑
i1=1

N∑
i2=1

V (λi1 , λi2)}
∏

dλi

where V is some symmetric smooth function. Then a way to get equations
for the correlators is simply by integration by parts (which is a consequence of
the invariance of Lebesgue measure under translation) : Let f0, f1, . . . , f` be
continuously differentiable functions. Then

E[µ̂N (f ′0)
∏̀
i=1

µ̂N (fi)] = E[

(
1

N

∑
k

∂λkf0(λk))

)∏̀
i=1

µ̂N (fi)]

= − 1

N
E

[
(
dPVN
dλ

)−1
∑
k

f0(λk)∂λk

(∏̀
i=1

µ̂N (fi)(
dPVN
dλ

)

)]

= 2NE[

(ˆ
f0(x1)∂x1V (x1, x2)dµ̂N (x1)dµ̂N (x2)

)∏̀
i=1

µ̂N (fi)]

− 1

N

∑̀
j=1

E[
(
µ̂N (f0f

′
j)
)∏
i6=j

µ̂N (fi)]

where we noticed that since V is symmetric ∂xV (x, x) = 2∂xV (x, y)|y=x. The
case ` = 0 refers to the case f1 = · · · = f` = 1. We will call the above equa-
tions Dyson-Schwinger equations. One would like to analyze the asymptotics
of the correlators. The idea is that if we can prove that µ̂N converges, then we
can linearize the above equations around this limit, and hopefully solve them
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asymptotically by showing that only few terms are relevant on some scale, solv-
ing these simplified equations and then considering the equations at the next
order of correction. Typically in the case above, we see that if µ̂N converges
towards µ∗ almost surely (or in Lp) then by the previous equation (with ` = 0)
we must have ˆ

f0(x1)∂x1
V (x1, x2)dµ∗(x1)dµ∗(x2) = 0 . (1)

We can then linearize the equations around µ∗ and we find that if we set ∆N =
µ̂N − µ∗, we can rewrite the above equation with ` = 0 as

E[∆N (Ξf0)] =
1

N
E[µ̂N (f ′0)]− 2E[

ˆ
f0(x1)∂x1

V (x1, x2)d∆N (x1)d∆N (x2)] (2)

where Ξ is the Master operator given by

Ξf0(x) = 2f0(x)

ˆ
∂x1V (x, x1)dµ∗(x1) + 2

ˆ
f0(x1)∂x1V (x1, x)dµ∗(x1) .

Let us show heuristically how such an equation can be solved asymptotically.
Let us assume that we have some a priori estimates that tell us that ∆N is
of order δN almost surely (or in all Lk’s)[ that is that for sufficiently smooth
functions g, ∆N (g) = (µ̂N −µ∗)(g) is with high probability (i.e with probability
greater than 1 − N−D for all D and N large enough) at most of order δNCg
for some finite constant Cg]. Then, the right hand side of (2) should be smaller
than max{δ2

N , N
−1} for sufficiently smooth test functions. Hence, if we can

invert the master operator Ξ, we see that the expectation of ∆N is of order at
most max{δ2

N , N
−1}. We would like to bootstrap this estimate to show that δN

is at most of order N−1. This requires to estimate higher moments of ∆N . Let
us do a similar derivation from the Dyson-Schwinger equations when ` = 1 to
find that if ∆̄N (f) = ∆N (f)− E[∆N (f)],

E[∆N (Ξf0)∆̄N (f1)] = −2E[

ˆ
f0(x1)∂x1

V (x1, x2)d∆N (x1)d∆N (x2)∆̄N (f0)]

+
1

N
E[∆N (f ′0)∆̄N (f1)] +

1

N2
E[µ̂N (f0f

′
1)] . (3)

Again if Ξ is invertible, this allows to bound the covariance E[∆N (f0)∆̄N (f1)]
by max{δ3

N , δ
2
N/N,N

−2}, which is a priori better than δ2
N unless δN is of order

1/N . Since ∆N (f)− ∆̄N (f) is at most of order δ2
N by (2), we deduce that also

E[∆N (f0)∆N (f1)] is at most of order δ3
N . We can plug back this estimate into

the previous bound and show recursively (by considering higher moments) that
δN can be taken to be of order 1/N up to small corrections. We then deduce
that

C(f0, f1) = lim
N→∞

N2E[(∆N − E[∆N ])(f0)(∆N − E[∆N ])(f1)] = µ∗(Ξ−1f0f
′
1)

and
m(f0) = lim

N→∞
NE[∆N (f0)] = µ∗((Ξ−1f0)′) .

We can consider higher order equations (with ` ≥ 1) to deduce higher orders of
corrections, and the convergence of higher moments.
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1.3 Rough plan of the lecture notes
We will apply these ideas in several cases where V has a logarithmic singularity
in which case the self-interaction term in the potential has to be treated with
more care. More precisely we will examine the following models.

1. The law of the GUE. We consider the case where the λi are the eigenval-
ues of the GUE and we take polynomial test functions. In this case the
operator Ξ is triangular and easy to invert. Convergence towards µ∗ and
a priori estimates on ∆N can also be proven from the Dyson-Schwinger
equations.

2. The Beta ensembles. We take smooth test functions. Convergence of µ̂N
is proven by large deviation principle and quantitative estimates on δN
are obtained by concentration of measure. The operator Ξ is invertible if
µ∗ has a single cut, with a smooth density which vanishes like a square
root at the boundary of the support. We then obtain full expansion of the
correlators. In the case where the equilibrium measure has p connected
components in its support, we can still follow the previous strategy if we
fix the number of eigenvalues in a small neighborhood of each connected
pieces (the so-called filing fractions). Summing over all possible choices of
filing fractions allows to estimate the partition functions as well as prove
a form of central limit theorem depending on the fluctuations of the filling
fractions.

3. Discrete Beta ensembles. These distributions include the law of random
tilings and the λi’s are now discrete. Integration by parts does not give
nice equations a priori but Nekrasov found a way to write new equations
by showing that some observables are analytic. These equations can in
turn be analyzed in a spirit very similar to continuous Beta-ensembles.

4. Several matrix models. In this case, large deviations results are not yet
known despite candidates for the rate function were proposed by Voiculescu
[90] and a large deviation upper bound was derived [9]. However, we can
still write the Dyson-Schwinger equations and prove that limits exist pro-
vided we are in a perturbative setting (with respect to independent GUE
matrices). Again in perturbative settings we can derive the expansion of
the correlators by showing that the Master operator is invertible.

We will discuss also one idea related with our approach based on Dyson-Schwinger
to study more local questions, in particular universality of local fluctuations.
The first is based on the construction of approximate transport maps as intro-
duced in [5]. The point is that the construction of this transport maps goes
through solving a Poisson equation Lf = g where L is the generator of the
Langevin dynamics associated with our invariant measure. It is symmetric with
respect to this invariant measure and therefore closely related with integration
by parts. In fact, solving this Poisson equation is at the large N limit closely
related with inverting the master operator Ξ above, and in general follows the
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strategy we developed to analyze Dyson-Schwinger equations. Another strategy
to show universality of local fluctuations is by analyzing the Dyson-Schwinger
equations but for less smooth test functions, that is prove local laws. We will
not developp this approach here. These ideas were developed in [59] for dis-
crete beta-ensembles, based on a strategy initiated in [19]. The argument is to
show that optimal bounds on Stieltjes functionals can be derived from Dyson-
Schwinger equation away from the support of the equilibrium measure, but at
some distance. It is easy to get it at distance of order 1/

√
N , by straightforward

concentration inequalities. To get estimates up to distance of order 1/N , the
idea is to localize the measure. Rigidity follows from this approach, as well as
universality eventually.

2 The example of the GUE
In this section, we show how to derive topological expansions from Dyson-
Schwinger equations for the simplest model : the GUE. The Gaussian Unitary
Ensemble is the sequence of N × N hermitian matrices XN , N ≥ 0 such that
(XN (ij))i≤j are independent centered Gaussian variables with variance 1/N
that are complex outside of the diagonal (with independent real and imaginary
parts). Then, we shall discuss the following expansion, true for all integer k

E[
1

N
Tr(Xk

N )] =
∑
g≥0

1

N2g
Mg(k) .

This expansion is called a topological expansion because Mg(k) is the number
of maps of genus g which can be build by matching the edges of a vertex with k
labelled half-edges. We remind here that a map is a connected graph properly
embedded into a surface (i.e so that edges do not cross). Its genus is the smallest
genus of a surface so that this can be done. This identity is well known [91]
and was the basis of several breakthroughs in enumerative geometry [58, 62].
It can be proven by expanding the trace into products of Gaussian entries and
using Wick calculus to compute these moments. In this section, we show how
to derive it by using Dyson-Schwinger equations.

2.1 Combinatorics versus analysis

In order to calculate the electromagnetic momentum of an electron, Feynman
used diagrams and Schwinger used Green’s functions. Dyson unified these two
approaches thanks to Dyson-Schwinger equations. On one hand they can be
thought as equations for the generating functions of the graphs that are enu-
merated, on the other they can be seen as equations for the invariance of the
underlying measure. A baby version of this idea is the combinatorial versus
the analytical characterization of the Gaussian law N (0, 1). Let X be a random
variable with law N (0, 1). On one hand it is the unique law with moments given
by the number of matchings :
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E [Xn] = # {pair partitions of n points} =: Pn . (4)

On the other hand, it is also defined uniquely by the integration by parts formula

E [Xf(X)] = E [f ′(X)] (5)
(6)

for all smooth functions f going to infinity at most polynomially. If one applies
the latter to f(x) = xn one gets

mn+1 := E
[
Xn+1

]
= E

[
nXn−1

]
= nmn−1 .

This last equality is the induction relation for the number Pn+1 of pair
partitions of n+1 points by thinking of the n ways to pair the first point. Since
P0 = m0 = 1 and P1 = m1 = 0, we conclude that Pn = mn for all n. Hence, the
integration by parts formula and the combinatorial interpretation of moments
are equivalent.

2.2 GUE : combinatorics versus analysis
When instead of considering a Gaussian variable we consider a matrix with
Gaussian entries, namely the GUE, it turns out that moments are as well de-
scribed both by integration by parts equations and combinatorics. In fact mo-
ments of GUE matrices can be seen as generating functions for the enumeration
of interesting graphs, namely maps, which are sorted by their genus. We shall
describe the full expansion, the so-called topological expansion, at the end of
this section and consider more general colored cases in section 3. In this section,
we discuss the large dimension expansion of moments of the GUE up to order
1/N2 as well as central limit theorems for these moments, and characterize these
asymptotics both in terms of equations similar to the previous integration by
parts, and by the enumeration of combinatorial objects.

Let us be more precise. A matrix X = (Xij)1≤i,j≤N from the GUE is the
random N×N Hermitian matrix so that for k < j, Xkj = XR

kj + iXiR
kj , with two

independent real centered Gaussian variables with covariance 1/2N (denoted
later N

(
0, 1

2N

)
) variables XR

kj , X
iR
kj ) and for k ∈ {1, . . . , N}, Xkk ∼ N

(
0, 1

N

)
.

then, we shall prove that

E[
1

N
Tr(Xk)] = M0(k) +

1

N2
M1(k) + o(

1

N2
) (7)

where

• M0(k) = Ck/2 denotes the Catalan number : it vanishes if k is odd and
is the number of non-crossing pair partitions of 2k (ordered) points, that
is pair partitions so that any two blocks (a, b) and (c, d) is such that
a < b < c < d or a < c < d < b. Ck can also be seen to be the number
of rooted trees embedded into the plane and k edges, that is trees with a
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distinguished edge and equipped with an exploration path of the vertices
v1 → v2 → · · · → v2k of length 2k so that (v1, v2) is the root and each
edge is visited twice (once in each direction). Ck can also be seen as the
number of planar maps build over one vertex with valence k : namely take
a vertex with valence k, draw it on the plane as a point with k half-edges.
Choose a root, that is one of these half-edges. Then the set of half-edges
is in bijection with k ordered points (as we drew them on the plane which
is oriented). A matching of the half-edges is equivalent to a pairing of
these points. Hence, we have a bijection between the graphs build over
one vertex of valence k by matching the end-points of the half-edges and
the pair partitions of k ordered points. The pairing is non-crossing iff the
matching gives a planar graph, that is a graph that is properly embedded
into the plane (recall that an embedding of a graph in a surface is proper
iff the edges of the graph do not cross on the surface). Hence, M0(k) can
also be interpreted as the number of planar graphs build over a rooted
vertex with valence k. Recall that the genus g of a graph (that is the
minimal genus of a surface in which it can be properly embedded) is given
by Euler formula :

2− 2g = #V ertices+ #Faces−#Edges ,

where the faces are defined as the pieces of the surface in which the graph
is embedded which are separated by the edges of the graph. If the surface
as minimal genus, these faces are homeomorphic to discs.

• M1(k) is the number of graphs of genus one build over a rooted vertex
with valence k. Equivalently, it is the number of rooted trees with k/2
edges and exactly one cycle.

Moreover, we shall prove that for any k1, . . . , kp (Tr(Xkj ) − E[Tr(Xkj )])1≤j≤p
converges in moments towards a centered Gaussian vector with covariance

M0(k, `) = lim
N→∞

E
[
(Tr(Xk)− E[Tr(Xk)])(Tr(X`)− E[Tr(X`)])

]
.

M0(k, `) is the number of connected planar rooted graphs build over a vertex
with valence k and one with valence `. Here, both vertices have labelled half-
edges and two graphs are counted as equal only if they correspond to matching
half-edges with the same labels (and this despite of symmetries). Equivalently
M0(k, `) is the number of rooted trees with (k + `)/2 edges and an exploration
path with k + ` steps such that k consecutive steps are colored and at least an
edge is explored both by a colored and a non-colored step of the exploration
path.

Recall here that convergence in moments means that all mixed moments
converge to the same mixed moments of the Gaussian vector with covariance
M . We shall use that the moments of a centered Gaussian vector are given by
Wick formula :

m(k1, . . . , kp) = E[

p∏
i=1

Xki ] =
∑
π

∏
blocks (a,b) of π

M(ka, kb)

11



which is in fact equivalent to the induction formula we will rely on :

m(k1, . . . , kp) =

p∑
i=2

M(k1, ki)m(k2, . . . , ki−1, ki+1, . . . , kp) .

Convergence in moments towards a Gaussian vector implies of course the stan-
dard weak convergence as convergence in moments implies that the second mo-
ments of ZN := (Tr(Xkj )−E[Tr(Xkj )])1≤j≤p are uniformly bounded, hence the
law of ZN is tight. Moreover, any limit point has the same moments than the
Gaussian vector. Since these moments do not blow too fast, there is a unique
such limit point, and hence the law of ZN converges towards the law of the
Gaussian vector with covariance M . We will discuss at the end of this section
how to generalize the central limit theorem to differentiable test functions, that
is show that ZN (f) = Trf(X)−E[Trf(X)] converges towards a centered Gaus-
sian variable for any bounded differentiable function. This requires more subtle
uniform estimates on the covariance of ZN (f) for which we will use Poincaré’s
inequality.

The asymptotic expansion (7) as well as the central limit theorem can be
derived using combinatorial arguments and Wick calculus to compute Gaussian
moments. This can also be obtained from the Dyson-Schwinger (DS) equation,
which we do below.

2.2.1 Dyson-Schwinger Equations

Let :
Yk := TrXk − ETrXk

We wish to compute for all integer numbers k1, . . . , kp the correlators :

E

[
TrXk1

p∏
i=2

Yki

]
.

By integration by parts, one gets the following Dyson-Schwinger equations

Lemma 2.1. For any integer numbers k1, . . . , kp, we have

E

[
TrXk1

p∏
i=2

Yki

]
= E

[
1

N

k1−2∑
`=0

TrX`TrXk1−2−p
p∏
i=2

Yki

]

+E

 p∑
i=2

ki
N

TrXk1+ki−2

p∏
j=2,j 6=i

Ykj

 (8)

Proof. Indeed, we have

12



E

[
TrXk1

p∏
i=2

Yki

]
=

N∑
i,j=1

E

[
Xij(X

k1−1)ji

p∏
i=2

Yki

]

=
1

N

N∑
i,j=1

E

[
∂Xji

(
(Xk1−1)ji

p∏
i=2

Yki

)]

where we noticed that since the entries are Gaussian independent complex vari-
ables, for any smooth test function f ,

E[Xijf(Xk`, k ≤ `)] =
1

N
E[∂Xjif(Xk`, k ≤ `)] . (9)

But, for any i, j, k, ` ∈ {1, . . . , N} and r ∈ N

∂Xji(X
r)k` =

r−1∑
s=0

(Xs)kj(X
r−s−1)i`

where (X0)ij = 1i=j . As a consequence

∂Xji(Yr) = rXr−1
ij .

The Dyson-Schwinger equations follow readily. �

Exercise 2.2. Show that

1. If X is a GUE matrix, (9) holds. Deduce (2.1).

2. take X to be a GOE matrix, that is a symmetric matrix with real indepen-
dent Gaussian entries NR(0, 1

N ) above the diagonal, and NR(0, 2
N ) on the

diagonal. Show that

E[Xijf(Xk`, k ≤ `)] =
1

N
E[∂Xjif(Xk`, k ≤ `)] +

1

N
E[∂Xijf(Xk`, k ≤ `)] .

Deduce that a formula analogous to (2.1) holds provided we have an addi-
tional term N−1E

[
k1TrXk1

∏p
i=2 Yki

]
.

2.2.2 Dyson-Schwinger equation implies genus expansion

We will show that the DS equation (2.1) can be used to show that :

E
[

1

N
TrXk

]
= M0(k) +

1

N2
M1(k) + o(

1

N2
)

Next orders can be derived similarly. Let :

mN
k := E

[
1

N
TrXk

]

13



By the DS equation (with no Y terms), we have that :

mN
k = E

[
k−2∑
`=0

1

N
TrX` 1

N
TrXk−`−2

]
. (10)

We now assume that we have the self-averaging property that for all ` ∈ N :

E

[(
1

N
TrX` − E

[
1

N
TrX`

])2
]

= o(1)

as N →∞ as well as the boundedness property

sup
N
mN
` <∞ .

We will show both properties are true in Lemma 2.3. If this is true, then the
above expansion (10) gives us :

mN
k =

k−2∑
`=0

mN
` m

N
k−`−2 + o(1)

As {mN
` , ` ≤ k} are uniformly bounded, they are tight and so any limit point

{m`, ` ≤ k} satisfies

mk =

k−2∑
`=0

m`mk−`−2,m0 = 1,m1 = 0 .

This equation has clearly a unique solution.
On the other hand, let M0(k) be the number of maps of genus 0 with one

vertex with valence k. These satisfy the Catalan recurrence :

M0(k) =

k−2∑
`=0

M0(`)M0(k − `− 2)

This recurrence is shown by a Catalan-like recursion argument, which goes by
considering the matching of the first half edge with the `th half-edge, dividing
each map of genus 0 into two sub-maps (both still of genus 0) of size ` and
k − `− 2, for ` ∈ {0, . . . , k − 2}.

Since m and M0 both satisfy the same recurrence (and M0(0) = mN
0 =

1,M0(1) = mN
1 = 0), we deduce that m = M0 and therefore we proved by

induction (assuming the self-averaging works) that :

mN
k = M0(k) + o(1) as N →∞

It remains to prove the self-averaging and boundedness properties.
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Lemma 2.3. There exists finite constants Dk and Ek, k ∈ N, independent of
N , so that for integer number `, every integer numbers k1, . . . , k` then :

a) cN (k1, . . . , kp) := E

[∏̀
i=1

Yki

]
satisfies |cN (k1, . . . , kp)| ≤ D∑

ki

and

b) mN
k1 := E

[
1

N
TrXk1

]
satisfies |mN

k1 | ≤ Ek1 .

Proof. The proof is by induction on k =
∑
ki. It is clearly true for k = 0, 1

where E0 = 1, E1 = 0 and Dk = 0. Suppose the induction hypothesis holds for
k − 1. To see that b) holds, by the DS equation, we first observe that :

E
[

1

N
TrXk

]
= E

[
k−2∑
`=0

1

N
TrX` 1

N
TrXk−`−2

]

=

k−2∑
`=0

(mN
` m

N
k−`−2 +

1

N2
cN (`, k − `− 2))

Hence, by the induction hypothesis we deduce that∣∣∣∣E [ 1

N
TrXk

]∣∣∣∣ ≤ k−2∑
`=0

(E`Ek−2−` +Dk−2) := Ek .

To see that a) holds, we use the DS equation as follows

E

Yk1 p∏
j=2

Ykj

 = E

TrXk1

p∏
j=2

Ykj

− E [TrXk1 ]E

 p∏
j=2

Ykj


=

1

N
E

k−2∑
`=0

TrX`TrXk1−`−2

p∏
j=2

Ykj


+E

 p∑
i=2

ki
N

TrXk1+ki−2

p∏
j=2,j 6=i

Ykj


−E

[
1

N

k−2∑
`=0

TrX`TrXk1−`−2

]
E

 p∏
j=2

Ykj

 .
We next substract the last term to the first and observe that

TrX`TrXk1−`−2 − E[TrX`TrXk1−`−2]

= NY`m
N
k1−2−`+NYk1−2−`m

N
` +Y`Yk1−2−`−cN (`, k1−2−`)

15



to deduce

E

Yk1 p∏
j=2

Ykj

 = 2

k1−2∑
`=0

mN
` c

N (k1 − 2− `, k2, . . . , kp)

+

p∑
i=2

kim
N
k1+ki−2c

N (k2, .., ki−1, ki+1, ., kp)

− 1

N

k1−2∑
`=0

[cN (`, k1 − 2− `)cN (k2, . . . , kp)− cN (`, k1 − 2− `, k2, . . . , kp)]

+
1

N

p∑
i=2

kic
N (k1 + ki − 2, k2, .., ki−1, ki+1, ., kp) (11)

which is bounded uniformly by our induction hypothesis. �

As a consequence, we deduce

Corollary 2.4. For all k ∈ N, 1
NTr(Xk) converges almost surely towards

M0(k).

Proof. Indeed by Borel Cantelli Lemma it is enough to notice that it follows
from the summability of

P
(
|Tr(Xk − E

(
Tr(Xk)

)
| ≥ Nε

)
≤ cN (k, k)

ε2N2
≤ D2k

ε2N2
.

�

2.3 Central limit theorem
The above self averaging properties prove that mN

k = M0(k) + o(1). To get the
next order correction we analyze the limiting covariance cN (k, `). We will
show that

Lemma 2.5. For all k, ` ∈ N, cN (k, `) converges as N goes to infinity towards
the unique solution M0(k, `) of the equation

M0(k, `) = 2

`−2∑
p=0

M0(p)M0(k − 2− p, `) + `M0(k + `− 2)

so that M0(k, `) = 0 if k + ` ≤ 1.

As a consequence we will show that

Corollary 2.6. N2(mN
k −M0(k)) = m1

k + o(1) where the numbers (m1
k)k≥0 are

defined recursively by :

m1
k = 2

k−2∑
`=0

m1
`M0 (k − `− 2) +

k−2∑
`=0

M0(`, k − `− 2)
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Proof. (Of Lemma 2.5) Observe that cN (k, `) converges for K = k+ ` ≤ 1 (as it
vanishes uniformly). Assume you have proven convergence towards M0(k, `) up
to K. Take k1 + k2 = K + 1 and use (11) with p = 1 to deduce that cN (k1, k2)
satisfies

cN (k1, k2) = 2

k1−2∑
`=0

mN
` c

N (k1−`−2, k2)+k2m
N
k1+k2−2+

1

N

∑
cN (`, k1−`−2, k2) .

Lemma 2.3 implies that the last term is at most of order 1/N and hence we
deduce by our induction hypothesis that c(k1, k2) converges towards M0(k1, k2)
which is given by the induction relation

M0(k1, k2) = 2

k1∑
`=0

M0(`)M0(k1 − 2− `, k2) + k2M0(k1 + k2 − 2) .

Moreover clearly M0(k1, k2) = 0 if k1 + k2 ≤ 1. There is a unique solution to
this equation. �

Exercise 2.7. Show by induction that

M0(k, `) = # {planar maps with 1 vertex of degree ` and one vertex of degree k}

Proof. (of Corollary 2.6) Again we prove the result by induction over k. It is
fine for k = 0, 1 where c1k = 0. By (11) with p = 0 we have :

N2(mN
k −M0(k)) = 2

∑
M0(`)N2

(
mN
k−`−2 −M0(k − 2− `)

)
+
∑

N2
(
mN
` −M0(`)

)
(mk−`−2 −M0(k − 2− `))

+
∑

cN (`, k − `− 2)

from which the result follows by taking the large N limit on the right hand side.
�

Exercise 2.8. Show that c1k = m1(k) is the number of planar maps with genus
1 build on a vertex of valence k.(The proof goes again by showing that m1(k)
satisfies the same type of recurrence relations as c1k by considering the matching
of the root : either it cuts the map of genus 1 into a map of genus 1 and a map
of genus 0, or there remains a (connected) planar maps.)

Theorem 2.9. For any polynomial function P =
∑
λkx

k, ZN (P ) = TrP −
E[TrP ] converges in moments towards a centered Gaussian variable Z(P ) with
covariance given by

E[Z(P )Z̄(P )] =
∑

λkλ̄k′M0(k, k′) .
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Proof. It is enough to prove the convergence of the moments of the Yk’s. Let

cN (k1, . . . , kp) = E
[
Yk1 · · ·Ykp

]
.

Then we claim that, as N →∞, cN (k1, . . . , kp) converges to G(k1, . . . kp) given
by :

G(k1, . . . , kp) =

k∑
i=2

M0(k1, ki)G(k2, . . . , k̂i, . . . , kp) (12)

whereˆis the absentee hat.
This type of moment convergence is equivalent to a Wick formula and is

enough to prove (by the moment method) that Yk1 , . . . , Ykp are jointly Gaussian.
Again, we will prove this by induction by using the DS equations. Now assume
that (12) holds for any k1, . . . , kp such that

∑p
i=1 ki ≤ k. (induction hypothesis)

We use (11). Notice by the a priori bound on correlators of Lemma 2.3(a) that
the terms with a 1/N are negligible in the right hand side and mN

k is close to
M0(k), yielding

E

Yk1 p∏
j=2

Ykj

 = 2

k1−2∑
`=0

M0(`)cN (k1 − 2− `, k2, . . . , kp)

+

p∑
i=2

kiM0(k1 + ki − 2)cN (k2, .., ki−1, ki+1, ., kp) +O(
1

N
)

By using the induction hypothesis, this gives rise to :

E

[
p∏
i=1

Yki

]
= 2

∑
M0(`)G(k1 − `− 2, k2, . . . , kp)

+
∑

kiM0(ki + kj − 2)G(k2, . . . , k̂i, . . . kp) + o(1)

It follows that

G(k1, . . . , kp) = 2
∑

M0(`)G(k1−`−2, k2, . . . , kp)+
∑

kiM0(ki+kj−2)G(k2, . . . , k̂i, . . . kp) .

But using the induction hypothesis, we get

G(k1, . . . , kp) =

p∑
i=2

(2
∑

M0(`)M(k1−`−2, ki)+kiM0(ki+kj−2))G(k2, . . . , k̂i, . . . kp)

which yields the claim since

M0(k1, ki) = 2
∑

M0(`)M(k1 − `− 2, ki) + kiM0(k1 + ki − 2) .

�
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2.4 Generalization
One can generalize the previous results to smooth test functions rather than
polynomials. We have

Lemma 2.10. Let σ be the semi-circle law given by

dσ(x) =
1

2π

√
4− x2dx .

1. For any bounded continuous function f with polynomial growth at infinity

lim
N→∞

1

N

N∑
i=1

f(λi) =

ˆ
f(x)dσ(x) a.s.

2. For any C2 function f with polynomial growth at infinity Z(f) =
∑
f(λi)−

E(
∑
f(λi)) converges in law towards a centered Gaussian variable.

Our proof will only show convergence : the covariance is well known and can
be found for instance in [74, (3.2.2)].

Exercise 2.11. Show that for all n ∈ N,
´
xndσ(x) = M0(n).

Proof. The convergence of 1
N

∑N
i=1 f(λi) follows since polynomials are dense in

the set of continuous functions on compact sets by Weierstrass theorem. Indeed,
our bounds on moments imply that we can restrict ourselves to a neighborhood
of [−2, 2] :

1

N

N∑
i=1

λ2p
i 1|λi|≥M ≤

1

M2k

1

N

∑
λ2k+2p
i

has moments asymptotically bounded by σ(x2k+2p)/M2k ≤ 22p(2/M)2k. This
allows to approximate moments by truncated moments and then use Weierstrass
theorem.

To derive the central limit theorem, one can use concentration of measure
inequalities such as Poincaré inequality. Indeed, Poincaré inequalities for Gaus-
sian variables read : for any C1 real valued function F on CN(N−1)/2 × RN

E
[
(F (Xk`, k, l)− E[F (Xk`, k, l)])

2
]
≤ 2

N
E

∑
i,j

∣∣∂XijF (Xk`, k, l)
∣∣2 .

Taking F = Trf(X) we find that ∂XijF (Xk`, k, l) = f ′(X)ji. Indeed, we proved
this point for polynomial functions f so that we deduce

E
[
(Tr(f(X))− E[Tr(f(X))])

2
]
≤ 2

N
E
[
Tr(f ′(X)2)

]
.

Hence, if we take a C1 function f , whose derivative is approximated by a poly-
nomial Pε on [−M,M ] (withM > 2) up to an error ε > 0, and whose derivative
grows at most like x2K for |x| ≥M , we find
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E
[
(Trf(X)− E[Trf(X)]− (TrPε(X)− E[TrPε(X)]))

2
]

≤ 4E
[
(ε2 +

1

N

∑
(P 2
ε (λi) + λ2K

i )1|λi|≥M )

]
where the right hand side goes to zero as N goes to infinity and then ε goes to
zero. This shows the convergence of the covariance of Z(f). We then proceed
similarly to show that the approximation is good in any Lp, hence deriving the
convergence in moments.

�

2.5 GUE topological expansion
The “topological expansion” reads

E
[

1

N
Tr
[
Xk
]]

=
∑
g≥0

1

N2g
Mg(k)

where Mg(k) is the number of rooted maps of genus g build over a vertex of
degree k. Here, a “map” is a connected graph properly embedded in a surface
and a “root” is a distinguished oriented edge. A map is assigned a genus, given
by the smallest genus of a surface in which it can be properly embedded. This
complete expansion (not that the above series is in fact finite) can be derived as
well either by Wick calculus or by Dyson-Schwinger equations : we leave it as
an exercise to the reader. We will see later that cumulants of traces of moments
of the GUE are related with the enumeration of maps with several vertices.

3 Several matrix-ensembles
Topological expansions have been used a lot in physics to relate enumeration
problems with random matrices. Considering several matrix models allows to
deal with much more complicated combinatorial questions, that is colored maps.
In this section we show how the previous arguments based on Dyson-Schwinger
equations allow to study these models in perturbative situations. In fact, large
deviations questions are still open in the several matrices case and convergence
of the trace of several matrices has only been proved in general perturbative
situations [52] or for very specific models such as the Ising model corresponding
to a simple AB interaction [44, 71, 69, 56, 57].

3.0.1 Non-commutative laws

We let C〈X1, · · · , Xm〉 denote the set of polynomials in m-non commutative
indeterminates with complex coefficients. We equip it with the involution ∗ so
that for any i1, . . . , ik ∈ {1, . . . ,m}, for any complex number z, we have

(zXi1 · · ·Xik)∗ = z̄Xik · · ·Xi1 .
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For N × N Hermitian matrices (A1, · · · , Am), let us define the linear form
µ̂A1,··· ,Am from C〈X1, · · · , Xm〉 into C by

µ̂A1,··· ,Am(P ) =
1

N
Tr (P (A1, · · · , Am))

where Tr is the standard trace Tr(A) =
∑N
i=1Aii. If A1, . . . , Am are random,

we denote by
µ̄A1,··· ,Am(P ) := E[µ̂A1,··· ,Am(P )].

µ̂A1,··· ,Am , µ̄A1,··· ,Am will be seen as elements of the algebraic dual C〈X1, · · · , Xm〉∗
of C〈X1, · · · , Xm〉. C〈X1, · · · , Xm〉∗ is equipped with its weak topology.

Definition 3.1. A sequence (µn)n∈N in C〈X1, · · · , Xm〉∗ converges weakly to-
wards µ ∈ C〈X1, · · · , Xm〉∗ iff for any P ∈ C〈X1, · · · , Xm〉,

lim
n→∞

µn(P ) = µ(P ).

Lemma 3.2. Let C be a finite constant and n be an integer number. Set

Kn(C) = {µ ∈ C〈X1, · · · , Xm〉∗; |µ(X`1 · · ·X`r )| ≤ Cr ∀`i ∈ {1, · · · ,m}, r ∈ N, r ≤ n}.

Then, any sequence (µn)n∈N so that µn ∈ Kmn(C) is sequentially compact if
mn goes to infinity with n, i.e. has a subsequence (µφ(n))n∈N which converges
weakly. We denote in short K(C) or K∞(C) the set of such sequances.

Proof. Since µn(X`1 · · ·X`r ) ∈ C is uniformly bounded, it has converg-
ing subsequences. By a diagonalisation procedure, since the set of monomials
is countable, we can ensure that for a subsequence (φ(n), n ∈ N), the terms
µφ(n)(X`1 · · ·X`r ), `i ∈ {1, · · · ,m}, r ∈ N converge simultaneously. The limit
defines an element of C〈X1, · · · , Xm〉∗ by linearity. �

The following is a triviality, that we however recall since we will use it several
times.

Corollary 3.3. Let C be a finite non negative constant and mn a sequence
going to infinity at infinity. Let (µn)n∈N be a sequence such that µn ∈ Kmn(C)
which has a unique limit point. Then (µn)n∈N converges towards this limit point.

Proof. Otherwise we could choose a subsequence which stays at positive
distance of this limit point, but extracting again a converging subsequence gives
a contradiction. Note as well that any limit point will belong automatically to
C〈X1, · · · , Xm〉∗. �

We shall call in these notes non-commutative laws elements of C〈X1, · · · , Xm〉∗
which satisfy

µ(PP ∗) ≥ 0, µ(PQ) = µ(QP ), µ(1) = 1

for all polynomial functions P,Q. This is a very weak point of view which how-
ever is sufficient for our purpose. The name ‘law’ at least is justified whenm = 1,
in which case µ̂N is the empirical measure of the eigenvalues of the matrix A,
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and hence a probability measure on R, whereas the non-commutativity is clear
when m ≥ 2. There are much deeper reasons for this name when considering
C∗-algebras and positivity, and we refer the reader to [89] or [3].

The laws µ̂A1,··· ,Am , µ̄A1,··· ,Am are obviously non-commutative laws. Since
these conditions are closed for the weak topology, we see that any limit point of
µ̂N , µN will as well satisfy these properties. A linear functional on C〈X1, · · · , Xm〉
which satisfies such conditions is called a tracial state. This leads to the notion
of C∗-algebras and representations of the laws as moments of non-commutative
operators on C∗-algebras. We however do not want to detail this point in these
notes.

3.1 Non-commutative derivatives
First, for 1 ≤ i ≤ m, let us define the non-commutative derivatives ∂i with
respect to the variable Xi. They are linear maps from C〈X1, · · · , Xm〉 to
C〈X1, · · · , Xm〉⊗2 given by the Leibniz rule

∂iPQ = ∂iP × (1⊗Q) + (P ⊗ 1)× ∂iQ

and ∂iXj = 1i=j1 ⊗ 1. Here, × is the multiplication on C〈X1, · · · , Xm〉⊗2;
P ⊗Q×R⊗ S = PR⊗QS. So, for a monomial P , the following holds

∂iP =
∑

P=RXiS

R⊗ S

where the sum runs over all possible monomials R,S so that P decomposes
into RXiS. We can iterate the non-commutative derivatives; for instance ∂2

i :
C〈X1, · · · , Xm〉 → C〈X1, · · · , Xm〉 ⊗C〈X1, · · · , Xm〉 ⊗C〈X1, · · · , Xm〉 is given
for a monomial function P by

∂2
i P = 2

∑
P=RXiSXiQ

R⊗ S ⊗Q.

We denote by ] : C〈X1, · · · , Xm〉⊗2×C〈X1, · · · , Xm〉→C〈X1, · · · , Xm〉 the map
P ⊗Q]R = PRQ and generalize this notation to P ⊗Q⊗R](S, V ) = PSQV R.
So ∂iP]R corresponds to the derivative of P with respect to Xi in the direction
R, and similarly 2−1[∂2

i P](R,S) + ∂2
i P](S,R)] the second derivative of P with

respect to Xi in the directions R,S.
We also define the so-called cyclic derivative Di. Ifm is the mapm(A⊗B) =

BA, we define Di = m ◦ ∂i. For a monomial P , DiP can be expressed as

DiP =
∑

P=RXiS

SR.

3.2 Non-commutative Dyson-Schwinger equations
Let XN

1 , . . . , X
N
m be m independent GUE matrices and set µ̂N = µ̂XN1 ,...,XN1

to be their non-commutative law. Let P0, · · · , Pr be r polynomials in k non-
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commutative variables. Then for all i ∈ {1, . . . ,m}

E[µ̂N (XiP0)

r∏
j=1

µ̂N (Pj)] = E[µ̂N ⊗ µ̂N (∂iP0)

r∏
j=1

µ̂N (Pj)]

+
1

N2

r∑
j′=1

E[µ̂N (P0DiPj′)
∏
j 6=j′

µ̂N (Pj)] (13)

The proof is a direct application of integration by parts and is left to the reader.
The main point is that our definitions yield

∂XkijTr(P (X)) = (DkP )ji, ∂Xkij (P (X))i′j′ = (∂kP )i′i,jj′ .

3.3 Independent GUE matrices
3.3.1 Voiculescu’s theorem

The aim of this section is to prove that if XN,`, 1 ≤ ` ≤ k are independent GUE
matrices

Theorem 3.4. [Voiculescu [88]] For any monomial q in the unknowns X1, . . . , Xm,

lim
N→∞

E[
1

N
Tr
(
q(XN

1 , X
N
2 , . . . , X

N
m )
)
] = σm(q)

where σm(q) is the numberM0(q) of planar maps build on a star of type q.

Remark 3.5. σm, once extended by linearity to all polynomials, is called the
law of m free semi-circular variables because it is the unique non-commutative
law so that the moments of a single variable are given by the Catalan numbers
satisfying

σm
(

(Xm1

`1
− σ(x`1)) · · · (Xmp

`p
− σ(x`p))

)
= 0 ,

for any choice of `j , 1 ≤ j ≤ p, such that `p 6= `p+1.

Proof. By the non-commutative Dyson-Schwinger equation with Pj = 1 for
j ≥ 1, we have for all i

E[µ̂N (XiX`1 · · ·X`k)] =
∑
j:`j=i

E[µ̂N (X`1 · · ·X`j−1
)µ̂N (X`j+1

· · ·X`k)]

Let us assume that for all k ≤ K there exists CK finite such that for any
`1, . . . , `k ∈ {1, . . . ,m} so that

∑
`i ≤ K

|E[µ̂N (X`1 · · ·X`k)]| ≤ Ck (14)

E[
(
µ̂N (X`1X`2 · · ·X`k)− E[µ̂N (X`1X`2 · · ·X`k)]

)2
] ≤ Ck/N

2 (15)

Then we deduce that the family E[µ̂N (X`1X`2 · · ·X`k)] is tight and its limit
points τ(X`1 · · ·X`k) satisfy

τ(X`1 · · ·X`k) =
∑

j:`j=`1

τ(X`2 · · ·X`j−1)τ(X`j+1 · · ·X`k)
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and τ(1) = 1, τ(X`) = 0. There is a unique solution to this equation. It is
given by {M0(X`1 · · ·X`k , 1), `i ∈ {1, . . . ,m}} since the later satisfies the same
equation. Indeed, it is easily seen that the number of planar maps on a trivial
star 1 can be taken to be equal to one, and there is none with a star with only
one half-edge. Moreover, the number M0(X`1 · · ·X`k , 1) of planar maps build
on X`1 · · ·X`k can be decomposed according to the matching of the half-edge of
the root. Because the maps are planar, such a matching cut the planar map in
to independent planar maps. Hence

M0(X`1 · · ·X`k , 1) =
∑

j:`j=`1

M0(X`2 · · ·X`j−1
, 1)M0(X`j+1

· · ·X`k , 1) .

The proof of (14) is a direct consequence of non-commutative Hölder inequality
and the bound obtained in the first chapter for one matrix. We leave (15) to
the reader : it can be proved by induction over K using the Dyson-Schwinger
equation exactly as in the one matrix case, see Lemma 2.3.

�

3.3.2 Central limit theorem

Theorem 3.6. Let P1, . . . , Pr be polynomial in X1, . . . , Xm and set Y (P ) =
N(µ̂N (P ) − σm(P )). Then (Y (P1), . . . , Y (Pk)) converges towards a centered
Gaussian vector with covariance

C(P1, P2) =

m∑
i=1

σm(DiΞ
−1P1DiP2) ,

with ΞP =
∑
i[∂iP#Xi − (σm ⊗ I + I ⊗ σm)(∂iDiP )].

Notice above that Ξ is invertible on the space of polynomials with null con-
stant term. Indeed, for any monomial q, the first part of Ξ is the degree operator∑

i

∂iq#Xi = deg(q)q

whereas the second part reduces the degree, so that the sum is invertible.

Proof. The proof is the same as for one matrix and proceeds by induction based
on (13). We first observe that mN (P ) = E[µ̂N (P )] − σ(P ) is of order 1/N2

by induction over the degree of P thanks to (14) and (15). We then show the
convergence of the covariance thanks to the Dyson-Schwinger equation (13) with
r = 1 and P1 = P −E[P ], and P0 = DiP , which yields after summation over i :

N2E[µ̂N (ΞP0)(µ̂N (P )− E[µ̂N (P )])] =

m∑
j=1

E[µ̂N (DiP0DiP )] +N2RN (P )

where
RN (P ) =

∑
i

E[(µ̂N − σm)⊗2(∂i ◦DiP0)µ̂N (P )]
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Since P is centered, this is of order at most 1/N3 by (14) and (15). Hence, letting
N going to infinity and inverting Ξ shows the convergence of the covariance
towards C.

Finally, to prove the central limit theorem we deduce from (13) that, if
Y (P ) = N(µ̂N (P )− σm(P )), we have

GN (P, P1, . . . , Pr) = E[N(µ̂N − σm)(P )

r∏
j=1

Y (Pj)]

= NE[(µ̂N − σm)⊗ (µ̂N − σm)(
∑
i

∂iDiΞ
−1P )

r∏
i=1

Y (Pi)]

+

r∑
j=1

E[

m∑
i=1

µ̂N (DiΞ
−1PDiPj)

∏
` 6=j

Y (P`)] .

By induction over the total degree of the Pi’s, and using the previous estimate,
we can show that the first term goes to zero. Hence, we deduce by induction
that GN (P, P1, . . . , Pr) converges towards G(P, P1, . . . , Pr) solution of

G(P, P1, . . . , Pr) =

r∑
j=1

σm(DiΞ
−1PDiPj)G(P, P1, . . . , Pj−1, Pj+1, . . . Pr) ,

which is Wick formula for Gaussian moments. �

3.4 Several interacting matrices models
In this section, we shall be interested in laws of interacting matrices of the form

dµNV (X1, · · · , Xm) :=
1

ZNV
e−NTr(V (X1,··· ,Xm))dµN (X1) · · · dµN (Xm)

where ZNV is the normalizing constant

ZNV =

ˆ
e−NTr(V (X1,··· ,Xm))dµN (X1) · · · dµN (Xm)

and V is a polynomial in m non-commutative unknowns. In the sequel, we fix
n monomials qi non-commutative monomials;

qi(X1, · · · , Xm) = Xji1
· · ·Xjiri

for some jkl ∈ {1, · · · ,m}, ri ≥ 1, and consider the potential given by

Vt(X1, · · · , Xm) =

n∑
i=1

tiqi(X1, · · · , Xm)

where t = (t1, . . . , tn) are n complex numbers such that Vt is self-adjoint. More-
over, dµN (X) denotes the standard law of the GUE, that is

dµN (X) = Z−1
N 1

X∈H(2)
N

e−
N
2 Tr(X2)

∏
1≤i≤j≤N

d<(Xij)
∏

1≤i<j≤N

d=(Xij).
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This part is motivated by a work of ’t Hooft [82] and large developments
which occurred thereafter in theoretical physics. ’t Hooft in fact noticed that if
V = Vt =

∑n
i=1 tiqi with fixed monomials qi of m non-commutative unknowns

and if we see ZNV = ZNt as a function of t = (t1, · · · , tn)

lnZNt :=
∑
g≥0

N2−2gFg(t) (16)

where

Fg(t) :=
∑

k1,··· ,kn∈Nk

n∏
i=1

(−ti)ki
ki!

Mg((qi, ki)1≤i≤n)

is a generating function of the number Mg((qi, ki)1≤i≤k) of maps with genus
g build over ki stars of type qi, 1 ≤ i ≤ n. A map is a connected oriented
graph which is embedded into a surface. Its genus g is by definition the smallest
genus of a surface in which it can be embedded in such a way that edges do not
cross and the faces of the graph (which are defined by following the boundary
of the graph) are homeomorphic to a disc. Intuitively, the genus of a surface is
the maximum number of simple closed curves that can be drawn on it without
disconnecting it. The genus of a map is related with the number of vertices,
edges and faces of the map. The faces of the map are the pieces of the surface
in which it is embedded which are enclosed by the edges of the graph. Then,
the Euler characteristic 2− 2g is given by the number of faces plus the number
of vertices minus the number of edges.

The vertices of the maps we shall consider have the structure of a star; a
star of type q, for some monomial q = X`1 · · ·X`k , is a vertex with valence
deg(q) and oriented colored half-edges with one marked half edge of color `1,
the second of color `2 etc until the last one of color `k. Mg((qi, ki)1≤i≤n) is
then the number of maps with ki stars of type qi, 1 ≤ i ≤ n. The equality (16)
obtained by ’t Hooft [82] was only formal, i.e means that all the derivatives on
both sides of the equality coincide at t = 0. This result can then be deduced
from Wick formula which gives the expression of arbitrary moments of Gaussian
variables.

Adding to V a term t q for some monomial q and identifying the first order
derivative with respect to t at t = 0 we derive from (16)

ˆ
µ̂N (q)dµNVt

=
∑
g≥0

N−2g
∑

k1,··· ,kn∈Nk

n∏
i=1

(−ti)ki
ki!

Mg((qi, ki)1≤i≤n, (q, 1)). (17)

Even though the expansions (16) and (17) were first introduced by ’t Hooft to
compute the matrix integrals, the natural reverse question of computing the
numbers Mg((qi, ki)1≤i≤n) by studying the associated integrals over matrices
encountered a large success in theoretical physics. In the course of doing so,
one would like for instance to compute the limit limN→∞N−2 lnZNt and claim
that the limit has to be equal to F0(t). There is here the claim that one can
interchange derivatives and limit, a claim that we shall study in this chapter.
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We shall indeed prove that the formal limit can be strenghten into a large N
expansion. This requires that integrals are finite which could fail to happen for
instance with a potential such as V (X) = X3. We could include such potential
to the cost of adding a cutoff 1‖Xi‖≤M for some sufficiently large (but fixed)
M . This introduces however boundary terms that we prefer to avoid hereafter.
Instead, we shall assume that

(Xk(ij))i,j,k → Tr

(
Vt(X1, . . . , Xm) +

1

4

∑
X2
k

)
(18)

is convex for all N . We denote by U the set of parameters t = (t1, . . . , tn)
so that (18) holds. Note that this is true when t = 0. This implies that the

Hessian of − ln
dµNVt
dx is uniformly bounded below by −N/4I, that is is uniformly

log-concave. This property will provide useful a priori bounds. We also denote
Bε the set of parameters t = (t1, . . . , tn) so that ‖t‖∞ = max |ti| is bounded
above by ε. In the sequel, we denote by ‖t‖1 =

∑
|ti|.

Then, we shall prove that for t ∈ U ∩Bε, ε small enough,

µ̄NVt
[P ] = µNVt

[µ̂N (P )] = σ0
Vt

(P ) +
1

N2
σ1
Vt

(P ) + o(N−2)

where σgVt
(q) =

∑
k1,··· ,kn∈Nk

∏k
i=1

(−ti)ki
ki!
Mg((qi, ki)1≤i≤k, (q, 1)) for monomial

functions q for g = 0 or 1.
This part summarizes results from [52] and [53]. The full expansion (i.e

higher order corrections) was obtained by E. Maurel Segala (see [70]).

3.4.1 First order expansion for the free energy

We prove here (see Theorem 3.16) that

lim
N→∞

1

N2
ln

ˆ
e
∑n
i=1 tiNTr(qi(X1,··· ,Xm))dµN (X1) · · · dµN (Xm)

=
∑

k1,··· ,kn∈N

n∏
i=1

(ti)
ki

ki!
M0((qi, ki), 1 ≤ i ≤ n)

provided Vt satisfies (18) and the parameters ti’s are sufficiently small. To
prove this result we first show that, under the same assumptions, µ̄Nt (q) =
µN∑ tiqi

(N−1Tr(q)) converges as N goes to infinity towards a limit which is as
well related with map enumeration (see Theorem 3.12).

The central tool in our asymptotic analysis will be again the Dyson-Schwinger’s
equations. They are simple emanation of the integration by parts formula (or,
somewhat equivalently, of the symmetry of the Laplacian in L2(dx)). These
equations will be shown to pass to the large N limit and be then given as some
asymptotic differential equation for the limit points of µ̄Nt = µNVt

[µ̂N ]. These
equations will in turn uniquely determine these limit points in some small range
of the parameters. We will then show that the limit points have to be given as
some generating function of maps.
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3.4.2 Finite dimensionnal Dyson-Schwinger’s equations

We can generalize the Dyson-Schwinger equations that we proved in Section 3.2
for independent GUE matrices to the interacting case as follows.

Property 3.7. For all P ∈ C〈X1, · · · , Xm〉, all i ∈ {1, · · · ,m},

µNVt

(
µ̂N ⊗ µ̂N (∂iP )

)
= µNVt

(
µ̂N ((Xi +DiVt)P )

)
Proof. Using repeatidely Stein’s lemma which says that for any differen-

tiable function f on R,
ˆ
f(x)xe−

x2

2 dx =

ˆ
f ′(x)e−

x2

2 dx,

we find, since

Al(rs)e
− |<(Al(rs))|

2

2 − |=(Al(rs))|
2

2 = −(∂<(Al(rs)) + i∂=(Al(rs)))e
− |<(Al(rs))|

2

2 − |=(Al(rs))|
2

2

= −∂Āl(rs)e
− |<(Al(rs))|

2

2 − |=(Al(rs))|
2

2

with ∂Āl(rs)Ak(ij) = ∂Al(sr)Ak(ij) = 1k=l1rs=ji, that

ˆ
1

N
Tr(AkP )dµNVt

(A) =
1

N2

N∑
i,j=1

ˆ
∂Ak(ji)(Pe

−NTr(Vt))ji
∏

dµN (Ai)

=
1

N2

N∑
i,j=1

ˆ  ∑
P=QXkR

QjjRii

−N
n∑
l=1

∑
ql=QXkR

tl

N∑
h=1

PjiQhjRih

 dµNVt
(A)

=

ˆ (
1

N2
(Tr⊗ Tr)(∂kP )− 1

N
Tr(DkVtP )

)
dµNVt

(A)

where A = (A1, . . . , Am). This yields
ˆ (

µ̂N ((Xk +DkVt)P )− µ̂N ⊗ µ̂N (∂kP )
)
dµNVt

(A) = 0. (19)

�

3.4.3 A priori estimates

µNVt
is a probability measure with uniformly log-concave density. This provides

very useful a priori inequalities such as concentration inequalities and Brascamp-
Lieb inequalities. We recall below the main consequences we shall use and refer
to [3] and my course in Saint Flour for details.
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We assume Vt =
∑
tiqi satisfies (18), that is t = (t1, . . . , tn) ∈ U . Brascamp-

Lieb inequalities allow to compare expectation of convex functions with those
under the Gaussian law, for which we have a priori bounds on the norm of
matrices. From this we deduce, see [53] for details, that

Lemma 3.8. For ε small enough, there existsM0 finite so that for all t ∈ U∩Bε,
Vt =

∑
tiqi there exists a positive constant c such that for all i and s ≥ 0

µNVt
(‖Xi‖ ≥ s+M0 − 1) ≤ e−cNs .

As a consequence, for δ > 0, for all all r ≤ N/2 and all `i, i ≤ r

E[|µ̂N (X`1 · · ·X`r )|] ≤ (M0 + δ)r . (20)

Concentration inequalities are deduced from log-Sobolev and Herbst’s argu-
ment [53, section 2.3] :

Lemma 3.9. There exists ε > 0 and c > 0 so that for t ∈ U ∩ Bε for any
polynomial P

µNVt

(
{|µ̂N (P )− E[µ̂N (P )]| ≥ ‖P‖LM0

δ} ∩ {‖Xi‖ ≤M0 + 1}
)
≤ e−cN

2δ2

where ‖P‖LA = sup‖Xi‖≤A(
∑m
k=1 ‖DkP (X)DkP

∗(X)‖∞)1/2 if the supremum is
taken over m-tuples of N ×N self-adjoint matrices X = (X1, . . . , Xm) and all
N .

Note that if P =
∑
αqq, ‖P‖LA ≤

(∑
|αq|2 deg q2A2 deg(q)

)1/2
.

3.4.4 Tightness and limiting Dyson-Schwinger’s equations

We say that τ ∈ C〈X1, · · · , Xm〉∗ satisfies the Dyson-Schwinger equation with
potential V , denoted in short SD[V], if and only if for all i ∈ {1, · · · ,m} and
P ∈ C〈X1, · · · , Xm〉,

τ(I) = 1, τ ⊗ τ(∂iP ) = τ((DiV +Xi)P ) SD[V].

We shall now prove that

Property 3.10. There exists ε > 0 so that for all t ∈ U ∩Bε (µ̄Nt , N ∈ N) is
tight. Any limit point τ satisfies SD[Vt] and belongs to K(M0), with M0 as in
Lemma 3.8 and K(M) defined in Lemma 3.2.

Proof. By Lemma 3.8 we know that µ̄Nt = µNVt
[µ̂N ] belongs to the compact

set K(M0) (the restriction on moments with degree going to infinity with N
being irrelevant) hence this sequence is tight. Any limit point τ belongs as well
to K(C0). Moreover, the DS equation (19), together with the concentration
property of Lemma 3.9, implies that

τ((Xk +DkV )P ) = τ ⊗ τ(∂kP ). (21)

�
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3.4.5 Uniqueness of the solutions to Dyson-Schwinger’s equations
for small parameters

The main result of this paragraph is

Theorem 3.11. For all R ≥ 1, there exists ε > 0 so that for ‖t‖∞ = max1≤i≤n |ti| <
ε, there exists at most one solution τt ∈ K(R) to SD[Vt].

Remark : Note that if V = 0, our equation becomes

τ(XiP ) = τ ⊗ τ(∂iP ).

Because if P is a monomial, τ ⊗ τ(∂iP ) =
∑
P=P1XiP2

τ(P1)τ(P2) with P1 and
P2 with degree smaller than P , we see that the equation SD[0] allows to define
uniquely τ(P ) for all P by induction. The solution can be seen to be exactly
τ(P ) = σm(P ), σm the law of m free semi-circular found in Theorem 3.4. When
Vt is not zero, such an argument does not hold a priori since the right hand side
will also depend on τ(DiqjP ), with DiqjP of degree strictly larger than XiP .
However, our compactness assumption K(R) gives uniqueness because it forces
the solution to be in a small neighborhood of the law τ0 = σm of m free semi-
circular variables, so that perturbation analysis applies. We shall see in Theorem
3.13 that this solution is actually the one which is related with the enumeration
of maps.

Proof. Let us assume we have two solutions τ and τ ′ in K(R). Then, by
the equation SD[Vt], for any monomial function P of degree l − 1, for i ∈
{1, · · · ,m},

(τ − τ ′)(XiP ) = ((τ − τ ′)⊗ τ)(∂iP ) + (τ ′ ⊗ (τ − τ ′))(∂iP )− (τ − τ ′)(DiVtP )

We define for l ∈ N

∆l(τ, τ
′) = sup

monomial P of degree ≤l
|τ(P )− τ ′(P )| .

Using SD[Vt] and noticing that if P is of degree l − 1,

∂iP =

l−2∑
k=0

p1
k ⊗ p2

l−2−k

where pik, i = 1, 2 are monomial of degree k or the null monomial, and DiVt is
a finite sum of monomials of degree smaller than D − 1, we deduce

∆l(τ, τ
′) = max

P monomial of degree ≤l−1
max

1≤i≤m
{|τ(XiP )− τ ′(XiP )|}

≤ 2

l−2∑
k=0

∆k(τ, τ ′)Rl−2−k + C‖t‖∞
D−1∑
p=0

∆l+p−1(τ, τ ′)
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with a finite constant C (which depends on n only). For γ > 0, we set

dγ(τ, τ ′) =
∑
l≥0

γl∆l(τ, τ
′).

Note that in (K(R)), this sum is finite for γ < (R)−1. Summing the two sides
of the above inequality times γl we arrive at

dγ(τ, τ ′) ≤ 2γ2(1− γR)−1dγ(τ, τ ′) + C‖t‖∞
D−1∑
p=0

γ−p+1dγ(τ, τ ′).

We finally conclude that if (R, ‖t‖∞) are small enough so that we can choose
γ ∈ (0, R−1) so that

2γ2(1− γR)−1 + C‖t‖∞
D−1∑
p=0

γ−p+1 < 1

then dγ(τ, τ ′) = 0 and so τ = τ ′ and we have at most one solution. Taking
γ = (2R)−1 shows that this is possible provided

1

4R2
+ C‖t‖∞

D−1∑
p=0

(2R)p−1 < 1

so that when ‖t‖∞ goes to zero, we see that we need R to be at most of order

‖t‖−
1

D−2
∞ .

�

3.4.6 Convergence of the empirical distribution

We can finally state the main result of this section.

Theorem 3.12. There exists ε > 0 and M0 ∈ R+ (given in Lemma 3.8) so that
for all t ∈ U ∩ Bε, µ̂N (resp. µ̄Nt ) converges almost surely (resp. everywhere)
towards the unique solution of SD[Vt] such that

|τ(X`1 · · ·X`r )| ≤Mr
0

for all choices of `1, · · · , `r.
Proof. By Property 3.10, the limit points of µ̄Nt belong to K(M0) and satisfies
SD[Vt]. Since M0 does not depend on t, we can apply Theorem 3.11 to see
that if t is small enough, there is only one such limit point. Thus, by Corollary
3.3 we can conclude that (µ̄Nt , N ∈ N) converges towards this limit point. From
concentration inequalities we have that

µNV (|(µ̂N − µ̄Nt )(P )|2) ≤ BC(P,M)N−2 + C2dN2e−αMN/2

insuring by Borel-Cantelli’s lemma that

lim
N→∞

(µ̂N − µ̄Nt )(P ) = 0 a.s

resulting with the almost sure convergence of µ̂N . �

31



3.4.7 Combinatorial interpretation of the limit

In this part, we are going to identify the unique solution τt of Theorem 3.11 as a
generating function for planar maps. Namely, we let for k = (k1, · · · , kn) ∈ Nn
and P a monomial in C〈X1, · · · , Xm〉,

Mk(P ) = card{ planar maps with ki labelled stars of type qi for 1 ≤ i ≤ n

and one of type P} =M0((P, 1), (qi, ki)1≤i≤n).

This definition extends to P ∈ C〈X1, · · · , Xm〉 by linearity. Then, we shall
prove that

Theorem 3.13. 1. The family {Mk(P ),k ∈ N, P ∈ C〈X1, · · · , Xm〉} satis-
fies the induction relation : for all i ∈ {1, · · · ,m}, all P ∈ C〈X1, · · · , Xm〉,
all k ∈ Nn,

Mk(XiP ) =
∑

0≤pj≤kj
1≤j≤n

n∏
j=1

C
pj
kj
Mp⊗Mk−p(∂iP )+

∑
1≤j≤n

kjMk−1j ([Diqj ]P )

(22)
where 1j(i) = 1i=j and Mk(1) = 1k=0. (22) defines uniquely the family
{Mk(P ),k ∈ C〈X1, · · · , Xm〉, P ∈ C〈X1, · · · , Xm〉}.

2. There exists A,B finite constants so that for all k ∈ Nn, all monomial
P ∈ C〈X1, · · · , Xm〉,

|Mk(P )| ≤ k!A
∑n
i=1 kiBdeg(P )

n∏
i=1

CkiCdeg(P ) (23)

with k! :=
∏n
i=1 ki! and Cp the Catalan numbers.

3. For t in B(4A)−1 ,

Mt(P ) =
∑
k∈Nn

n∏
i=1

(−ti)ki
ki!

Mk(P )

is absolutely convergent. For t small enough, Mt is the unique solution
of SD[Vt] which belongs to K(4B).

By Theorem 3.11 and Theorem 3.12, we therefore readily obtain that

Corollary 3.14. For all c > 0, there exists η > 0 so that for t ∈ Uc ∩ Bη, µ̂N
converges almost surely and in expectation towards

τt(P ) =Mt(P ) =
∑
k∈Nn

n∏
i=1

(−ti)ki
ki!

Mk(P )
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Let us remark that by definition of µ̂N , for all P,Q in C〈X1, · · · , Xm〉,

µ̂N (PP ∗) ≥ 0 µ̂N (PQ) = µ̂N (QP ).

These conditions are closed for the weak topology and hence we find that

Corollary 3.15. There exists η > 0 (η ≥ (4A)−1) so that for t ∈ Bη,Mt is a
linear form on C〈X1, · · · , Xm〉 such that for all P,Q

Mt(PP
∗) ≥ 0 Mt(PQ) =Mt(QP ) Mt(1) = 1.

Remark. This means thatMt is a tracial state. The traciality property can
easily be derived by symmetry properties of the maps. However, the positivity
property Mt(PP

∗) ≥ 0 is far from obvious but an easy consequence of the
matrix models approximation. This property will be seen to be useful to actually
solve the combinatorial problem (i.e. find an explicit formula forMt).
Proof of Theorem 3.13.

1. Proof of the induction relation (22).

• We first check them for k = 0 = (0, · · · , 0). By convention, there is
one planar map with a single vertex, so M0(1) = 1. We now check
that

M0(XiP ) =M0 ⊗M0(∂iP ) =
∑

P=p1Xip2

M0(p1)M0(p2)

But this is clear since for any planar map with only one star of
type XiP , the half-edge corresponding to Xi has to be glued with
another half-edge of P , hence if Xi is glued with the half-edge Xi

coming from the decomposition P = p1Xip2, the map is split into two
(independent) planar maps with stars p1 and p2 respectively (note
here that p1 and p2 inherites the structure of stars since they inherite
the orientation from P as well as a marked half-edge corresponding
to the first neighbour of the glued Xi.)

• We now proceed by induction over the k and the degree of P ; we
assume that (22) is true for

∑
ki ≤ M and all monomials, and for∑

ki = M + 1 when deg(P ) ≤ L. Note thatMk(1) = 0 for |k| ≥ 1
since we can not glue a vertex with no half-edges with any star.
Hence, this induction can be started with L = 0. Now, consider
R = XiP with P of degree less than L and the set of planar maps
with a star of type XiQ and kj stars of type qj , 1 ≤ j ≤ n, with
|k| =

∑
ki = M + 1. Then,

� either the half-edge corresponding to Xi is glued with an half-
edge of P , say to the half-edge corresponding to the decomposition
P = p1Xip2; we see that this cuts the map M into two disjoint
planar maps M1 (containing the star p1) and M2 (resp. p2), the
stars of type qi being distributed either in one or the other of these
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two planar maps; there will be ri ≤ ki stars of type qi inM1, the rest
in M2. Since all stars all labelled, there will be

∏
Criki ways to assign

these stars in M1 and M2.
Hence, the total number of planar maps with a star of type XiP and
ki stars of type qi, such that the marked half-edge of XiP is glued
with an half-edge of P is

∑
P=p1Xip2

∑
0≤ri≤ki
1≤i≤n

n∏
i=1

CrikiMr(p1)Mk−r(p2) (24)

� Or the half-edge corresponding to Xi is glued with an half-edge of
another star, say qj ; let’s say with the edge coming from the decom-
position of qj into qj = q1Xiq2. Then, we can see that once we are
giving this gluing of the two edges, we can replace XiP and qj by
q2q1P .
We have kj ways to choose the star of type qj and the total number
of such maps is ∑

qj=q1Xiq2

kjMk−1j (q2q1P )

Note here thatMk is tracial. Summing over j, we obtain by linearity
ofMk

n∑
j=1

kjMk−1j ([Diqj ]P ) (25)

(24) and (25) give (22). Moreover, it is clear that (22) defines
uniquelyMk(P ) by induction.

2. Proof of (23). To prove the second point, we proceed also by induction
over k and the degree of P . First, for k = 0, M0(P ) is the number of
colored maps with one star of type P which is smaller than the number of
planar maps with one star of type xdeg P since colors only add constraints.
Hence, we have, with Ck the Catalan numbers,

Mk(P ) ≤ C
[
deg(P )

2 ]
≤ Cdeg(P )

showing that the induction relation is fine with A = B = 1 at this step.
Hence, let us assume that (23) is true for

∑
ki ≤M and all polynomials,

and
∑
ki = M+1 for polynomials of degree less than L. SinceMk(1) = 0

for
∑
ki ≥ 1 we can start this induction. Moreover, using (22), we get
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that, if we denote k! =
∏n
i=1 ki!,

Mk(XiP )

k!
=

∑
0≤pi≤ki
1≤j≤n

∑
P=P1XiP2

Mp(P1)

p!

Mk−p(P2)

(k− p)!

+
∑

1≤j≤n
kj 6=0

Mk−1j
((DiqjP )

(k− 1j)!

Hence, taking P of degree less or equal to L and using our induction
hypothesis, we find that with D the maximum of the degrees of qj

∣∣∣∣Mk(XiP )

k!

∣∣∣∣ ≤ ∑
0≤pj≤kj
1≤j≤n

∑
P=P1XiP2

A
∑
kiBdegP−1

n∏
i=1

CpiCki−piCdegP1
CdegP2

+D
∑

1≤l≤n

A
∑
kj−1

∏
j

CkjB
degP+degql−1CdegP+degql−1

≤ A
∑
kiBdegP+1

∏
i

CkiCdegP+1

(
4n

B2
+D

∑
1≤j≤nB

degqj−24degqj−2

A

)
It is now sufficient to choose A and B such that

4n

B2
+D

∑
1≤j≤nB

degqj−24degqj−2

A
≤ 1

(for instance B = 2n+1 and A = 4nDBD−24D−2 if D is the maximal
degree of the qj) to verify the induction hypothesis works for polynomials
of all degrees (all L’s).

3. Properties of Mt. From the previous considerations, we can of course
define Mt and the serie is absolutely convergent for |t| ≤ (4A)−1 since
Ck ≤ 4k. Hence Mt(P ) depends analytically on t ∈ B(4A)−1 . Moreover,
for all monomial P ,

|Mt(P )| ≤
∑
k∈Nn

n∏
i=1

(4tiA)ki(4B)degP ≤
n∏
i=1

(1− 4Ati)
−1(4B)degP .

so that for small t,Mt belongs to K(4B).

4. Mt satisfies SD[Vt]. This is derived by summing (22) written for all k
and multiplied by the factor

∏
(ti)

ki/ki!. From this point and the previous
one (note that B is independent from t), we deduce from Theorem 3.11
that for sufficiently small t, Mt is the unique solution of SD[Vt] which
belongs to K(4B).

�
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3.4.8 Convergence of the free energy

Theorem 3.16. There exists ε > 0 so that for t ∈ U ∩Bε

lim
N→∞

1

N2
ln
ZVt

N

Z0
N

=
∑

k∈Nn\(0,..,0)

∏
1≤i≤n

(−ti)ki
ki!

Mk.

Moreover, the right hand side is absolutely converging. Above Mk denotes the
number of planar maps build over ki stars of type qi, 1 ≤ i ≤ n.

Proof. Note that if V satisfies (18), then for any α ∈ [0, 1], αV also satisfies
(18). Set

FN (α) =
1

N2
lnZVαt

N .

Then,
1

N2
ln
ZVt

N

Z0
N

= FN (1)− FN (0).

Moreover
∂αF

N (α) = −µNVαt

(
µ̂N (Vt)

)
. (26)

By Theorem 3.12, we know that for all α ∈ [0, 1], we have

lim
N→∞

µNVαt

(
µ̂N (Vt)

)
= ταt(Vt)

whereas by (20), we know that µNVαt

(
µ̂N (qi)

)
stays uniformly bounded. There-

fore, a simple use of dominated convergence theorem shows that

lim
N→∞

1

N2
ln
ZVt

N

Z0
N

= −
ˆ 1

0

ταt(Vt)dα = −
n∑
i=1

ti

ˆ 1

0

ταt(qi)dα. (27)

Now, observe that by Corollary 3.14, that with 1i = (0, . . . , 1, 0, . . . , 0) with the
1 in ith position,

τt(qi) =
∑
k∈Nn

∏
1≤j≤n

(−tj)kj
kj !

Mk+1i

= −∂ti
∑

k∈Nn\{0,··· ,0}

∏
1≤j≤n

(−tj)kj
kj !

Mk

so that (27) results with

lim
N→∞

1

N2
ln
ZVt

N

Z0
N

= −
ˆ 1

0

∂α[
∑

k∈Nn\{0,··· ,0}

∏
1≤j≤n

(−αtj)kj
kj !

Mk]dα

= −
∑

k∈Nn\{0,··· ,0}

∏
1≤j≤n

(−tj)kj
kj !

Mk.

�
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3.5 Second order expansion for the free energy
We here prove that

1

N2
ln

(ˆ
e
∑n
i=1 tiNTr(qi(X1,··· ,Xm))dµN (X1) · · · dµN (Xm)

)

=

1∑
g=0

1

N2g−2

∑
k1,··· ,kn∈N

n∏
i=1

(ti)
ki

ki!
Mg((qi, ki), 1 ≤ i ≤ n) + o(

1

N2
)

for some parameters ti small enough and such that
∑
tiqi satisfies (18). As for

the first order, we shall prove first a similar result for µ̄Nt . We will first refine
the arguments of the proof of Theorem 3.11 to estimate µ̄Nt − τt. This will
already prove that (µ̄Nt − τt)(P ) is at most of order N−2. To get the limit of
N2(µ̄Nt − τt)(P ), we will first obtain a central limit theorem for µ̂N − τt which
is of independent interest. The key argument in our approach, besides further
uses of integration by parts-like arguments, will be the inversion of the master
operator. This can not be done in the space of polynomial functions, but in the
space of some convergent series. We shall now estimate differences of µ̂N and
its limit. So, we set

δ̂Nt = N(µ̂N − τt)

δ̄Nt =

ˆ
δ̂NdµNV = N(µ̄Nt − τt)

δ̃Nt = N(µ̂N − µ̄Nt ) = δ̂Nt − δ̄Nt .

3.5.1 Rough estimates on the size of the correction δ̃N

In this section we improve on the perturbation analysis performed in section
3.4.5 in order to get the order of

δ̄Nt (P ) = N(µ̄Nt (P )− τt)(P )

for all monomial P .

Proposition 3.17. There exists ε > 0 so that for t ∈ U ∩ Bε, for all integer
number N , and all monomial functions P of degree less than N ,

|δ̄Nt (P )|≤C
deg (P )

N
.

Proof. The starting point is the finite dimensional Dyson-Schwinger equation
of Property 3.7

µNV (µ̂N [(Xi +DiV )P ]) = µNV
(
µ̂N ⊗ µ̂N (∂iP )

)
(28)
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Therefore, since τ satisfies the Dyson-Schwinger equation SD[V], we get that
for all polynomial P ,

δ̄Nt (XiP ) = −δ̄Nt (DiVtP ) + δ̄Nt ⊗ µ̄Nt (∂iP ) + τt ⊗ δ̄Nt (∂iP ) + r(N,P ) (29)

with
r(N,P ) := N−1µNVt

(
δ̃Nt ⊗ δ̃Nt (∂iP )

)
.

By Lemma 3.9, if P is a monomial of degree d, r(N,P ) is at most of order
d3Md−1

0 /N . We set

DN
d = max

P monomial of degree ≤d
|δ̄Nt (P )|.

Observe that by (20), for ε > 0 and any monomial of degree d less than N/2,

|µ̄Nt (P )|≤(M0 + ε)d, |τt(P )|≤Md
0 .

Thus, by (29), writing DiV =
∑
tjDiqj , we get that for d < N/2

DN
d+1≤ max

1≤i≤m

n∑
j=1

|tj |DN
d+deg(Diqj)

+ 2

d−1∑
l=0

(M0 + ε)d−l−1DN
l +

1

N
d3Md

0

We next define for κ≤1

DN (κ, ε) =

N/2∑
k=1

κkDN
k .

We obtain, if D is the maximal degree of V ,

DN (κ) ≤ [n‖t‖∞ + 2(1− (M0 + ε)κ)−1κ2]DN (κ)

+n‖t‖∞
N/2+D∑
k=N/2+1

κk−DDN
k +

N/2∑
k=1

κk
1

N
k3(M0 + ε)k (30)

where we choose κ small enough so that η = (M0 +ε)κ < 1. In this case the sum
of the last two terms is of order 1/N . Since DN

k is bounded by 2N(M0 + ε)k,∑N/2+D
k=N/2+1 κ

k−DDN
k is of order Nκ−DηN/2 is going to zero. Then, for κ small,

we deduce
DN (κ)≤C(κ, ε)N−1

and so for all monomial P of degree d≤N/2,

|δ̄Nt (P )|≤C(κ, ε)κ−dN−1.

�

To get the precise evaluation of Nδ̄Nt (P ), and of the full expansion of the
free energy, we use loop equations, and therefore introduce the corresponding
master operator and show how to invert it.
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3.5.2 Higher order loop equations.

To get the central limit theorem we derive the higher order Dyson-Schwinger
equations. To this end introduce the Master operator. It is the linear map on
polynomials given by

ΞP =

m∑
i=1

∂iP#Xi +

d∑
i=1

∂iP#DiVt − (1⊗ τt + τt ⊗ 1)∂i.DiP .

Recall here that if P is a monomial
∑m
i=1 ∂iP#Xi = deg(P )P . Using the

traciality of δ̂Nt and again integration by parts we find that

Lemma 3.18. For all monomials p0, . . . pk we have

µNVt

(
δ̂Nt [Ξp0]

k∏
i=1

δ̂Nt (pi)

)

=

k∑
j=1

m∑
i=1

µ̂NVt

µ̂N (Dip0Dipj)
∏
` 6=j

δ̂Nt (p`)


+

1

N

m∑
i=1

µNVt

(
δ̂Nt ⊗ δ̂Nt [∂i ◦Dip0]

k∏
i=1

δ̂Nt (pi)

)

3.5.3 Inverting the master operator

Note that when t = 0, Ξ is invertible on the space of self-adjoint polynomials
with no constant terms, which we denote C〈X1, · · · , Xm〉0. The idea is therefore
to invert Ξ for t small. If P is a polynomial and q a non-constant monomial we
will denote `q(P ) the coefficient of q in the decomposition of P in monomials.
We can then define a norm ‖.‖A on C〈X1, · · · , Xm〉0 for A > 1 by

‖P‖A =
∑

deg q 6=0

|`q(P )|Adeg q.

In the formula above, the sum is taken on all non-constant monomials. We also
define the operator norm given, for T from C〈X1, · · · , Xm〉0 to C〈X1, · · · , Xm〉0,
by

|||T |||A = sup
‖P‖A=1

‖T (P )‖A.

Finally, let C〈X1, · · · , Xm〉0A be the completion of C〈X1, · · · , Xm〉0 for ‖.‖A.
We say that T is continuous on C〈X1, · · · , Xm〉0A if |||T |||A is finite. We shall
prove that Ξ is continuous on C〈X1, · · · , Xm〉0A with continuous inverse when t
is small.

We define a linear map Σ on C〈X1, · · · , Xm〉 such that for all monomials q
of degree greater or equal to 1

Σ(q) =
q

deg q
.
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Moreover, Σ(q) = 0 if deg q = 0. We let Π be the projection from C〈X1, · · · , Xm〉sa
onto C〈X1, · · · , Xm〉0 (i.e Π(P ) = P − P (0, · · · , 0)). We now define some oper-
ators on C〈X1, · · · , Xm〉0 i.e. from C〈X1, · · · , Xm〉0 into C〈X1, · · · , Xm〉0, we
set

Ξ1 : P −→ Π

(
m∑
k=1

∂kΣP]DkV

)

Ξ2 : P −→ Π

(
m∑
k=1

(τt ⊗ I + I ⊗ τt)(∂kDkΣP )

)
.

We denote
Ξ0 = I − Ξ2 ⇒ Π ◦ Ξ ◦ Σ = Ξ0 + Ξ1 ,

where I is the identity on C〈X1, · · · , Xm〉0. Note that the images of the op-
erators Ξi’s and Π ◦ Ξ ◦ Σ are indeed included in C〈X1, · · · , Xm〉sa since V is
assumed self-adjoint.

Lemma 3.19. With the previous notations,

1. For t ∈ U , the operator Ξ0 is invertible on C〈X1, · · · , Xm〉0.

2. There exists A0 > 0 such that for all A > A0, the operators Ξ2, Ξ0 and Ξ−1
0

are continuous on C〈X1, · · · , Xm〉0A and their norm |||.|||A are uniformly
bounded for t in Bη ∩ U .

3. For all ε, A > 0, there exists ηε > 0 such for ‖t‖∞ < ηε, Ξ1 is continuous
on C〈X1, · · · , Xm〉0A and |||Ξ1|||A≤ε.

4. For all A > A0, there exists η > 0 such that for t ∈ Bη ∩ U , Π ◦ Ξ ◦ Σ
is continuous, invertible with a continuous inverse on C〈X1, · · · , Xm〉0A.
Besides the norms of Π ◦ Ξ and (Π ◦ Ξ)−1 are uniformly bounded for t in
Bη.

5. For any A > M0, there is a finite constant C such that

‖P‖LM0
≤ C‖P‖A .

The norm ‖.‖LM0
was defined in Lemma 3.9.

Proof.

1. Recall that Ξ0 = I − Ξ2, whereas since Ξ2 reduces the degree of a poly-
nomial by at least 2,

P →
∑
n≥0

(Ξ2)n(P )

is well defined on C〈X1, · · · , Xm〉0 as the sum is finite for any polynomial
P . This clearly gives an inverse for Ξ0.
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2. First remark that a linear operator T has a norm less than C with respect
to ‖.‖A if and only if for all non-constant monomial q,

‖T (q)‖A≤CAdeg q.

Recall that τt is uniformly bounded (see Lemma 3.10) and let C0 < +∞
be such that |τt(q)|≤Cdeg q

0 for all monomial q. Take a monomial q =
Xi1 · · ·Xip , and assume that A > 2C0,

‖Π

(∑
k

(I ⊗ τt)∂kDkΣq

)
‖A≤p−1

∑
k,q=q1Xkq2,
q2q1=r1Xkr2

‖r1τt(r2)‖A

≤ p−1
∑

k,q=q1Xkq2,
q2q1=r1Xkr2

Adeg r1Cdeg r2
0 ≤ 1

p

p−1∑
n=0

p−2∑
l=0

AlCp−l−2
0

≤ Ap−2

p−2∑
l=0

(
C0

A

)p−2−l

≤2A−2‖q‖A

where in the second line, we observed that once deg(q1) is fixed, q2q1

is uniquely determined and then r1, r2 are uniquely determined by the
choice of l the degree of r1. Thus, the factor 1

p is compensated by the
number of possible decomposition of q i.e. the choice of the degree of q1.
If A > 2, P → Π (

∑
k(I ⊗ τt)∂kDkΣP ) is continuous of norm strictly less

than 1
2 . And a similar calculus for Π (

∑
k(τt ⊗ I)∂kDkΣ) shows that Ξ2

is continuous of norm strictly less than 1. It follows immediately that Ξ0

is continuous. Recall now that

Ξ−1
0 =

∑
n≥0

Ξn2 .

As Ξ2 is of norm strictly less than 1, Ξ−1
0 is continuous.

3. Let q = Xi1 · · ·Xip be a monomial and let D be the degree of V

‖Ξ1(q)‖A ≤ 1

p

∑
k,q=q1Xkq2

‖q1DkV q2‖A≤
1

p

∑
k,q=q1Xkq2

‖t‖∞DnAp−1+D−1

= ‖t‖∞DnAD−2‖q‖A.

It is now sufficient to take ηε < (nDAD−2)−1ε.

4. We choose η < (nDAD−2)−1|||Ξ−1
0 |||

−1
A so that when |t|≤η,

|||Ξ1|||A|||Ξ−1
0 |||A < 1.

By continuity, we can extend Ξ0, Ξ1, Ξ2, Π ◦ Ξ ◦ Σ and Ξ−1
0 on the space

C〈X1, · · · , Xm〉0A. The operator

P →
∑
n≥0

(−Ξ−1
0 Ξ1)nΞ−1

0
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is well defined and continuous. And this is clearly an inverse of

Π ◦ Ξ ◦ Σ = Ξ0 + Ξ1 = Ξ0(I + Ξ−1
0 Ξ1).

Finally, we notice that Σ−1 is bounded from C〈X1, · · · , Xm〉0A to C〈X1, · · · , Xm〉0A′
for A0 < A′ < A, and hence up to take A slightly larger ΠΞ = (ΠΞΣ)◦Σ−1

is continuous on C〈X1, · · · , Xm〉0A as well as its inverse.

5. The last point is trivial.

�

3.5.4 Central limit theorem

Theorem 3.20. Take t ∈ U ∩Bη for η small enough and A > M0 ∧A0. Then
For all P1, . . . , Pk in C〈X1, · · · , Xm〉0A, (δ̂N (P1), . . . , δ̂N (Pk)) converges in law
to a centered Gaussian vector with covariance

σ(2)(P,Q) :=

m∑
i=1

τ(DiΞ
−1PDiQ) .

Proof. It is enough to prove the result for monomials Pi (which satisfy
Pi(0) = 0). We know by the previous part that for A large enough there exists
Q1 ∈ C〈X1, · · · , Xm〉0A so that P1 = Π◦Ξ◦ΣQ1. But the space C〈X1, · · · , Xm〉0
is dense in C〈X1, · · · , Xm〉0A by construction. Thus, there exists a sequence Qp1
in C〈X1, · · · , Xm〉0 such that

lim
p→∞

‖Q1 −Qp1‖A = 0.

Let us define Rp = Ξ ◦ ΣQ1 − Ξ ◦ ΣQp1 in C〈X1, · · · , Xm〉0A. By the previous
section, it goes to zero for ‖.‖A′ for A′ ∈ (A0, A), but also for ‖.‖LM0

for A > M0.
But, by Lemma 3.9 and 3.8 we find that since δ̂tN has mass bounded by N , for
any polynomial P and δ > 0 and r integer number smaller than N/2

µNVt

(
|δ̂tN (R)|r

)
≤ µNVt

(
|δ̂tN (R)|r1∩i{‖Xi‖≤M0}

)
+µNVt

(
|δ̂tN (R)|2r

)1/2

µNVt
(∪i{‖Xi‖ ≥M0})1/2

≤ (‖R‖LM0
)r
ˆ
rxr−1e−cx

2

dx+ (N(2M0 + 2))re−cN .

We deduce by taking R = Rp that for all r ∈ N

lim
p→∞

lim sup
N→∞

µNVt
(|δ̂tN (Rp)|r) = 0 .
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Therefore Lemma 3.18 implies that there exists o(p) going to zero when p goes
to infinity such that

µNVt

(
δ̂Nt [P ]

k∏
i=1

δ̂Nt (qi)

)
= µNVt

(
δ̂Nt [ΞQp]

k∏
i=1

δ̂Nt (qi)

)
+ o(p)

=

k∑
j=1

m∑
i=1

µ̂NVt

µ̂N (DiQpDiqj)
∏
` 6=j

δ̂Nt (q`)


+

1

N

m∑
i=1

µNVt

(
δ̂Nt ⊗ δ̂Nt [∂i ◦DiQp]

k∏
i=1

δ̂Nt (qi)

)
+ o(p)

'
k∑
j=1

m∑
i=1

τt(DiQpDiqj)µ
N
Vt

∏
` 6=j

δ̂Nt (q`)

+ o(p)

'
k∑
j=1

m∑
i=1

τt(Di(Ξ
−1P )Diqj)µ

N
Vt

∏
6̀=j

δ̂Nt (q`)

+ o(p)

where in the last line we used that ‖DiQn −DiQ‖A0 goes to zero and that τt
is continuous for this norm. The result follows then by induction over k since
again we recognize Wick formula.

Exercise 3.21. Show that for P,Q two monomials,

σ(2)(P,Q) =
∑∏ (−ti)`i

`i!
M0(P,Q, (qi, `i))

is the generating function for the enumeration of planar maps with two stars of
type P,Q and `i of type qi, 1 ≤ i ≤ n.

3.5.5 Second order correction to the free energy

We now deduce from the Central Limit Theorem the precise asymptotics of
Nδ̄N (P ) and then compute the second order correction to the free energy.

Let φ0 and φ be the linear forms on C〈X1, · · · , Xm〉 which are given, if P is
a monomial, by

φ(P ) =

m∑
i=1

∑
P=P1XiP2XiP3

σ(2)(P3P1, P2) .

Note that φ vanishes if the degree of P is less than 2.

Proposition 3.22. Take t ∈ U small enough. Then, for any polynomial P ,

lim
N→∞

Nδ̄N (P ) = φ(Ξ−1ΠP ).
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Proof. Again, we base our proof on the finite dimensional Dyson-Schwinger
equation (28) which, after centering, reads for i ∈ {1, · · · ,m},

N2µNV
(
(µ̂N − τt)[(Xi +DiV )P − (I ⊗ τt + τt ⊗ I)∂iP

)
= µNV

(
δ̂N ⊗ δ̂N (∂iP )]

)
(31)

Taking P → DiΠP and summing over i ∈ {1, · · · ,m}, we thus have

N2µNV
(
(µ̂N − τt)(ΞP )

)
= µNV

(
δ̂N ⊗ δ̂N (

m∑
i=1

∂i ◦DiP )

)
(32)

By Theorem 3.20 we see that

lim
N→∞

µNV

(
δ̂N ⊗ δ̂N (

m∑
i=1

∂i ◦DiΠP )

)
= φ(P )

which gives the asymptotics of Nδ̄N (ΞP ) for all P in the imgae of Ξ.
To generalize the result to arbitrary P , we proceed as in the proof of the

full central limit theorem. We take a sequence of polynomials Qn wich goes to
Q = Ξ−1P when n go to ∞ for the norm ‖.‖A. We denote Rn = P − ΞQn =
Ξ(Q−Qn). Note that as P and Qn are polynomials then Rn is also a polynomial.

Nδ̄N (P ) = Nδ̄N (ΞQn) +Nδ̄N (Rn)

According to Proposition 3.17, for any monomial P of degree less than N1−ε,

|Nδ̄N (P )| ≤ Cdeg(P ).

So if we take the limit in N , for any monomial P ,

lim sup
N

|Nδ̄N (P )| ≤ Cdeg(P )

and if P is a polynomial, Lemma 3.9 yields for C < A

lim sup
N

|Nδ̄N (P )| ≤ ‖P‖LC ≤ ‖P‖A.

We now fix n and take the large N limit,

lim sup
N

|Nδ̄N (P − ΞQn)| = lim sup
N

|Nδ̄N (Rn)| ≤ ‖Rn‖A.

If we take the limit in n the right term vanishes and we are left with :

lim
N
Nδ̄N (P ) = lim

n
lim
N
Nδ̄N (Qn) = lim

n
φ(Qn).

It is now sufficient to show that φ is continuous for the norm ‖.‖A. But
P →

∑m
i=1 ∂i ◦DiP is continuous from C〈X1, · · · , Xm〉0A to C〈X1, · · · , Xm〉0A−1

and σ2 is continuous for ‖.‖A−1 provided A is large enough. This proves that φ
is continuous and then can be extended on C〈X1, · · · , Xm〉0A. Thus

lim
N
Nδ̄N (P ) = lim

n
φ(Qn) = φ(Q).

�
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Theorem 3.23. Take t ∈ U small enough. Then

ln
ZVt

N

Z0
N

= N2Ft + F 1
t + o(1)

with

Ft =

ˆ 1

0

ταt(Vt)dα

and

F 1
t =

ˆ 1

0

φαt(Ξ
−1
αt Vt)ds.

Proof. As for the proof of Theorem 3.16, we note that αVt = Vαt is c-convex
for all α ∈ [0, 1] We use (26) to see that

∂α lnZNVαt
= µNαt(µ̂

N (Vt))

so that we can write

ln
ZNVαt

ZN0
= N2

ˆ 1

0

µNVαt
(µ̂N (Vt))dα

= N2Ft +

ˆ 1

0

[Nδ̄Nαt(Vt)]ds (33)

with

Ft =

ˆ 1

0

ταt(Vt)dα.

Proposition 3.22 and (33) finish the proof of the theorem since by Proposition
3.17, all the Nδ̄N (qi) can be bounded independently of N and t ∈ Bη ∩ U so
that dominated convergence theorem applies. �

Exercise 3.24. Show that F 1
t is a generating function for maps of genus one.

4 Beta-ensembles
Closely related to random matrices are the so-called Beta-ensembles. Their
distribution is the probability measure on RN given by

dP β,VN (λ1, . . . , λN ) =
1

Zβ,VN

∆(λ)βe−Nβ
∑
V (λi)

N∏
i=1

dλi

where ∆(λ) =
∏
i<j |λi − λj |.

Remark 4.1. In the case V (X) = 1
2x

2 and β = 2, P 2,x2/4
N is exactly the law

of the eigenvalues for a matrix taken in the GUE as we were considering in the
previous chapter (the case β = 1 corresponds to GOE and β = 4 to GSE). This
is left as a (complicated) exercise, see e.g. [3].
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β ensembles also represent strongly interacting particle systems. It turns
out that both global and local statistics could be analyzed in some details. In
these lectures, we will discuss global asymptotics in the spirit of the previous
chapter. This section is strongly inspired from [?]. However, in that paper,
only Stieltjes functions were considered, so that closed equations for correlators
were only retrieved under the assumption that V is analytic. In this section, we
consider more general correlators, allowing sufficiently smooth (but not analytic)
potentials. We did not try to optimize the smoothness assumption.

4.1 Law of large numbers and large deviation principles
Notice that we can rewrite the density of β-ensembles as :

dP β,VN

dλ
=

1

Zβ,VN

exp

1

2
β
∑
i6=j

ln |λi − λj | − βN
∑

V (λi)


” = ”

1

Zβ,VN

exp
{
−βN2E (µ̂N )

}
where µ̂N is the empirical measure (total mass 1), and for any probability mea-
sure µ on the real line, we denote by E the energy

E (µ) =

ˆ ˆ
[
1

2
V (x) +

1

2
V (y)− 1

2
ln |x− y|]dµ(x)dµ(y)

(the “=” is in quotes because we have thrown out the fact that ln |x− y| is
not well defined for a Dirac mass on the “self-interaction” diagonal terms)

Assumption 4.2. Assume that lim inf |x|→∞
V (x)

ln(|x|) > 1 (i.e. V (x) goes to in-
finity fast enough to dominate the log term at infinity) and V is continuous.

Theorem 4.3. If Assumption 4.2 holds, the empirical measure converges almost
surely for the weak topology

µ̂N ⇒ µeq
V , a.s

where µeq
V is the equilibrium measure for V , namely the minimizer of E(µ).

One can derive this convergence from a related large deviation principle [8]
that we now state.

Theorem 4.4. If Assumption 4.2 holds, the law of µ̂N under P β,VN satisfies a
large deviation principle with speed N2 and good rate function

I(µ) = βE(µ)− β inf
ν∈P(R)

E(ν) .

In other words, I has compact level sets and for any closed set F of P(R),

lim sup
N→∞

1

N2
lnP β,VN (µ̂N ∈ F ) ≤ − inf

F
I
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whereas for any open set O of P(R),

lim inf
N→∞

1

N2
lnP β,VN (µ̂N ∈ O) ≥ − inf

O
I

To deduce the convergence of the empirical measure, we first prove the ex-
istence and uniqueness of the minimizers of E .

Lemma 4.5. Suppose Assumption 4.2 holds, then :

• There exists a unique minimizer µeq
V to E. It is characterized by the fact

that there exists a finite constant CV such that the effective potential

Veff(x) := V (x)−
ˆ

ln |x− y| dµeq
V (y)− CV

vanishes on the support of µeq
V and is non negative everywhere.

• For any probability measure µ, we have the decomposition

E(µ) = E(µeq
V ) +

ˆ ∞
0

ds

s

∣∣∣∣ˆ eisxd(µ− µeq
V )(x)

∣∣∣∣2 +

ˆ
Veff(x)dµ(x) . (34)

Proof. We notice that with f(x, y) = 1
2V (x) + 1

2V (y)− 1
2 ln |x− y|,

E(µ) =

ˆ
f(x, y)dµ(x)dµ(y) = sup

M≥0

ˆ
f(x, y) ∧Mdµ(x)dµ(y)

by monotone convergence theorem. Observe also that the growth assumption
we made on V insures that there exists γ > 0 and C > −∞ such that

f(x, y) ≥ γ(ln(|x|+ 1) + ln(|y|+ 1)) + C , (35)

so that f ∧M is a bounded continuous function. Hence, E is the supremum of
the bounded continuous functions EM (µ) :=

´ ´
f(x, y)∧Mdµ(x)dµ(y), defined

on the set P(R) of probability measures on R, equipped with the weak topology.
Hence E is lower semi-continuous. Moreover, the lower bound (35) on f yields

LM := {µ ∈ P(R) : E(µ) ≤M} ⊂
{ˆ

ln(|x|+ 1)dµ(x) ≤ M − C
2γ

}
=: KM

(36)
where KM is compact. Hence, since LM is closed by lower semi-continuity of E
we conclude that LM is compact for any real number M . This implies that E
achieves its minimal value. Let µeq

V be a minimizer. Writing that E(µeq
V + εν) ≥

E(µeq
V ) for any measure ν with zero mass so that µeq

V + εν is positive for ε small
enough gives the announced characterization in terms of the effective potential
Veff .

For the second point, take µ with E(µ) <∞ and write

V = Veff +

ˆ
ln |.− y| dµeq

V (y) + CV
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so that

E(µ) = E(µeq
V )− 1

2

ˆ ˆ
ln |x− y| d(µ− µeq

V )(x)d(µ− µeq
V )(y) +

ˆ
Veff(x)dµ(x) .

On the other hand, we have the following equality for all x, y ∈ R

ln |x− y| =
ˆ ∞

0

1

2t

(
e−

1
2t − e−

|x−y|2
2t

)
dt .

One can then argue [7] that for all probability measure µ with E(µ) < ∞(in
particular with no atoms), we can apply Fubini’s theorem and the fact that
µ− µeq

V is massless, to show that

Σ(µ) :=

ˆ ˆ
ln |x− y| d(µ− µeq

V )(x)d(µ− µeq
V )(y)

= −
ˆ ∞

0

1

2t

ˆ ˆ
e−
|x−y|2

2t d(µ− µeq
V )(x)d(µ− µeq

V )(y)dt

= −
ˆ ∞

0

1

2
√

2πt

ˆ
e−

1
2 tλ

2

∣∣∣∣ˆ eiλxd(µ− µeq
V )(x)

∣∣∣∣2 dλdt
= −

ˆ ∞
0

∣∣∣∣ˆ eiyxd(µ− µeq
V )(x)

∣∣∣∣2 dyy
This term is concave non-positive in the measure µ as it is quadratic in µ, and
in fact non degenerate as it vanishes only when all Fourier transforms of µ equal
those of µeq

V , implying that µ = µeq
V . Therefore E is as well strictly convex as it

differs from this function only by a linear term. Its minimizer is thus unique. �

Remark 4.6. Note that the characterization of µeq
V implies that it is compactly

supported as Veff goes to infinity at infinity.

Remark 4.7. It can be shown that the equilibrium measure has a bounded
density with respect to Lebesgue measure if V is C2. Indeed, if f is C1 from
R → R and ε small enough so that ϕε(x) = x + εf(x) is a bijection, we know
that

I(ϕε#µ
eq
V ) ≥ I(µeq

V ) ,

where we denoted by ϕ#µ the pushforward of µ by ϕ given, for any test function
g, by : ˆ

g(y)dϕ#µ(y) =

ˆ
g(ϕ(x))dµ(x) .

As a consequence, we deduce by arguing that the term linear in ε must vanish
that

1

2

ˆ ˆ
f(x)− f(y)

x− y
dµeq

V (x)dµeq
V (y) =

ˆ
V ′(x)f(x)dµeq

V (x) .
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By linearity, we may now take f to be complex valued and given by f(x) =
(z − x)−1. We deduce that the Stieltjes transform Seq(z) =

´
(z − x)−1dµeq

V (x)
satisfies

1

2
Seq(z)2 =

ˆ
V ′(x)

z − x
dµeq

V (x) = Seq(z)V ′(<(z)) + f(z)

with
f(z) =

ˆ
V ′(x)− V ′(<(z))

z − x
dµeq

V (x) .

f is bounded on compacts if V is C2. Moreover, we deduce that

S(z) = V ′(<(z))−
√
V ′(<(z))2 + 2f(z) .

But we can now let z going to the real axis and we deduce from Theorem ??
that µeq

V has bounded density
√
V ′(x)2 − 4f(x).

Note also that it follows, since V ′(x)2−4f(x) is smooth that when the density
of µeq

V vanishes at a it vanishes like |x− a|q/2 for some integer number q ≥ 1.

Because the proof of the large deviation principle will be roughly the same
in the discrete case, we detail it here.
Proof of Theorem 4.4 We first consider the non-normalized measure

dQβ,VN
dλ

= exp

1

2
β
∑
i 6=j

ln |λi − λj | − βN
∑

V (λi)


and prove that it satisfies a weak large deviation principle, that is that for any
probability measure µ,

−βE(µ) = lim sup
δ→0

lim sup
N→∞

1

N2
lnQβ,VN (d(µ̂N , µ) < δ)

= lim inf
δ→0

lim inf
N→∞

1

N2
lnQβ,VN (d(µ̂N , µ) < δ)

where d is a distance compatible with the weak topology, such as the Vasershtein
distance.

To prove the upper bound observe that for any M > 0

Qβ,VN (d(µ̂N , µ) < δ) ≤
ˆ
d(µ̂N ,µ)<δ

e−βN
2
´
x 6=y f(x,y)∧Mdµ̂N (x)dµ̂N (y)

∏
e−βV (λi)dλi

= eβNM
ˆ
d(µ̂N ,µ)<δ

e−βN
2
´
f(x,y)∧Mdµ̂N (x)dµ̂N (y)

∏
e−βV (λi)dλi

where in the first line we used that the λi are almost surely distinct. Now, using
that for any finite M , EM is continuous, we get

Qβ,VN (d(µ̂N , µ) < δ) ≤ eβNMe−βN
2EM (µ)+N2o(δ)(

ˆ
e−βV (λ)dλ)N
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Taking first the limit N going to infinity, then δ going to zero and finally M
going to infinity yields

lim sup
δ→0

lim sup
N→∞

1

N2
lnQβ,VN (d(µ̂N , µ) < δ) ≤ −βE(µ) .

To get the lower bound, we may choose µ with no atoms as otherwise E(µ) =
+∞. We can also assume µ compactly supported, as we can approximate it by
µM (dx) = 1|x|≤Mdµ/µ([−M,M ]) and it is not hard to see that E(µM ) goes to
E(µ) as M goes to infinity. Let xi be the ith classical location of the particles
given by µ((−∞, xi]) = i/N . xi < xi+1 and we have for N large enough and
p > 0, if ui = λi − xi,

Ω = ∩i{|ui| ≤ N−p, ui ≤ ui+1} ⊂ {d(µ̂N , µ) < δ}

so that we get the lower bound

Qβ,VN (d(µ̂N , µ) < δ) ≥
ˆ

Ω

∏
i>j

|xi − xj + ui − uj |β
N∏
i=1

exp (−NβV (xi + ui)) dui

Observe that by our ordering of x and u, we have |xi−xj+ui−uj | ≥ max{|xi−
xj |, |ui − uj |} and therefore∏
i>j

|xi − xj + ui − uj |β ≥
∏
i>j+1

|xi − xj |β
∏
i

|xi+1 − xi|β/2
∏
i

|ui+1 − ui|β/2

where for i > j + 1

ln |xi − xj | ≥
ˆ xi

xi−1

ˆ xj+1

xj

ln |x− y|dµ(x)dµ(y)

whereas

ln |xi − xi−1| ≥ 2

ˆ xi

xi−1

ˆ xi

xi−1

1x>y ln |x− y|dµeq
V (x)dµeq

V (y) .

We deduce that∑
i>j+1

ln |xi − xj |+
1

2

∑
i

ln |xi+1 − xi| ≥
N2

2

ˆ ˆ
ln |x− y|dµeq

V (x)dµeq
V (y) .

Moreover, V is continuous and µ compactly supported, so that

1

N

N∑
i=1

V (xi + ui) =
1

N

N∑
i=1

V (xi) + o(1) . (37)

Hence, we conclude that

Qβ,VN (d(µ̂N , µ) < δ) ≥ exp{−βN2E(µ)}
ˆ

Ω

∏
i

|ui+1 − ui|β/2
∏

dui

≥ exp{−βN2E(µ) + o(N2)} (38)
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which gives the lower bound. To conclude, it is enough to prove exponential
tightness. But with KM as in (36) we have by (35)

Qβ,VN (Kc
M ) ≤

ˆ
Kc
M

e−2γN(N−1)
´

ln(|x|+1)dµ̂N (x)−CN2 ∏
dλi ≤ eN

2(C′−2γM)

with some finite constant C ′ independent of M . Hence, exponential tightness
follows :

lim sup
M→∞

lim sup
N→∞

1

N2
lnQβ,VN (Kc

M ) = −∞

from which we deduce a full large deviation principle for Qβ,VN and taking F = O
be the whole set of probability measures, we get in particular that

lim
N→∞

1

N2
lnZβ,VN = −β inf E .

�
We also have large deviations from the support : the probability that some

eigenvalue is away from the support of the equilibrium measure decays exponen-
tially fast if Veff is positive there. This was proven for the quadratic potential
in [6], then in [3] but with the implicit assumption that there is convergence of
the support of the eigenvalues towards the support of the limiting equilibrium
measure. In [11, 15], it was proved that large deviations estimate for the sup-
port hold in great generality. Hence, if the effective potential is positive outside
of the support S of the equilibrium measure, there is no eigenvalue at positive
distance of the support with exponentially large probability. It was shown in
[48] that if the effective potential is not strictly positive outside of the support
of the limiting measure, eigenvalues may deviate towards the points where it
vanishes. For completeness, we summarize the proof of this large deviation
principle below.

Theorem 4.8. Let S be the support of µeq
V . Assume Assumption 4.2 and that

V is C2. Then, for any closed set F in Sc

lim sup
N→∞

1

N
lnP β,VN (∃i ∈ {1, N} : λi ∈ F ) ≤ − inf

F
Veff ,

whereas for any open set O ⊂ Sc

lim inf
N→∞

1

N
lnP β,VN (∃i ∈ {1, N} : λi ∈ O) ≥ − inf

O
Veff .

Proof. Observe first that Veff is continuous as V is and x→
´

ln |x− y|dµeq
V (y)

is continuous by Remark 4.7. Hence, as Veff goes to infinity at infinity, it is a
good rate function.

We shall use the representation

Υβ,V
N (F)

Υβ,V
N (R)

≤ P β,VN

[
∃i λi ∈ F] ≤ N

Υβ,V
N (F)

Υβ,V
N (R)

(39)
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where, for any measurable set X :

Υβ,V
N (X) = P

β, NVN−1

N−1

[ˆ
X

dξ e

{
−Nβ V (ξ)+(N−1)β

´
dµ̂N−1(λ) ln |ξ−λ|

}]
. (40)

We shall hereafter estimate 1
N ln Υβ,V

N (X). We first prove a lower bound for
Υβ,V
N (X) with X open. For any x ∈ X we can find ε > 0 such that (x−ε, x+ε) ⊂

X. Let δε(V ) = sup{|V (x)− V (y)|, |x− y| ≤ ε}. Using twice Jensen inequality,
we lower bound Υβ,V

N (X) by

≥ P
β, NVN−1

N−1

[ˆ x+ε

x−ε
dξe

{
−Nβ V (ξ)+(N−1)β

´
dµ̂N−1(η) ln |ξ−η|

}]

≥ e−Nβ
(
V (x)+δε(V )

)
P
β, NVN−1

N−1

[ˆ x+ε

x−ε
dξe

{
(N−1)β

´
dµ̂N−1(λ) ln |ξ−λ|

}]

≥ 2ε e−Nβ
(
V (x)+δε(V )

)
e

{
(N−1)β P

β, NV
N−1

N−1

[ ´
dµ̂N−1(λ)Hx,ε(λ)

]}
≥ 2ε e−Nβ

(
V (x)+δε(V )

)
e

{
(N−1)β P

β, NV
N−1

N−1

[ ´
dµ̂N−1(λ)φx,K(λ)Hx,ε(λ)

]}
(41)

where we have set :

Hx,ε(λ) =

ˆ x+ε

x−ε

dξ

2ε
ln |ξ − λ| (42)

and φx,K is a continuous function which vanishes outside of a large compact K
including the support of µeq

V , is equal to one on a ball around x with radius 1+ε
(note that H is non-negative outside [x − (1 + ε), x + 1 + ε] resulting with the
lower bound (41)) and on the support of µeq

V , and takes values in [0, 1]. For any
fixed ε > 0, φx,KHx,ε is bounded continuous, so we have by Theorem 4.4 (note
that it applies as well when the potential depends on N as soon as it converges
uniformly on compacts) that :

Υβ,V
N (X) ≥ 2ε e−

Nβ
2

(
V (x)+δε(V )

)
e

{
(N−1)β

´
dµeq
V (λ)φx,K(λ)Hx,ε(λ)+NR(ε,N)

}
(43)

with limN→∞R(ε,N) = 0 for all ε > 0. Letting N → ∞, we deduce since´
dµeq

V (λ)φx,K(λ)Hx,ε(λ) =
´
dµeq

V (λ)Hx,ε(λ) that :

lim inf
N→∞

1

N
ln Υβ,V

N (X) ≥ −β δε(V )− β
(
V (x)−

ˆ
dµeq

V (λ)Hx,ε(λ)
)

(44)

Exchanging the integration over ξ and x, observing that ξ →
´
dµeq

V (λ) ln |ξ−λ|
is continuous by Remark 4.7 and then letting ε → 0, we conclude that for all
x ∈ X,

lim inf
N→∞

1

N
ln Υβ,V

N (X) ≥ −β Veff(x) . (45)
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We finally optimize over x ∈ X to get the desired lower bound. To prove the
upper bound, we note that for any M > 0,

Υβ,V
N (X) ≤ P β,

NV
N−1

N−1

[ˆ
X

dξ e

{
−Nβ V (ξ)+(N−1)β

´
dµ̂N−1(λ) ln max

(
|ξ−λ|,M−1

)}]
.

Observe that there exists C0 and c > 0 and d finite such that for |ξ| larger
than C0 :

Wµ(ξ) = V (ξ)−
ˆ
dµ(λ) ln max

(
|ξ − λ|,M−1

)
≥ c ln |ξ|+ d

by the confinement Hypothesis (4.2), and this for all probability measures µ on
R. As a consequence, if X ⊂ [−C,C]c for some C large enough, we deduce that
:

Υβ,V
N (X) ≤

ˆ
X

dξe−(N−1) β2 (c ln |ξ|+d) ≤ e−N
β
4 c lnC (46)

where the last bound holds for N large enough. Combining (45), (46) and (39)
shows that

lim sup
C→∞

lim sup
N→∞

1

N
lnP β,VN

[
∃i |λi| ≥ C] = −∞ .

Hence, we may restrict ourselves to X bounded. Moreover, the same bound

extends to P
β, NVN−1

N−1 so that we can restrict the expectation over µ̂N−1 to prob-
ability measures supported on [−C,C] up to an arbitrary small error e−Ne(C),
provided C is large enough and where e(C) goes to infinity with C. Recall
also that V (ξ)− 2

´
dµ̂N−1(λ) ln max

(
|ξ − λ|,M−1

)
is uniformly bounded from

below by a constant D. As λ→ ln max
(
|ξ − λ|,M−1

)
is bounded continuous on

compacts, we can use the large deviation principles of Theorem 4.4 to deduce
that for any ε > 0, any C ≥ C0,

Υβ,V
N (X) ≤ eN

2R̃(ε,N,C) + e−N(e(C)− β2D) (47)

+

ˆ
X

dξ e

{
−NβV (ξ)+(N−1)β

´
dµeq
V (λ) ln max

(
|ξ−λ|,M−1

)
+NMε

}

with lim supN→∞ R̃(ε,N,C) equals to

lim sup
N→∞

1

N2
lnP

β, NVN−1

N−1 ({µ̂N−1([−C,C]) = 1} ∩ {d(µ̂N−1, µ
eq
V ) > ε}) < 0.

Moreover, ξ → V (ξ)−
´
dµeq

V (λ) ln max
(
|ξ−λ|,M−1

)
is bounded continuous so

that a standard Laplace method yields,

lim sup
N→∞

1

N
ln Υβ,V

N (X)

≤ max

{
− inf
ξ∈X

[
β
(
V (ξ)−

ˆ
dµeq

V (λ) ln max
(
|ξ−λ|,M−1

))]
,−(e(C)−β

2
D)

}
.
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We finally choose C large enough so that the first term is larger than the sec-
ond, and conclude by monotone convergence theorem that

´
dµeq

V (λ) ln max
(
|ξ−

λ|,M−1
)
decreases as M goes to infinity towards

´
dµeq

V (λ) ln |ξ−λ|. This com-
pletes the proof of the large deviation.

�

Hereafter we shall assume that

Assumption 4.9. Veff is positive outside S.

Remark 4.10. As a consequence of Theorem 4.8, we see that up to exponen-
tially small probabilities, we can modify the potential at a distance ε of the
support. Later on, we will assume we did so in order that V ′eff does not vanish
outside S.

In these notes we will also use that particles stay smaller than M for some
M large enough with exponentially large probability.

Theorem 4.11. Assume Assumption 4.2 holds. Then, there exists M finite so
that

lim sup
N→∞

1

N
lnP β,VN (∃i ∈ {1, . . . , N} : |λi| ≥M) < 0 .

Here, we do not need to assume that the effective potential is positive ev-
erywhere, we only use it is large at infinity. The above shows that latter on, we
can always change test functions outside of a large compact [−M,M ] and hence
that L2 norms are comparable to L∞ norms.

4.2 Concentration of measure
We next define a distance on the set of probability measures on R which is well
suited for our problem.

Definition 4.12. For µ, µ′ probability measures on R, we set

D(µ, µ′) =

(ˆ ∞
0

∣∣∣∣ˆ eiyxd(µ− µ′)(x)

∣∣∣∣2 dyy
) 1

2

.

It is easy to check that D defines a distance on P(R) (taking eventually the
value +∞, for instance on measure with Dirac masses). Moreover, we have the
following property

Property 4.13. Let f ∈ L1(dx) such that f̂ belongs to L1(dt), and set ‖f‖1/2 =(´
t|f̂t|2dt

)1/2

.

• Assume also f continuous. Then for any probability measures µ, µ′∣∣∣∣ˆ f(x)d(µ− µ′)(x)

∣∣∣∣ ≤ 2‖f‖1/2D(µ, µ′) .
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• Assume moreover f, f ′ ∈ L2. Then

‖f‖1/2 ≤ 2(‖f‖L2 + ‖f ′‖L2) . (48)

Proof. For the first point we just use inverse Fourier transform and Fubini to
write that

|
ˆ
f(x)d(µ− µ′)(x)| = |

ˆ
f̂tµ̂− µ′tdt|

≤ 2

ˆ ∞
0

t1/2|f̂t|t−1/2|µ̂− µ′t|dt ≤ 2D(µ, µ′)‖f‖1/2

where we finally used Cauchy-Schwarz inequality. For the second point, we
observe that

‖f‖21/2 =

ˆ ∞
0

t|f̂t|2dt ≤
1

2
(

ˆ
|f̂t|2dt+

ˆ
|tf̂t|2dt) =

π

2
(‖f‖2L2 + ‖f ′‖L2)

from which the result follows. �

We are going to show that µ̂N = 1
N

∑N
i=1 δλi satisfies concentration inequal-

ities for the D-distance. However, the distance between µ̂N and µeq
V is infinite

as µ̂N has atoms. Hence, we are going to regularize µ̂N so that it has finite
energy, following an idea of Maurel-Segala and Maida [68]. First define λ̃ by
λ̃1 = λ1 and λ̃i = λ̃i−1 + max {σN , λi − λi−1} where σN will be chosen to be
like N−p. Remark that λ̃i − λ̃i−1 ≥ σN whereas |λi − λ̃i| ≤ NσN . Define
µ̃N = EU

[
1
N

∑
δλ̃i+Ui

]
where Ui are independent and equi-distributed random

variables uniformly distributed on [0, N−q] (i.e. we smooth the measure by
putting little rectangles instead of Dirac masses and make sure that the eigen-
values are at least distance N−p apart). For further use, observe that we have
uniformly |λ̃i +Ui − λi| ≤ N1−p +N−q. In the sequel we will take q = p+ 1 so
that the first error term dominates. Then we claim that

Lemma 4.14. Assume V is C1. For 3 < p+ 1 ≤ q there exists Cp,q finite and
c > 0 such that

P β,VN (D(µ̃N , µ
eq
V ) ≥ t) ≤ eCp,qN lnN−βN2t2 + e−cN

Remark 4.15. Using that the logarithm is a Coulomb interaction, Serfaty et al
could improve the above bounds to get the exact exponent in the term in N lnN ,
as well as the term in N . This allows to prove central limit theorems under
weaker conditions. Our approach seems however more robust and extends to
more general interactions [15].

Corollary 4.16. Assume V is C1. For all q > 2 there exists C finite and
c, c0 > 0 such that

P

(
sup
ϕ

1

N−q+2‖ϕ‖L + c0N−1/2
√

lnN‖ϕ‖ 1
2

∣∣∣∣ˆ ϕd (µ̂N − µeq
V )

∣∣∣∣ ≥ 1

)
≤ e−cN
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Moreover∣∣∣∣ˆ ϕ(x)− ϕ(y)

x− y
d(µ̂N − µeq

V )(x)d(µ̂N − µeq
V )(y)

∣∣∣∣ ≤ C 1

N
lnN‖ϕ‖C2 (49)

with probability greater than 1 − e−cN . Here ‖ϕ‖L = supx 6=y
|ϕ(x)−ϕ(y)|
|x−y| and

‖ϕ‖Ck =
∑
`≤k ‖ϕ(`)‖∞. Note that we can modify ϕ outside a large set [−M.M ]

up to modify the constant c.

Proof. We take q = p+ 1. The triangle inequality yields :

|
ˆ
ϕd (µ̂N − µeq

V ) | =

∣∣∣∣ˆ ϕd (µ̂N − µ̃N ) +

ˆ
ϕd (µ̃N − µeq

V )

∣∣∣∣
≤

∣∣∣∣∣ 1

N

N∑
i=1

EU [ϕ(λi)− ϕ(λ̃i + U)]

∣∣∣∣∣+ |
ˆ
ϕ̂(λ) ̂(µ̃N − µeq

V )(λ)dλ|

≤ ‖ϕ‖LN−q+2 + 2‖ϕ‖ 1
2
D (µ̃N , µ

eq
V )

where we noticed that |λi − λ̃i| is bounded by N−p+1 and U by N−q and used
Cauchy-Schwartz inequality. We finally use (48) to see that on {|λi| ≤ M} we
have by the previous lemma that for all ϕ∣∣∣∣ˆ ϕd (µ̂N − µeq

V )

∣∣∣∣ ≤ N−p+1‖ϕ‖L + t‖ϕ‖ 1
2

with probability greater than 1−eCp,qN lnN− β2N
2t2 . We next choose t = c0

√
lnN/N

with c20 = 4|Cp,q|/β so that this probability is greater than 1 − e−c
2
0/2N lnN .

Theorem 4.11 completes the proof of the first point since it shows that the
probability that one eigenvalue is greater than M decays exponentially fast.

We next consider

LN (φ) :=

ˆ
φ(x)− φ(y)

x− y
d(µ̂N − µeq

V )(x)d(µ̂N − µeq
V )(y)

on {max |λi| ≤ M}. Hence we can replace φ by φχM where χM is a smooth
function, equal to one on [−M,M ] and vanishing outside [−M−1,M+1]. Hence
assume that φ is compactly supported. If we denote by L̃N (φ) the quantity
defined as LN (φ) but with µ̃N instead of µ̂N we have that∣∣∣L̃N (φ)− LN (φ)

∣∣∣ ≤ 2‖φ(2)‖∞N−q+2 .

We can now replace φ by its Fourier representation to find that

L̃N (φ) =

ˆ
dtitφ̂(t)

ˆ 1

0

dα

ˆ
eiαtxd(µ̃N − µeq

V )(x)

ˆ
ei(1−α)txd(µ̃N − µeq

V )(x) .
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We can then use Cauchy-Schwartz inequality to deduce that

|L̃N (φ)| ≤
ˆ
dt|tφ̂(t)|

ˆ 1

0

dα|
ˆ
eiαtxd(µ̃N − µeq

V )(x)|2

=

ˆ
dt|tφ̂(t)|

ˆ 1

0

tdα

tα
|
ˆ
eiαtxd(µ̃N − µeq

V )(x)|2

≤
ˆ
dt|tφ̂(t)|D(µ̃N , µ

eq
V )2

≤ CD(µ̃N , µ
eq
V )2‖φ‖C2 (50)

where we noticed that
ˆ
dt|tφ̂(t)| ≤

(ˆ
dt|tφ̂(t)|2(1 + t2)

)1/2(ˆ
dt(1 + t2)−1

)1/2

≤ C(‖φ(2)‖L2 + ‖φ′‖L2) ≤ C‖φ‖C2

as we compactified φ. The conclusion follows from Theorem 4.11. �

We next prove Lemma 4.14. We first show that :

Zβ,VN ≥ exp
(
−N2βE(µeq

V ) + CN lnN
)

The proof is exactly as in the proof of the large deviation lower bound of The-
orem 4.4 except we take µ = µeq

V and V is C1, so that

1

N

N∑
i=1

V (xi + ui) =
1

N

N∑
i=1

V (xi) +O(
1

N
) .

This allows to improve the lower bound (38) into

Zβ,VN ≥ Qβ,VN (d(µ̂N , µ
eq
V ) < δ)

≥ exp{−βN2E(µeq
V ) + CN lnN} (51)

Now consider the unnormalized density of Qβ,VN = Zβ,VN P β,VN on the set
where |λi| ≤M for all i

dQβ,VN (λ)

dλ
=

∏
i<j

|λi − λj |β exp
(
−Nβ

∑
V (λi)

)
≤

∏
i<j

∣∣∣λ̃i − λ̃j∣∣∣β exp
(
−Nβ

∑
V (λ̃i)

)
because the λ̃ only increased the differences. Observe that for |λi| ≤M ,

|V (λi)− V (λ̃i + Ui)| ≤ sup
|x|≤M+1

|V ′(x)|(N1−p +N−q) .
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Moreover for each j > i

ln
∣∣∣λ̃i − λ̃j∣∣∣ = E ln

∣∣∣λ̃i + ui − λ̃j − uj
∣∣∣+O(N−q+p) .

Hence, we deduce that on |λi| ≤ M for all i, there exists a finite constant C
such that

dP β,VN

dλ
≤ exp

(
−N2β (E(µ̃N )− E(µeq

V )) + CN lnN + CN2−q+p + CN3−p)
As we chose q = p+ 1, p > 2, the error is at most of order N lnN . We now

use the fact that

E(µ̃N )− E(µeq
V ) = D(µ̃N , µ

eq
V )2 +

ˆ
(Veff)(x)d(µ̃N − µeq

V )(x)

where the last term is non-negative, and Theorem 4.11, to conclude

P β,VN ({D(µ̃N , µ
eq
V ≥ t} ∩ {max |λi| ≤M}) ≤ eCN lnN−βN2t2

(ˆ
e−NβVeff (x)dx

)N
where the last integral is bounded by a constant as Veff is non-negative and goes
to infinity at infinity faster than logarithmically. We finally remove the cutoff
by M thanks to Theorem 4.11.

4.3 The Dyson-Schwinger equations
4.3.1 Goal and strategy

We want to show that for sufficiently smooth functions f that

•

E
[

1

N

∑
f(λi)

]
= µeq

V (f) +

K∑
g=1

1

Ng
cg(f) + o(

1

NK
)

•
∑
f(λi)− E[

∑
f(λi)] converges to a centered Gaussian.

We will provide two approaches, one which deals with general functions and
a second one, closer to what we will do for discrete β ensembles, where we will
restrict ourselves to Stieltjes transform f(x) = (z − x)−1 for z ∈ C\R, which
in fact gives these results for all analytic function f by Cauchy formula. The
present approach allows to consider sufficiently smooth functions but we will
not try to get the optimal smoothness. We will as well restrict ourselves to
K = 2, but the strategy is similar to get higher order expansion. The strategy
is similar to the case of the GUE :
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• We derive a set of equations, the Dyson-Schwinger equations, for our ob-
servables (the correlation functions, that are moments of the empirical
measure, or the moments of Stieltjes transform) : it is an infinite system
of equations, a priori not closed. However, it will turn out that asymptot-
ically it can be closed.

• We linearize the equations around the limit. It takes the form of a lin-
earized operator acting on our observables being equal to observables of
smaller magnitudes. Inverting this linear operator is then the key to im-
prove the concentration bounds, starting from the already known concen-
tration bounds of Corollary 4.16.

• Using optimal bounds on our observables and the inversion of the master
operator, we recursively obtain their large N expansion.

• As a consequence, we derive the central limit theorem.

4.3.2 Dyson-Schwinger Equation

Hereafter we set MN = N(µ̂N − µV ). We let Ξ be defined on the set of C1
b (R)

functions by

Ξf(x) = V ′(x)f(x)−
ˆ
f(x)− f(y)

x− y
dµV (y) .

Ξ will be called the master operator. The Dyson-Schwinger equations are given
in the following lemma.

Lemma 4.17. Let fi : R→ R be C1
b functions, 0 ≤ i ≤ K. Then,

E[MN (Ξf0)

K∏
i=1

Nµ̂N (fi)] = (
1

β
− 1

2
)E[µ̂N (f ′0)

K∏
i=1

Nµ̂N (fi)]

+
1

β

K∑
`=1

E[µ̂N (f0f
′
`)
∏
i 6=`

Nµ̂N (fi)]

+
1

2N
E[

ˆ
f0(x)− f0(y)

x− y
dMN (x)dMN (y)

p∏
i=1

Nµ̂N (fi)]

Proof. This lemma is a direct consequence of integration by parts which implies
that for all j

E[f ′0(λj)

K∏
i=1

Nµ̂N (fi)] = βE

f0(λj)

NV ′(λj)−∑
k 6=j

1

λj − λk

 K∏
i=1

Nµ̂N (fi)


−

K∑
`=1

E[f0(λj)f
′
`(λj)

∏
i 6=`

Nµ̂N (fi)]
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Summing over j ∈ {1, . . . , N} and dividing by N yields

βNE

[(
µ̂N (V ′f0)− 1

2

ˆ ˆ
f0(x)− f0(y)

x− y
dµ̂N (x)dµ̂N (y)

) K∏
i=1

Nµ̂N (fi)

]

= (1− β

2
)E[µ̂N (f ′0)

K∏
i=1

Nµ̂N (fi)] +

K∑
`=1

E[µ̂N (f0f
′
`)
∏
i 6=`

Nµ̂N (fi)]

where we used that (x− y)−1(f(x)− f(y)) goes to f ′(x) when y goes to x. We
first take f` = 1 for ` ∈ {1, . . . ,K} and f0 with compact support and deduce
that as µ̂N goes to µV almost surely as N goes to infinity, we have

µV (f0V
′)− 1

2

ˆ
f0(x)− f0(y)

x− y
dµV (x)dµV (y) = 0 . (52)

This implies that µV has compact support and hence the formula is valid for all
f0. We then linearize around µV to get the announced lemma. �

The central point is therefore to invert the master operator Ξ. We follow
a lemma from [5]. For a function h : R → R, we recall that ‖h‖Cj(R) :=∑j
r=0 ‖h(r)‖L∞(R), where h(r) denotes the r-th derivative of h.

Lemma 4.18. Given V : R → R, assume that µeq
V has support given by [a, b]

and that
dµV
dx

(x) = S(x)
√

(x− a)(b− x)

with S(x) ≥ c̄ > 0 a.e. on [a, b].
Let g : R→R be a Ck function and assume that V is of class Cp. Then there

exists a unique constant cg such that the equation

Ξf(x) = g(x) + cg

has a solution of class C(k−2)∧(p−3). More precisely, for j ≤ (k − 2) ∧ (p − 3)
there is a finite constant Cj such that

‖f‖Cj(R) ≤ Cj‖g‖Cj+2(R), (53)

where, for a function h, ‖h‖Cj(R) :=
∑j
r=0 ‖h(r)‖L∞(R).

This solution will be denoted by Ξ−1g. It is Ck if g is Ck+2 and p ≥ k + 1.
It decreases at infinity like |V ′(x)x|−1.

Remark 4.19. The inverse of the operator Ξ can be computed, see [5]. For
x ∈ [a, b] we have that Ξ−1g(x) equals

1

β(x− a)(b− x)S(x)

(ˆ b

a

√
(y − a)(b− y)

g(y)− g(x)

y − x
dy − π

(
x− a+ b

2

)
(g(x) + cg) + c2

)
,
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where cg and c2 are chosen so that Ξ−1g converges to finite constants at a and
b. We find that for x ∈ S

Ξ−1g(x) =
1

βS(x)
PV

ˆ b

a

g(y)
1

(y − x)
√

(y − a)(b− y)
dy

=
1

βS(x)

ˆ b

a

(g(y)− g(x))
1

(y − x)
√

(y − a)(b− y)
dy,

and outside of S f is given by (see Remark 4.10).

f(x) =

(
V ′(x)−

ˆ
(x− y)−1dµeq

V (y)

)−1 ˆ
f(y)

x− y
dµeq

V (y) .

Remark 4.20. Observe that by Remark 4.7, the density of µeqV has to vanish
at the boundary like |x − a|q/2 for some q ∈ N. Hence the only case when we
can invert this operator is when q = 1. Moreover, by the same remark,

S(x)
√

(x− a)(b− x) =
√
V ′(x)2 − f(x) = V ′(x)− PV

ˆ
(x− y)−1dµeqV (y)

so that S extends to the whole real line. Assuming that S is positive in [a, b]
we see that it is positive in a open neighborhood of [a, b] since it is smooth. We
can assume without loss of generality that it is smooth everywhere by the large
deviation principle for the support.

We will therefore assume hereafter that

Assumption 4.21. V : R → R is of class Cp and µeq
V has support given by

[a, b] and that
dµV
dx

(x) = S(x)
√

(x− a)(b− x)

with S(x) ≥ c̄ > 0 a.e. on [a, b]. Moreover, we assume that (|V ′(x)x|+ 1)−1 is
integrable.

The first condition is necessary to invert Ξ on all test functions (in critical
cases, Ξ is may not be surjective). The second implies that for Ξ−1f decays
fast enough at infinity so that it belongs to L1 (for f smooth enough) so that
we can use the Fourier inversion theorem.

We then deduce from Lemma 4.17 the following :

Corollary 4.22. Assume that 4.21 with p ≥ 4. Take f0 C
k, k ≥ 3 and fi C1.

Let g = Ξ−1f0 be the Ck−2 function such that there exists a constant cg such

61



that Ξf0 = g + cg. Then

E[

K∏
i=0

MN (fi)] = (
1

β
− 1

2
)E[µ̂N ((Ξ−1f0)′)

K∏
i=1

MN (fi)]

+
1

β

K∑
`=1

E[µ̂N (Ξ−1f0f
′
`)
∏
i 6=`

MN (fi)]

+
1

2N
E[

ˆ
Ξ−1f0(x)− Ξ−1f0(y)

x− y
dMN (x)dMN (y)

K∏
i=1

MN (fi)]

4.3.3 Improving concentration inequalities

We are now ready to improve the concentration estimates we obtained in the
previous section. We could do that by using the Dyson-Schwinger equations
(this is what we will do in the discrete case) but in fact there is a quicker way
to proceed by infinitesimal change of variables in the continuous case :

Lemma 4.23. Take g ∈ C4 and assume p ≥ 4. Then there exists universal
finite constants CV and c > 0 such that for all M > 0

P β,VN

(
N |
ˆ
g(x)d(µ̂N − µeq

V )(x)| ≥ CV ‖g‖C4 lnN +M lnN

)
≤ e−cN +N−M .

Proof. Take f compactly supported on a compact set K. Making the change of
variable λi = λ′i + 1

N f(λ′i), we see that Zβ,VN equals
ˆ ∏

|λi−λj+
1

N
(f(λi)−f(λj))|β

∏
e−NβV (λi+

1
N f(λi))(1+

1

N
f ′(λi))dλi (54)

Observe that by Taylor’s expansion there are θij ∈ [0, 1] such that∏
|λi − λj +

1

N
(f(λi)− f(λj))| =

∏
|λi − λj | exp{ 1

N

∑
i<j

f(λi)− f(λj)

λi − λj

− 1

N2

∑
i<j

θij

(
f(λi)− f(λj)

λi − λj

)2

}

where the last term is bounded by ‖f ′‖2∞. Similarly there exists θi ∈ [0, 1] such
that

V (λi +
1

N
f(λi)) = V (λi) +

1

N
f(λi)V

′(λi) +
1

N2
f(λi)

2V ′′(λi +
θi
N
f(λi))

where the last term is bounded for N large enough by CK(V )‖f‖2∞ with CK =
supd(x,K)≤1 |V ′′(x)|. We deduce by expanding the right hand side of (54) that
ˆ

exp{ β
N

∑
i<j

f(λi)− f(λj)

λi − λj
−β
∑
i

V ′(λi)f(λi)}dP β,VN ≤ eβCK‖f‖
2
∞+β‖f ′‖2∞+‖f ′‖∞
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Using Chebychev inequality we deduce that if f is C1 and compactly supported

P β,VN

∣∣∣∣∣∣ 1

2N

∑
i,j

f(λi)− f(λj)

λi − λj
−
∑

V ′(λi)f
′(λi)

∣∣∣∣∣∣ ≥M lnN

 ≤ N−MeC(f)

(55)
with C(f) = CK‖f‖2∞ + (β + 1)(1 + ‖f ′‖∞)2. But

1

N

∑
i<j

f(λi)− f(λj)

λi − λj
−
∑

V ′(λi)f
′(λi)

= −N(µ̂N − µ)(Ξf) +
1

2
N

ˆ ˆ
f(x)− f(y)

x− y
d(µ̂N − µeq

V )(x)d(µ̂N − µeq
V )(y)

where if f is C2 the last term is bounded by C‖f‖C2 lnN with probability
greater than 1− e−cN by Corollary 4.16. Hence, we deduce from (56) that

P β,VN

(
N
∣∣(µ̂N − µ)(Ξf)

∣∣ ≥M lnN
)
≤ NC‖f‖C2−MeC‖f‖

2
C1 + e−cN

and inverting f by putting g = Ξf concludes the proof for f with compact
support. Again using Theorem 4.11 allows to extend the result for f with full
support. �

Exercise 4.24. Concentration estimates could as well be improved by using
Dyson-Schwinger equations. However, using the Dyson-Schwinger equations
necessitates to loose in regularity at each time, since it requires to invert the
master operator. Hence, it requires stronger regularity conditions. Prove that
if Assumption 4.21 holds with p ≥ 12, for any f be Ck with k ≥ 11. Then for
` = 1, 2, there exists C` such that∣∣E[(N(µ̂N − µeq

V )(f))`]
∣∣ ≤ C`‖f‖C3+4`‖f‖1`=2

C1 (lnN)
`+1
2 .

Hint : Use the DS equations, concentration, invert the master operator and
bootstrap if you do not get the best estimates at once.

Theorem 4.25. Suppose that Assumption 4.21 holds with p ≥ 10. Let f be Ck
with k ≥ 9. Then

mV (f) = lim
N→∞

E[N(µ̂N − µeq
V )(f)] = (

1

β
− 1

2
)µeq
V [(Ξ−1f)′] .

Let f0, f1 be Ck with k ≥ 9 and p ≥ 12. Then

CV (f0, f1) = lim
N→∞

E[MN (f0)MN (f1)] = mV (f0)mV (f1) +
1

β
µeq
V (f ′1Ξ−1f0) .

Remark 4.26. Notice that as C is symmetric, we can deduce that for any f0, f1

in Ck with k ≥ 9,
µeq
V (f ′1Ξ−1f0) = µeq

V (f ′0Ξ−1f1) .
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Proof. To prove the first convergence observe that

E[MN (f0)] = (
1

β
− 1

2
)E[µ̂N ((Ξ−1f0)′)] (56)

+
1

2N
E[

ˆ
Ξ−1f0(x)− Ξ−1f0(y)

x− y
dMN (x)dMN (y)] .

The first term converges to the desired limit as soon as (Ξ−1f0)′ is continuous.
For the second term we can use the previous Lemma and the basic concentration
estimate 4.16 to show that it is neglectable. The arguments are very similar to
those used in the proof of Corollary 4.16 but we detail them for the last time.
First, not that if χM is the indicator function that all eigenvalues are bounded
by M , we have by Theorem 4.11 that

|E[(1− χM )

ˆ
Ξ−1f0(x)− Ξ−1f0(y)

x− y
dMN (x)dMN (y)]| ≤ ‖Ξ−1f0‖C1N2e−cN .

We therefore concentrate on the other term, up to modify Ξ−1f0 outside [−M,M ]
so that it decays to zero as fast as wished and is as smooth as the original func-
tion (it is enough to multiply it by a smooth cutoff function). In particular we
may assume it belongs to L2 and write its decomposition in terms of Fourier
transform. With some abuse of notations, we still denote ̂(Ξ−1f0)t the Fourier
transform of this eventually modified function. Then, we have

|E[χM

ˆ
Ξ−1f0(x)− Ξ−1f0(y)

x− y
dMN (x)dMN (y)]|

≤
ˆ
|t ̂(Ξ−1f0)t|

ˆ 1

0

E[χM |MN (eiαt.)|2]dαdt

To bound the right hand side under the weakest possible hypothesis over f0,
observe that by Corollary 4.16 applied on only one of the MN we have

E[χM |MN (eiαt.)|2] ≤ C
√
N lnN |t|E[|MN (eiαt.)|] +N2e−cN (57)

where again we used that even though eiαt. has infinite 1/2 norm, we can modify
this function outside [−M,M ] into a function with 1/2 norm of order |t|. We
next use Lemma 4.23 to estimate the first term in (57) (with ‖eiαt.‖C4 of order
|αt|4 + 1) and deduce that :

|E[χM

ˆ
Ξ−1f0(x)− Ξ−1f0(y)

x− y
dMN (x)dMN (y)]|

≤ C(lnN)3/2
√
N

ˆ
|t ̂(Ξ−1f0)t||t|

5dt

≤ C(lnN)3/2
√
N‖Ξ−1f0‖C7

≤ C(lnN)3/2
√
N‖f0‖C9
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Hence, we deduce that

1

N
|E[

ˆ
Ξ−1f0(x)− Ξ−1f0(y)

x− y
dMN (x)dMN (y)]| ≤ C(lnN)3/2

√
N
−1
‖f0‖C9

goes to zero if f0 is C9. This proves the first claim. Similarly, for the covariance,
we use Corollary 4.22 with p = 1 to find that for f0, f1C

k,

CN (f0, f1) = E[(N(µ̂N − µeq
V ))(f0)MN (f1)]

= (
1

β
− 1

2
)µeq
V ((Ξ−1f0)′)E[MN (f1)] +

1

β
µeqV (Ξ−1f0f

′
1)

+(
1

β
− 1

2
)E[(µ̂N − µeq

V )((Ξ−1f0)′)MN (f1)]

+
1

β
E[(µ̂N − µeqV )(Ξ−1f0f

′
1)] (58)

+
1

2N
E[

ˆ
Ξ−1f0(x)− Ξ−1f0(y)

x− y
dMN (x)dMN (y)MN (f1)]

The first line converges towards the desired limit. The second goes to zero as
soon as (Ξ−1f0)′ is C1and f1 is C4, as well as the third line. Finally, we can
bound the last term by using twice Lemma 4.23, Cauchy-Schwartz and the basic
concentration estimate once

|E[

ˆ
Ξ−1f0(x)− Ξ−1f0(y)

x− y
dMN (x)dMN (y)MN (f1)]|

≤ C(lnN)5/2
√
N

ˆ
dt| ̂(Ξ−1f0)t|‖f1‖C4 |t|6

≤ C(lnN)5/2
√
N‖Ξ−1f0‖C7‖f1|1/2C4

which once plugged into (58) yields the result. �

4.3.4 Central limit theorem

Theorem 4.27. Suppose that Assumption 4.21 holds with p ≥ 10. Let f be
Ck with k ≥ 9. Then MN (f) :=

∑N
i=1 f(λi)−Nµeq

V (f) converges in law under
PNβ,V towards a Gaussian variable with mean mV (f) and covariance σ(f) =

µeqV (f ′Ξ−1f) .

Observe that we have weaker assumptions on f than in Lemma 4.25. This
is because when we use the Dyson-Schwinger equations, we have to invert the
operator Ξ several times, hence requiring more and more smoothness of the test
function f . Using the change of variable formula instead allows to invert it only
once, hence lowering our requirements on the test function.

Proof. We can take f compactly supported by Theorem 4.11. We come back
to the proof of Lemma 4.23 but go one step further in Taylor expansion to see

65



that the function

ΛN (f) :=
β

N

∑
i<j

f(λi)− f(λj)

λi − λj
− β

2N2

∑
i<j

(
f(λi)− f(λj)

λi − λj

)2

−β
∑

V ′(λi)f
′(λi)

− β

2N

∑
V ′′(λi)(f(λi))

2 +
1

N

N∑
i=1

f ′(λi)

satisfies ∣∣∣∣lnˆ eΛN (f)dP β,VN

∣∣∣∣ ≤ C 1

N
‖f‖3C1

where the constant C may depend on the support of f . For any δ > 0, with
probability greater than 1− e−C(δ)N2

for some C(δ) > 0, the empirical measure
µ̂N is at Vasershtein distance smaller than δ from µeqV . On this set, for f C1

1

2N2

∑
i,j

(
f(λi)− f(λj)

λi − λj

)2

+
1

N

∑
V ′′(λi)(f(λi))

2 = C(f) +O(δ)

where

C(f) =
1

2

ˆ (
f(x)− f(y)

x− y

)2

dµeqV (x)dµeqV (y) +

ˆ
V ′′(x)f(x)2dµeqV (x)

whereas

1

N

N∑
i=1

f ′(λi) = M(f) + o(1), if M(f) =

ˆ
f ′(x)dµeqV (x) .

As ΛN (f) is at most of order N , we deduce by letting N and then δ going to
zero that

ZN (f) :=
β

2N

N∑
i,j=1

f(λi)− f(λj)

λi − λj
− β

∑
V ′(λi)f

′(λi)

satisfies for any f C1

lim
N→∞

ˆ
eZN (f)dP β,VN = e( β2−1)M(f)+ β

2C(f) .

In the line above we took into account that we added a diagonal term to ZN (f)
which contributed to the mean. We can now replace f by tf for real numbers
f and conclude that ZN (f) converges in law towards a Gaussian variable with
mean (β2 − 1)M(f) and covariance βC(f). On the other hand we can rewrite
ZN (f) as

ZN (f) = βMN (Ξf) + εN (f)
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where

εN (f) =
βN

2

ˆ
f(x)− f(y)

x− y
d(µ̂N − µeqV )(x)d(µ̂N − µeqV )(y)

Now, we can use Lemma 4.23 to bound the probability that εN (f) is greater
than some small δ. We again use the Fourier transform to write :

εN (f) =
βN

2

ˆ
(itf̂t)

ˆ 1

0

̂(µ̂N − µeqV )(1−α)t
̂(µ̂N − µeqV )αtdt .

We can bound the L1 norm of εN (f) by Cauchy-Schwartz inequality by

E[|εN (f)|] ≤ βN

2

ˆ
|tf̂t|
ˆ 1

0

E[| ̂(µ̂N − µeqV )(1−α)t|
2]1/2E[| ̂(µ̂N − µeqV )(1−α)t|

2]1/2dtdα .

Finally, Lemma 4.23 implies that

E[| ̂(µ̂N − µeqV )(1−α)t|
2]1/2 ≤ C|t|4 lnN

N
+N−C

from which we deduce that there exists a finite constant C

E[|εN (f)|] ≤ C
ˆ
|t|5|f̂t|dt

lnN2

N
.

Thus, the convergence in law of ZN (f) implies the convergence in law of
MN (Ξf) towards a Gaussian variable with covariance C(f) and mean ( 1

2 −
1
β )M(f). If f is C9, we can invert Ξ and conclude that MN (f) converges
towards a Gaussian variable with mean m(f) = ( 1

2 −
1
β )M(Ξ−1(f)) and co-

variance C(Ξ−1(f)). To identify the covariance, it is enough to show that
C(f) = µeqV ((Ξf)′f). But on the support of µeqV

(Ξf)′(x) = V ′′f(x) + PV

ˆ
f(x)− f(y)

(x− y)2
dµeqV (y)

from which the result follows.
�

4.4 Expansion of the partition function
Theorem 4.28. 1. For f C17 and V C20,

EPNβ,V [µ̂N (f)] = µeq
V (f) +

1

N
mV (f) +

1

N2
KV (f) + o(

1

N2
) ,

with mV (f) as in Theorem 4.25 and

KV (f) = (
1

β
−1

2
)mV (((Ξ−1f0)′)+

1

2

ˆ
itdt

ˆ
Ξ̂−1f(t)

ˆ 1

0

dαCV (eitα., eit(1−α).) .
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2. Assume V C20, then

lnZNβ,V = C0
βN lnN + C1

β lnN +N2F0(V ) +NF1(V ) + F2(V ) + o(1)

with C0
β = β

2 , C
1
β = 3+β/2+2/β

12 and

F0(V ) = −E(µeq
V )

F1(V ) = −(
β

2
− 1)

ˆ
ln
dµeq

V

dx
dµeq

V + f1 (59)

F2(V ) = −β
ˆ 1

0

KVα(V − V0)dα+ f2

where f1, f2 only depends on b− a, the width of the support of µeq
V .

Proof. The first order estimate comes from Theorem 4.25. To get the next term,
we notice that if Ξ−1f belongs to L1 we can use the Fourier transform of Ξ−1f
(which goes to infinity to zero faster than (|t|+ 1)−3 as Ξ−1f is C6) so that

E[

ˆ
Ξ−1f(x)− Ξ−1f(y)

x− y
dMN (x)dMN (y)]

=

ˆ
dtitΞ̂−1f(t)

ˆ 1

0

dαE[M̂N (eitα.)M̂N (eit(1−α).)]

'
ˆ
dtitΞ̂−1f(t)

ˆ 1

0

dαCV (eitα., eit(1−α).)

We can therefore use (56) to conclude that

N(E[MN (f)]−m(f)) ' (
1

β
− 1

2
)mV (((Ξ−1f)′)

+
1

2

ˆ
dtit

ˆ
Ξ̂−1f(t)

ˆ 1

0

dαCV (eitα., eit(1−α).)

which proves the first claim. We used that f is C12 so that (Ξ−1f)′ is C9 and
Theorem 4.25 for the convergence of the first term. For the second we notice that
the covariance is uniformly bounded by C(|t|12 + 1), so we can apply monotone
convergence theorem when

´
dt|Ξ̂−1f(t)||t|13 is finite, so f C16+.

To prove the second point, the idea is to proceed by interpolation from a
case where the partition function can be explicitly computed, that is where
V is quadratic. We interpolate V with a potential V0(x) = c(x − d)2/4 so
that the limiting equilibrium measure µc,d, which is a semi-circle law shifted
by d and enlarged by a factor

√
c, has support [a, b] (so d = (a + b)/2 and

c = (b − a)2/16). The advantage of keeping the same support is that the
potential Vα = αV +(1−α)V0 has equilibrium measure µα = αµeq

V +(1−α)µc,d
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since it satisfies the characterization of Lemma 4.5. We then write

ln
ZNβ,V
ZNβ,V0

=

ˆ 1

0

∂α lnZNβ,Vαdα

= −βN2

ˆ 1

0

EPNβ,Vα [µ̂N (V − V0)]dα

It is not hard to see that if µeq
V satisfy hypotheses 4.2, so does µα and that the

previous expansion can be shown to be uniform in α. Hence, we obtain the
expansion from the first point if V is C20 with

F0(V ) = −β
ˆ 1

0

µVα(V − V0)dα+ f0

F1(V ) = −β
ˆ 1

0

mVα(V − V0)dα+ f1

F2(V ) = −β
ˆ 1

0

KVα(V − V0)dα+ f2

where f0, f1, f2 are the coefficients in the expansion of Selberg integrals given
in [72] :

ZNV0,β = N
βN
2 N

3+β/2+2/β
12 eN

2f0+Nf1+f0+o(1)

with f0, f1, f2 only depending on b− a :

f0 = (β/2)
[
− 3

4
+ ln

(b− a
4

)]
f1 = (1− β/2) ln

(b− a
4

)
− 1/2− β/4 + (β/2) ln(β/2) + ln(2π)− ln Γ(1 + β/2)

f2 = χ′(0; 2/β, 1) +
ln(2π)

2

The first formula of Theorem 4.28 is clear from the large deviation principle and
the last is just what we proved in the first point. Let us show that the first order
correction is given in terms of the relative entropy as stated in (59). Indeed, by
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integration by part and Remark 4.26 we have

(
1

β
− 1

2
)−1mV (f) = µeq

V [(Ξ−1f)′]

= −
ˆ

Ξ−1f(
dµeq

V

dx
)′dx

= −
ˆ

Ξ−1f(ln
dµeq

V

dx
)′dµeq

V

= −
ˆ
f ′Ξ−1(ln

dµeq
V

dx
)dµeq

V

To complete our proof, we will first prove that if g is C10 ,

lim
s→0

s−1(µeq
V−sf − µ

eq
V )(g) = µeq

V (Ξ−1gf ′) . (60)

which implies the key estimate

(
1

β
− 1

2
)−1mV (f) = −

ˆ
f ′Ξ−1(ln

dµeq
V

dx
)dµeq

V = ∂tµV+tf (ln
dµeq

V

dx
)|t=0 . (61)

To prove (60), we first show that mV (f) =
´
f(x)dµV (x) is continuous in V in

the sense that

D(µV , µW ) ≤
√
‖V −W‖∞ . (62)

Indeed, by Lemma 4.5 applied to µ = µW and since
´
Veffd(µW − µV ) ≥ 0, we

have

D(µW , µV )2 ≤ E(µW )− E(µV )

≤ inf{
ˆ
Wdµ+

1

2
Σ(µ)} − inf{

ˆ
V dµ+

1

2
Σ(µ)}

≤ ‖W − V ‖∞

As a consequence (µeq
V−sf − µ

eq
V )(g) goes to zero like

√
s for g Lipschitz and f

bounded. We can in fact get a more accurate estimate by using the limiting
Dyson-Schwinger equation (52) to µeq

V−sf and µeq
V and take their difference to

get :

(µeq
V−sf − µeq

V )(ΞV g) = sµeq
V− s

βN f
(gf ′) (63)

+
1

2

ˆ
g(x)− g(y)

x− y
d(µV−sf − µeq

V )(x)d(µV−sf − µeq
V )(y) .

The last term is at most of order s if g is C2 by (62) (see a similar argument in
(50)), and so is the first. Hence we deduce from (63) that (µeq

V−sf − µ
eq
V )(g) is

of order s if g ∈ C4 and f is C5. Plugging back this estimate into the last term
in (63) together with (62), we get (60) for g ∈ C8 and f ∈ C9.

70



From (61), we deduce that

F1(V )− f1 = −β
ˆ 1

0

mVα(V − V0)dα

= (
β

2
− 1)

ˆ 1

0

(∂αµVα)(ln
dµeq

Vα

dx
)dα− (

β

2
− 1)

ˆ 1

0

µVα(∂α ln
dµeq

Vα

dx
)dα

= (
β

2
− 1)

ˆ 1

0

∂α[µVα(ln
dµeq

Vα

dx
)]dα

wich yields the result. Above in the second line the last term vanishes as
µeq
Vα

(1) = 1.
�

5 Discrete Beta-ensembles
We will consider discrete ensembles which are given by a parameter θ and a
weight function w :

P θ,wN (~̀) =
1

Zθ,ωN

∏
i<j

Iθ(`j − `i)
∏
i

w (`i, N)

where for x ≥ 0 we have set

Iθ(x) =
Γ(x+ 1)Γ(x+ θ)

Γ(x)Γ(x+ 1− θ)

where Γ is the usual Γ-function, Γ(n+ 1) = nΓ(n). The coordinates `1, . . . , `N
are discrete and belong to the set Wθ such that

`i+1 − `i ∈ {θ, θ + 1, . . .}

and `i ∈ (a(N), b(N)) with w(a(N), N) = w(b(N), N) = 0 and `1 − a(N) ∈
N, b(N)− `N ∈ N.

Example 5.1. When θ = 1 this probability measure arises in the setting of
lozenge tilings of the hexagon. More specifically, if one looks at a “slice” of the
hexagon with sides of size A,B,C, then the number of lozenges of a particu-
lar orientation is exactly N and the locations of these lozenges are distributed
according the P 1,ω

N . Along the vertical line at distance t of the vertical side of
size A (see Figure 1), the distribution of horizontal lozenges corresponds to a
potential of the form

w(`,N) =

[
(A+B + C + 1− t− `)t−B (`)t−C

]
,

where (a)n is the Pochhammer symbol, (a)n = a(a+ 1) · · · (a+ n− 1).
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A

B C

t

Figure 1: Lozenge tilings of a hexagon

More generally, as x→ +∞ the interaction term scales like :

Iθ(x) ≈ |x|2θ as x→∞

so the model for θ should be compared to the β ensemble model with β ↔ 2θ.
Note however that when θ 6= 1, the particles configuration do not live on ZN.
These discrete β-ensembles were studied in [13]. Large deviation estimates can
be generalized to the discrete setting but Dyson-Schwinger equations are not
easy to establish. Indeed, discrete integration by parts does not give closed
equations for our observables this time. A nice generalization was proposed
by Nekrasov that allows an analysis similar to the analysis we developed for
continuous β models. It amounts to show that some functions of the observables
are analytic, in fact thanks to the fact that its possible poles cancel due to
discrete integration by parts. We present this approach below.

5.1 Large deviations, law of large numbers
Let µ̂N be the empirical measure :

µ̂N =
1

N

N∑
i=1

δ`i/N

Assumption 5.2. Assume that a(N) = âN + O(lnN), b(N) = b̂N + O(lnN)

for some finite â, b̂ and the weight w(x,N) is given for x ∈ (a(N), b(N)) by :

w(x,N) = exp
(
−NVN

( x
N

))
where VN (u) = 2θV0(u) + 1

N eN (Nu). V0 is continuous on [â, b̂] and twice con-
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tinuously differentiable in (â, b̂). It satisfies

|V ′′0 (u)| ≤ C(1 +
1

|u− â|
+

1

|b̂− u)|
) .

eN is uniformly bounded on [a(N) + 1, b(N) − 1]/N by C lnN for some finite
constant C independent of N .

For the sake of simplicity, we define V0 to be constant outside of [â, b̂] and
continuous at the boundary.

Example 5.3. In the setting of lozenge tilings of the hexagon of Example 5.1
we assume that for large N

A = ÂN +O(1), B = B̂N +O(1), C = ĈN +O(1), t = t̂N +O(1)

with t̂ > max{B̂, Ĉ}. Then a(N) = 0, b(N) = A+B+C + 1− t obey â = 0, b̂ =
Â+ B̂ + Ĉ − t̂. Moreover, the potential satisfies our hypothesis with

V0(u) = u lnu+ (Â+ B̂ + Ĉ − t̂− u) ln(Â+ B̂ + Ĉ − t̂− u)

−(Â+ Ĉ − u) ln(Â+ Ĉ − u)− (t̂− Ĉ + u) ln(t̂− Ĉ + u)

Notice that VN is infinite at the boundary since w vanishes. However, particles
stay at distance at least 1/N of the boundary and therefore up to an error of
order 1/N , we can approximate VN by V0.

Theorem 5.4. If Assumption 5.2 holds, the empirical measure converges almost
surely :

µ̂N → µV0

where µV0
is the equilibrium measure for V0. It is the unique minimizer of the

energy

E(µ) =

ˆ (
1

2
V0(x) +

1

2
V0(y)− 1

2
ln |x− y|

)
dµ(x)dµ(y)

subject to the constraint that µ is a probability measure on [â, b̂] with density
with respect to Lebesgue measure bounded by θ−1.

Remark 5.5. We have already seen that E is a strictly convex good rate function
on the set of probability measures on [â, b̂], see (34). To see that it achieves its
minimal value at a unique minimizer, it is therefore enough to show that we
are minimizing this function on a closed convex set. But the set of probability
measures on [â, b̂] with density bounded by 1/θ is clearly convex. It can be seen
to be closed as it is characterized as the countable intersection of closed sets
given as the set of probability measures on [â, b̂] so that∣∣∣∣ˆ f(x)dµ(x)

∣∣∣∣ ≤ ‖f‖1θ
for bounded continuous function f on [â, b̂] so that ‖f‖1 =

´
|f(x)|dx <∞.
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The case where â, b̂ are infinite can also be considered [13]. This result can
be deduced from a large deviation principle similar to the continuous case [35] :

Theorem 5.6. If Assumption 5.2 holds, the law of µ̂N under P θ,wN satisfies a
large deviation principle in the scale N2 with good rate function I which is infi-
nite outside of the set Pθ of probability measures on [â, b̂] absolutely continuous
with respect to the Lebesgue measure and with density bounded by 1/θ, and given
on Pθ by

I(µ) = 2θ(E(µ)− inf
Pθ
E) .

Proof. The proofs are very similar to the continuous case, we only sketch the
differences. In this discrete framework, because the particles have spacings
bounded below by θ, we have, for all x < y,

θ#{i : `i ∈ N [x, y]} ≤ (y − x)N + θ

so that
µ̂N ([x, y]) ≤ |y − x|

θ
+

1

N
.

In particular, µ̂N can only deviate towards probability measures in Pθ. The
proof of the large deviation upper bound is then exactly the same as in the
continuous case. For the lower bound, the proof is similar and boils down
to concentrate the particles very close to the quantiles of the measure towards
which the empirical measure deviates : one just need to find such a configuration
in Wθ. We refer the reader to [35].

In particular in the limit we will have :

dµeq
V

dx
≤ 1

θ

The variational problem defining µeq
V in this case takes this bound into ac-

count. Noticing that E(µeq
V +tν) ≥ E(µeq

V ) for all ν with zero mass, non-negative
outside the support of µeq

V and non-positive in the region where dµeq
V = θ−1dx,

the characterization of the equilibrium measure is that ∃CV s.t. if we define :

Veff(x) = V0(x)−
ˆ

ln(|x− y|)dµeq
V (y)− CV

and Veff satisfies : 
Veff(x) = 0 on 0 <

dµeq
V

dx < 1
θ

Veff(x) ≥ 0 on dµ
dx = 0

Veff(x) ≤ 0 on dµ
dx = 1

θ

The analysis of the large deviation principle and concentration are the same as
in the continuous β ensemble case otherwise. �
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5.2 Concentration of measure
As in the continuous case we consider the pseudo- distance D (4.12) and the
regularization of the empirical measure µ̃N given by the convolution of µ̂N with
a uniform variable on [0, θN ] (to keep measures with density bounded by 1/θ).
We then have as in the continuous case

Lemma 5.7. Assume V0 is C1. There exists C finite such that for all t ≥ 0

P θ,ωN (D(µ̃N , µV0
) ≥ t) ≤ eCN lnN−N2t2

As a consequence, for any N ∈ N, any ε > 0

P θ,ωN

(
sup

z:=z≥ε

∣∣∣∣ˆ 1

z − x
d(µ̂N − µV0

)(x)

∣∣∣∣ ≥ t

ε2
+

1

ε2N

)
≤ eCN lnN−N2t2

Proof. We set Qθ,ωN (`) = N−θN
2

Zθ,ωN P θ,ωN (`) and set for a configuration `,
E(`) := E(µ̂N ),

E(`) =
1

N

N∑
i=1

V0(
`i
N

)− 2θ

N2

∑
i<j

ln | `i
N
− `j
N
| .

• We first show that Qθ,ωN (`) = e−N
22θE(`)+O(N lnN). Indeed, Stirling for-

mula shows that ln Γ(x) = x lnx − x − ln
√

2πx + O( 1
x ), which implies

that ∏
i<j

Γ(`j − `i + 1)Γ(`j − `i + θ)

Γ(`j − `i)Γ(`j − `i + 1− θ)
=
∏
i<j

|`j − `i|2θe
O(

∑
i<j

1
`j−`i

)

with
∑
i<j

1
(`j−`i) = O(N lnN) as `j − `i ≥ θ(j − i). Similarly, by our

assumption on VN , for all configuration ` so that `1 6= a(N) and `N 6=
a(N), we have :

1

N

N∑
i=1

VN (
`i
N

) =
1

N

N∑
i=1

V0(
`i
N

) +O(
lnN

N
) .

Hence we deduce that for any configuration with positive probability :

Qθ,ωN (`) = e−N
22θE(`)+O(N lnN) (64)

• We have the lower bound N−θN
2

Zθ,ωN ≥ e−N
22θE(µV0 )+CN lnN . To prove

this bound we simply have to choose a configuration matching this lower
bound. We let (qi)1≤i≤N be the quantiles of µV0 so that

µV0
([â, qi]) =

i− 1/2

N
.
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Then we set

Qi = a(N) + θ(i− 1) + bNqi − a(N)− (i− 1)θc

Because the density of µV0
is bounded by 1/θ, qi+1 − qi ≥ θ and there-

fore Qi+1 − Qi ≥ θ. Moreover, Q1 − a(N) is an integer. Hence, Q is a
configuration. We have by the previous point that

N−θN
2

Zθ,ωN ≥ e−N
22θE(Q)+O(N lnN) (65)

We finally can compare E(Q) to E(µV0). Indeed, by definition Qi ∈
[Nqi, Nqi + 1] and Qi −Qj ≥ θ(i− j), so that∑
i<j

ln |Qi −Qj
N

| ≥
∑

i+[ 2θ ]<j

ln |Qi −Qj
N

|+O(N lnN)

≥
∑

i+[ 2θ ]<j

ln |qj − qi −
1

N
|+O(N lnN)

=
∑

i+[ 2θ ]<j

ln |qj − qi|+O(N lnN)

≥ N2
∑

i+[ 2θ ]<j

ˆ qj

qj−1

ˆ qi+1

qi

ln |x− y|dµV0
(x)dµV0

(y) +O(N lnN)

≥ N2

ˆ
x<y

ln |x− y|dµV0
(x)dµV0

(y) +O(N lnN)

where we used that the logarithm is monotone and the density of µV0

uniformly bounded by 1/θ.

Moreover

|
∑
i

(
1

N
V0(

Qi
N

)−
ˆ qi+1

qi

V0(x)dµV0
(x)

)
| ≤ C

∑
i

ˆ qi+1

qi

(|Qi
N
−qi|+|qi+1−qi|)dµV0

is bounded by C ′/N .

We conclude that
E(Q) ≤ E(µV0

) +O(
lnN

N
)

so that we deduce the announced bound from (65).

• We then show that Qθ,ωN (`) = e−N
22θE(µ̃N )+O(N lnN). We start from (64)

and need to show we can replace the empirical measure of µ̂N by µ̃N and
then add the diagonal term i = j up to an error of order N lnN . Indeed,
if u, v are two independent uniform variables on [0, θ], independent of `,∑

i 6=j

ln | `i
N
− `j
N
| −
∑
i,j

E[ln | `i
N
− `j
N

+
u− v
N
|]

76



= −
∑
i

E[ln |u− v
N
|] +O(

∑
i<j

1

`j − `i
) = O(N lnN)

whereas
1

N

N∑
i=1

(V0(
`i
N

)− E[V0(
`i
N

+
u

N
)]) = O(

lnN

N
)

• P θ,ωN (`) ≤ e−N22θD2(µ̃N ,µV0 )+O(N lnN).

We can now write

E(µ̃N ) = E(µV0
) +

ˆ
Veff (x)d(µ̃N − µV0

)(x) +D2(µ̃N , µV0
)

D2 is indeed positive as µ̃N and µV0
have the same mass. Veff (x) vanishes

on the liquid regions of µV0 , is non-negative on the voids where µ̃N − µV0

is non-negative, and non positive on the frozen regions where µ̃N − µV0

is non-negative since µ̃N has density bounded by 1/θ. Hence we conclude
that ˆ

[â,b̂]

Veff (x)d(µ̃N − µV0)(x) ≥ 0 .

On the other hand the effective potential is bounded and so our assumption
on a(N)−Nâ implies

N2

ˆ
[â,b̂]c

Veff (x)d(µ̃N − µV0
)(x) = O(N lnN) .

Hence, we can conclude by the previous two points.

�

5.3 Nekrasov’s equations
The analysis of the central limit theorem is a bit different than for the continuous
β ensemble case. Introduce :

GN (z) =
1

N

N∑
i=1

1

z − `i
N

G(z) =

ˆ
1

z − x
dµeq

V (x) .

We want to study the fluctuations of {N(GN (z)−G(z))}. To this end, we
would like an analogue of Dyson-Schwinger equations in this discrete setting.
The candidate given by discrete integration by parts is not suited to asymptotic
analysis as it yields densities which depend on

∏
(1 + (`i − `j)−1) which is not

a function of µ̂N . In this case the analysis goes by the Nekrasov’s equations
which Nekrasov calls “non-perturbative” Dyson-Schwinger equations. Assume
that we can write :
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Assumption 5.8.
w(x,N)

w(x− 1, N)
=
φ+
N (x)

φ−N (x)

where φ±N are analytic functions in some subset M of the complex plane which
includes [a(N), b(N)] and independent of N .

Example 5.9. In the example of random lozenge tilings of Example 5.1 we can
take

φ+
N (z) =

1

N2
(t− C + z)(A+B + C − t− z), φ−N (z) =

1

N2
z(A+ C − z).

With these defined, Nekrasov’s equation is the following statement.

Theorem 5.10. If Assumption 5.8 holds

RN (ξ) = φ−N (ξ)EP θ,wN

[
N∏
i=1

(
1− θ

ξ − `i

)]
+φ+

N (ξ)EP θ,wN

[
N∏
i=1

(
1 +

θ

ξ − `i − 1

)]

is analytic inM.

Proof. In fact this can be checked by looking at the poles of the right hand side
and showing that the residues vanish. Noting that there is a residue when ξ = `i
or `i − 1 we find that the residue at ξ = m is

−θφ−N (m)
∑
i

∑
`i=m

P θ,wN (`1, .., `i−1,m, `i+1, . . . , `N )

 N∏
j 6=i

(
1− θ

m− `j

)

+θφ+
N (m)

∑
i

∑
`i=m−1

P θ,wN (`1, .., `i−1,m−1, `i+1, . . . , `N )

 N∏
j 6=i

(
1 +

θ

m− `j − 1

) .
If m = a(N) + 1 the second term vanish since the configuration space is such
that `i > a(N) for all i, whereas φ−N (a(N) + 1) = 0. Hence both term vanish.
The same holds at b(N) and therefore we now consider m ∈ (a(N) + 1, b(N)).
Similarly, a configuration where `i = m implies that `i−1 ≤ m − θ whereas
`i = m − 1 implies `i−1 ≤ m − 1 − θ. However, the first term vanishes when
`i−1 = m− θ. Hence, in both sums we may consider only configurations where
`i−1 ≤ m − 1 − θ. The same holds for `i+1 ≥ m + θ. Then notice that if ` is
a configuration such that when we shift `i by one we still have a configuration,
our specific choice of weight w and interaction with the function Γ imply that

φ−N (m)P θ,wN (`1, ..,m, `i+1, . . . , `N )

 N∏
j 6=i

(
1− θ

m− `j

)
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= φ+
N (m)P θ,wN (`1, ..,m− 1, `i+1, . . . , `N )

 N∏
j 6=i

(
1 +

θ

m− `j − 1

) .
On the other hand a configuration such that when we shift the ith particle by
one we do not get an admissible configuration has residue zero. Hence, we find
that the residue at ξ = `i and `i − 1 vanishes. �

Nekrasov’s equation a priori still contains the analytic function RN as an
unknown. However, we shall see that it can be asymptotically determined based
on the sole fact that it is analytic, provided the equilibrium measure is off-
critical.

Assumption 5.11. Uniformly inM,

φ±N (z) =: φ±(
z

N
) +

1

N
φ±1 (

z

N
) +O(

1

N2
)

Observe here that φ±1 may depend on N and be oscillatory in the sense that
it may depend on the boundary point. For instance, in the case of binomial
weights, φ+

N (x) = (M+1
N − x), φ−N (x) = x, we see that if M/N goes to m,

φ−(x) = x and φ−1 (x) = 0, but

φ+(x) = m− x, φ+
1 (x) = M + 1−Nm

where the latter may oscillate, even if it is bounded. We will however hide
this default of convergence in the notations. The main point is to assume the
functions in the expansion are bounded uniformly in N and z ∈M.

Example 5.12. With the example of lozenge tiling, we have

φ+(z) = (t̂− Ĉ + z)(Â+ B̂ + Ĉ − t− z), φ−(z) = z(Â+ Ĉ − z).

whereas if ∆D = D − LD̂,

φ+
1 (x) = x(∆t−∆C + ∆A+ ∆B + ∆C −∆t), φ−1 (x) =

N

L
x(∆A+ ∆C) .

To analyze the asymptotics of GN , we expand the Nekrasov’s equations
around the equilibrium limit. We set ξ = Nz for z ∈ C\R. Since we know by
Lemma 5.7 that ∆GN (z) = GN (z) − G(z) is small (away from [a, b]), we can
expand the Nekrasov’s equation of Lemma 5.10 to get :

RN (ξ) = Rµ(z)− θQµ(z)E [∆GN (z)] +
1

N
Eµ(z) + Γµ(z) (66)

where we have set :

Rµ(z) := φ−(z)e−θG(z) + φ+(z)eθG(z)

Qµ(z) := φ−(z)e−θG(z) − φ+(z)eθG(z)

Eµ(z) := φ−(z)e−θG(z) θ
2

2
∂zG(z) + φ+(z)eθG(z)

(
θ2

2
− θ
)
∂zG(z)

+φ−1 (z)e−θG(z) + φ+
1 (z)eθG(z) .
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Γµ is the reminder term given by (66) which basically is bounded on {=z ≥
ε} ∩M by

|Γµ(z)| ≤ C(ε)

(
E[|∆GN (z)|2] +

1

N
|∂zE[∆GN (z)]|+ o(

1

N
)

)
The a priori concentration inequalities of Lemma 5.7 show that Γµ(z) = O(lnN/N).
We deduce by taking the large N limit that Rµ is analytic in M and we set
R̃µ = RN −Rµ.

Let us assume for a moment that we have the stronger control on Γµ

Lemma 5.13. For any ε > 0,

E[|∆GN (z)|2] +
1

N
|∂zE[∆GN (z)]| = o(

1

N
)

uniformly onM∩ {|=z| ≥ ε}.

Let us deduce the asymptotics of NE[∆GN (z)]. To do that let us assume
we are in a off-critical situation in the sense that

Assumption 5.14.

θQµ(z) =
√

(z − a)(b− z)H(z) =: σ(z)H(z)

where H does not vanish inM.

Remark 5.15. Observe that if ρ is the density of the equilibrium measure,

e2iπθρ(E) =
Rµ(E) +Qµ(E − i0)

Rµ(E) +Qµ(E + i0)
.

Our assumption implies therefore that ρ(E) = 0 or 1/θ outside [a, b] and goes to
these values as a square root. There is a unique liquid region, where the density
takes values in (0, 1/θ), it is exactly [a, b].

We now proceed with similar techniques as in the β ensemble case, to take
advantage of equation (66) as we used the Dyson-Schwinger equation before.

Lemma 5.16. If Assumption 5.14 holds, for any z ∈M\R,

E[N∆GN (z)] = m(z) + o(1) (67)

with m(z) = K−1Eµ(z) where

K−1f(z) =
1

2iπσ(z)

˛
[a,b]

1

ξ − z
1

H(ξ)
f(ξ)dξ .

Remark 5.17. If we compare to the continuous setting, K is the operator of
multiplication by θQµ(z) whereas in the continuous case it was multiplication
by β dµdx = G(z)− V ′(z). Choosing φ+(z) = e−V

′(z)/2, φ−(z) = e+V ′(z)/2 we see
that Qµ(z) = sinh(θGµ−V ′(z)/2) is the hyperbolic sinus of the density. Hence,
the discrete and continuous master operators can be compared up to take a sinh.
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Proof. To get the next order correction we look at (66) :

θQµ(z)E [∆GN (z)] =
1

N
Eµ(z)− R̃µ(z) + Γµ(z)

We can then rewrite as a contour integral for z ∈M :

σ(z)E [∆GN (z)] =
1

2iπ

˛
z

1

ξ − z
[σ(ξ)E [∆GN (ξ)]]dξ

=
1

2iπ

˛
[a,b]

1

ξ − z
1

H(ξ)

[
1

N
Eµ(ξ)− R̃µ(ξ) + Γµ(ξ)

]
dξ

=
1

2iπ

˛
[a,b]

1

ξ − z
1

H(ξ)

[
1

N
Eµ(ξ)

]
dξ + o

(
1

N

)

where we used that σ∆GN goes to zero like 1/z to deduce that there is no
residue at infinity so that we can move the contour to a neighborhood of [a, b],
that R̃µ/H is analytic in a neighborhood of [a, b] to remove its contour integral,
and assumed Lemma 5.13 holds to bound the reminder term, as the integral is
bounded independently of N . �

Remark 5.18. The previous proof shows, without Lemma 5.13, that E[∆GN (z)]
is at most of order lnN/N sin Γµ is at most of this order by basic concentration
estimates.

We finally prove Lemma 5.13. To do so, it is enough to bound E[|∆GN (z)|2]
by o(1/N) uniformly on M∩ {|=z| ≥ ε/2} by analyticity. Note that Lemma
5.7 already implies that this is of order lnN/N . To improve this bound, we get
an equation for the covariance. To get such an equation we replace the weight
w(x,N) by

wt(x,N) = w(x,N)

(
1 +

t

z′ − x/N

)
for t very small. This changes the functions φ±N by

φ+,t
N (x) = φ+

N (x) (z′ − x/N + t)

(
z′ − x/N +

1

N

)
,

φ−,tN (x) = φ−N (x) (z′ − x/N)

(
z′ − x/N + t+

1

N

)
.

We can apply the Nekrasov’s equations to this new measure for t small enough
(so that the new weights wt does not vanish for z′ ∈M) to deduce that

RtN (ξ) = φ−,tN (ξ)E
P
θ,wt
N

[
N∏
i=1

(
1− θ

ξ − `i

)]
+φ+,t

N (ξ)E
P
θ,wt
N

[
N∏
i=1

(
1 +

θ

ξ − `i − 1

)]
(68)
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is analytic. We start expanding with respect to N by writing

φ±,tN (Nx)/(z′ − x)(t+ z′ − x) = (φ±(x) +
1

N
φ±,t1 (x) + o(

1

N
))

with

φ+,t
1 (x) = φ+

1 (x) +
φ+(x)

z′ − x
, φ−,t1 (x) = φ−1 (x) +

φ−(x)

t+ z′ − x
.

We set
R̃tN (x) = (RtN (Nx)−Rµ(x))/(z′ − x)(t+ z′ − x)

which is analytic up to a correction which is o(1/N) and analytic away from z′

in a neighborhood of which it has two simple poles. We divide both sides of
Nekrasov equation by (z′ − x)(t + z′ − x), and take ξ = Nz and again using
Lemma 5.7, we deduce that

θQµ(z)Eθ,wtPN
[∆GN (z)] = R̃tN (z) +

1

N
Etµ(z) + Γtµ(z) (69)

where

Etµ(z) = Eµ(z) +
φ+(z)

z′ − z
eθG(z) +

φ−(z)

t+ z′ − z
e−θG(z)

and Γtµ(z) is a reminder term. It is the sum of the reminder term coming from
(66) and the error term coming from the expansion of φ±,t. The latter has single
poles at z′ and z′+ t and is bounded by 1/N2. We can invert the multiplication
by Qµ as before to conclude (taking a contour which does not include z′ so that
R̃tN stays analytic inside) that

E
P
θ,wt
N

[∆GN (z)] = K−1[
1

N
Etµ + Γtµ](z) + o(

1

N
) ,

where we noticed that the residues of εN are of order one.
We finally differentiate with respect to t and take t = 0 (note therefore that

we need no estimates under the tilted measure P θ,wtN , but only those take at
t = 0 where we have an honest probability measure). Noticing that the operator
K does not depend on t, we obtain, with ∆̄GN (z′) = GN (z′)− E[GN (z′)] :

N2EP θ,wN
[
∆GN (z)∆̄GN (z′)

]
= −K−1[

φ−(.)

(z′ − .)2
e−θG(.)](z)+NK−1[∂tΓ

t
µ|t=0](z)

(70)
It is not difficult to see by a careful expansion in Nekrasov’s equation (68) that

|∂tΓtµ(z)|t=0| ≤ C(ε)

(
NE[|∆GN (z)|2|∆̄GN (z′)|] (71)

+|∂zE[∆GN (z)∆̄GN (z′)]|+ 1

N
E[|∆̄GN (z′)|]

)
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By Lemma 5.7, it is at most of order (lnN)3/
√
N so that we proved

N2EP θ,wN
[
∆GN (z)∆̄GN (z′)

]
= −K−1[

φ−(.)

(z′ − .)2
e−θG(.)](z) +O((lnN)3

√
N)

(72)
This shows by taking z′ = z̄ that for =z ≥ ε

E[|N∆GN (z)|2] ≤ (lnN)3
√
N . (73)

We note here that ∆GN (z) and ∆̄GN (z) only differ by lnN/N by Remark 5.18.
This completes the proof of Lemma 5.13.

We derive the central limit theorem in the same spirit.

Theorem 5.19. If Assumption 5.14 holds, for any z1, . . . , zk ∈M\R, (N∆GN (z1)−
m(z1), . . . , N∆GN (zk) − m(zk)) converges in distribution towards a centered
Gaussian vector with covariance

C(z, z′) = −K−1[
φ−(.)

(z′ − .)2
e−θG(.)](z)

Remark 5.20. It was shown in [13] that the above covariance is the same than
for random matrices and is given by

C(z, w) =
1

(z − w)2

(
1−

zw − 1
2 (a+ b)(z + w) + ab√

(z − a)(z − b)
√

(w − a)(w − b)

)
.

It only depends on the end points and therefore is the same than for continuous
β ensembles with equilibrium measure with same end points. However notice
that the mean given in (76) is different.

Proof. We first prove the convergence of the covariance by improving the esti-
mates on the reminder term in (70) by a bootstrap procedure. It is enough to
improve the estimate on ∂tΓµ according to (70). But already, our new bound
on the covariance (73) and Lemma 5.7 allow to bound the right hand side of
(71) by (lnN)4/N . This allows to improve the estimate on the covariance as in
the previous proof and we get :

E[|N∆GN (z)|2] ≤ C(ε)(lnN)4 . (74)

In turn, we can again improve the estimate on |∂tΓµ(z)| since we now can
bound the right hand side of (71) by (lnN)5N−1/2, which implies the desired
convergence of E[∆GN (z)∆GN (z′)] towards C(z, z′).

To derive the central limit theorem it is enough to show that the cumulants
of degree higher than two vanish. To do so we replace the weight w(x,N) by

wt(x,N) = w(x,N)

p∏
i=1

(
1 +

ti
zi − x/N

)
.
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The cumulants are then given by

N∂t1∂t2 · · · ∂tpEP θ,wtN
[∆GN (z)] |t1=t2=···=tp=0 .

Indeed, recall that the cumulant of N∆̄GN (z1), . . . N∆̄GN (zp) is given by

∂t1 · · · ∂tp lnE
P
θ,wt
N

[exp{N
p∑
i=1

tiGN (zi)}]|t1=t2=···=tp=0

which is also given by

∂t2 · · · ∂tp lnE
P
θ,wt
N

[N∆̄GN (z1)]|t1=t2=···=tp=0 .

Noticing that E
P
θ,wt
N

[∆̄GN (z)−∆GN (z)] is independent of t, we conclude that
it is enough to show that

N∂t1∂t2 · · · ∂tpEP θ,wtN
[∆GN (z)] |t1=t2=···=tp=0

goes to zero for p ≥ 2. In fact, we can perform an analysis similar to the previous
one. This changes the functions φ±N by

φ+,t
N (x) = φ+

N (z)

p∏
i=1

(zi − x/N + ti) , φ
−,t
N (x) = φ−N (z)

p∏
i=1

(zi − x/N) .

We can apply the Nekrasov’s equations to this new measure for ti small enough
(so that the new weights do not vanish) to deduce that

RtN (ξ) = φ−,tN (ξ)E
P
θ,wt
N

[
N∏
i=1

(
1− θ

ξ − `i

)]
+ φ+,t

N (ξ)E
P
θ,wt
N

[
N∏
i=1

(
1 +

θ

ξ − `i − 1

)]
(75)

is analytic. Expanding in N we deduce that

E
P
θ,wt
N

[∆GN (z)] = K−1[
1

N
Etµ(z) + Γtµ(z)]

where

Etµ(z) = Eµ(z) +

p∑
i=1

φ+(x)

zi − x
eθG(z) +

p∑
i=1

φ−(x)

ti + zi − x
e−θG(z)

and

|∂t1 · · · ∂tpΓtµ|ti=0(z)| ≤ C(ε)

(
E
[
(|∆GN (z)|2 +

1

N2
)
∏
|N∆̄GN (zi)||

]

+
1

N
|∂zE[∆GN (z)

∏
N∆̄GN (zi)]|

)
.
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The contour in the definition of K−1 includes z and [a, b] but not the zi’s.
Taking the derivative with respect to t1, . . . , tp at zero we see that for p ≥ 1

∂t1∂t2 · · · ∂tpEP θ,wtN
[N∆GN (z)] = K−1[∂t1∂t2 · · · ∂tpNΓtµ(z)]

where we used that the operator K is independent of t. We finally need to show
that the right hand side goes to zero. It will, provided we show that for all p ∈ N,
all z1, . . . , zp ∈M\[A,B] there exists C depending only on min d(zi, [A,B]) and
p such that ∣∣∣∣∣E[

p∏
i=1

N∆GN (zi)]

∣∣∣∣∣ ≤ C(lnN)3p .

This provides also bounds on E[|∆GN (z)|p] when p is even. Indeed ∂t2 · · · ∂tpNΓtµ(z)
can be bounded by a combination of such moments. We can prove this by induc-
tion over p. By our previous bound on the covariance, we have already proved
this result for p = 2 by (74). Let us assume we obtained this bound for all
` ≤ p for some p ≥ 2. To get bounds on moments of correlators of order p+ 1,
let us notice that |∂t1∂t2 · · · ∂tpNΓtµ|t=0 is at most of order (lnN)3p+2 if p is
even by the induction hypothesis and Lemma 5.7(by bounding uniformly the
Stieltjes functions depending on z). This is enough to conclude. If p is odd, we
can only get bounds on moments of modulus of the Stieltjes transform of order
p−1. We do that and bound also the Stieltjes transform depending on the argu-
ment z1 by using Lemma 5.7. We then get a bound of order (lnN)3p+3

√
N for

|∂t1∂t2 · · · ∂tpNΓtµ|t=0. This provides a similar bound for the correlators of order
p+1, which is now even. Using Hölder inequality back on the previous estimate
and Lemma 5.7 on at most one term, we finally bound |∂t1∂t2 · · · ∂tpNΓtµ|t=0 by
(lnN)3(p+1) which concludes the argument.

�

5.4 Second order expansion of linear statistics
In this section we show how to expand the expectation of linear statistics one
step further. To this end we need to assume that φ±N expands to the next order.

Assumption 5.21. Uniformly inM,

φ±N (z) =: φ±(z) +
1

N
φ±1 (z) +

1

N2
φ±2 (z) +O(

1

N3
)

Lemma 5.22. Suppose Assumption 5.21 holds. Then,

lim
N→∞

E[N2∆GN (z)−Nm(z)]− r(z) = 0 (76)
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with r(z) = K−1Fµ(z) where

Fµ(z) = φ−(z)e−θG(z)

(
θ2

2
∂zm(z)− θ3

3
∂2
zG(z) +

θ2

2
[C(z, z) + (

θ

2
∂zG(z) +m(z))2]

)
+φ−1 (z)e−θG(z)

(
θ2

2
∂zG(z)− θm(z)

)
+ φ−2 (z)e−θG(z)

+φ+(z)eθG(z)

(
(
θ2

2
− θ)∂zm(z) + (

θ3

3
+ θ − θ2

2
)∂2
zG(z)

+
θ2

2
[(m(z)− 2− θ

2
∂zG(z))2 + C(z, z)]

)
+φ+

1 (z)eθG(z)[θm(z) + (
θ2

2
− θ)∂zG(z)] + φ−2 (z)eθG(z)

Proof. The proof is as before to show that

θQµ(z)E [∆GN (z)] =
1

N
Eµ(z) +

1

N2
Fµ(z) + R̃Nµ (z) + o

(
1

N2

)
by using Nekrasov’s equation of Theorem 5.10, expanding the exponentials and
using Lemmas 5.19 and 5.16. We then apply K−1 on both sides to conclude.

�

5.5 Expansion of the partition function
To expand the partition function in the spirit of what we did in the continuous
case, we need to compare our partition function to one we know. In the con-
tinuous case, Selberg integrals were computed by Selberg. In the discrete case
it turns out we can compute the partition function of binomial Jack measure
[13] which corresponds to the choice of weight depending on two positive real
parameters α, β > 0 given by :

wJ(`) = (αβθ)`
Γ(M + θ(N − 1) + 3

2 )

Γ(`+ 1)Γ(M + θ(N − 1) + 1− `)
(77)

Then, the partition function can be computed explicitely and we find (see the
work in progress with Borot and Gorin) :

Theorem 5.23. With summation going over (`1, . . . , `N ) satisfying `1 ∈ Z≥0

and `i+1 − `i ∈ {θ, θ + 1, θ + 2, . . .}, i ∈ {1, . . . , N − 1}, we have

ZJN =
∑ ∏

1≤i<j≤N

1

N2θ

Γ(`i+1 − `i + 1)Γ(`i+1 − `i + θ)

Γ(`i+1 − `i)Γ(`i+1 − `i + 1− θ)

N∏
i=1

wJ(`i)

= (1 + αβθ)MN (
αβθ

N2
)θ
N(N−1)

2

N∏
i=1

Γ(θ(N + 1− i))Γ(M + θ(N − 1) + 3
2 )

Γ(θ)Γ(M + 1 + θ(i− 1))
.
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On the other hand, the equilibrium measure µJ for this model can be com-
puted and we find that if MN → (m− θ) and q = αβθ, there exists α, β ∈ (0,m)
so that µJ has density equal to 0 or 1/θ outside (α, β), and in the liquid region
(α, β) the density is given by :

µJ(x) =
1

πθ
arccot

(
x(1− q) + qm− qθ − θ√

((x(1− q) + qm− qθ − θ))2 + 4xq(m− x)

)
,

where arccot is the reciprocal of the cotangent function. Therefore, depending
on the choices of the parameters, the behavior of µJ(x) as x varies from 0 to m
is given by the following four scenarios (it is easy to see that all four do happen)

• Near zero µJ(x) = 0, then 0 < µJ(x) < θ−1, then µJ(x) = θ−1 near m;

• Near zero µJ(x) = θ−1, then 0 < µJ(x) < θ−1, then µJ(x) = θ−1 near m;

• Near zero µJ(x) = 0, then 0 < µJ(x) < θ−1, then µJ(x) = 0 near m;

• Near zero µJ(x) = θ−1, then 0 < µJ(x) < θ−1, then µJ(x) = 0 near m.

We want to interpolate our model with weight w with a Jack binomial model
with weight wJ . To this end we would like to consider a model with the same
liquid/frozen/void regions so that the model with weight wtw1−t

J , t ∈ [0, 1],
corresponds to an equilibrium measure with the same liquid/frozen/void regions
and an equilibrium measure given by the interpolation between both equilibrium
measure. However, doing that we may have problems to satisfy the conditions of
Nekrasov’s equations if w/wJ may vanish or blow up. It is possible to circumvent
this point by proving that the boundary points are frozen with overwhelming
probability, hence allowing more freedom with the boundary point. In these
lecture notes, we will not go to this technicality.

Theorem 5.24. Assume there exists M, q so that ln(w/wJ) is approximated,
uniformly on [â, b̂] by

ln
w

wj
(Nx) = −N(V − VJ)(x) + ∆1V (x) +

1

N
∆2V (x) + o(

1

N
) .

where V −VJ and ∆1V are analytic inM, whereas ∆2V is bounded continuous
on [â, b̂]. Assume moreover that φ±N satisfies Assumption 5.14. Then, we have

ln
Zθ,wN
ZJN

= −N2F0(θ, V ) +NF1(θ, w) + F0(θ, w) + o(1)

with

F0(θ, V ) = −2θE(µ) + 2θE(µJ)

F1(θ, V ) =
1

2πi

ˆ 1

0

ˆ
C

(VJ − V )(z)mt(z)dt+
1

2πi

ˆ 1

0

ˆ
C

∆1V (z)Gt(z)dt

F2(θ, V ) =
1

2πi

ˆ 1

0

ˆ
C

((VJ − V )(z)rt(z) + ∆1V (z)mt(z) + ∆2V (z)Gt(z)) dzdt
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Proof. We consider P θ,wtN the discrete β model with weight wtw1−t
J . We have

ln
Zθ,wN
ZJN

=

ˆ 1

0

P θ,wtN (
∑
i

ln
w

wJ
(`i))dt

=

ˆ 1

0

P θ,wtN (µ̂N
(
N2(VJ − V ) +N∆1V + ∆2V

)
)dt+ o(1) .

Denote µt the equilibrium measure for wtw1−t
J . Clearly

lim
N→∞

ˆ 1

0

P θ,wtN (µ̂N (∆2V ))dt =

ˆ 1

0

µt (∆2V ) dt .

For the first two terms we use the analyticity of the potentials and Cauchy
formula to express everything in terms of Stieltjes functions

ˆ 1

0

P θ,wtN (µ̂N
(
N2(VJ − V ) +N∆1V

)
)dt

=
1

2πi

ˆ 1

0

ˆ
C

(
N2(VJ − V ) +N∆1V

)
(z)P θ,wtN (GN (z))dzdt .

We then use Lemma 5.22 since all our assumptions are verified. This provides
an expansion :

ln
Zθ,wN
ZJN

= −N2F0(θ, V ) +NF1(θ, w) + F0(θ, w) + o(1) .

Again by taking the large N limit we can identify F0(θ, V ) = −E(µV ). For F1

we find

F1(θ, w) =
1

2πi

ˆ 1

0

ˆ
C

(VJ − V )(z)mt(z)dt+
1

2πi

ˆ 1

0

ˆ
C

∆1V (z)Gt(z)dt

and

F2(θ, w) =
1

2πi

ˆ 1

0

ˆ
C

((VJ − V )(z)rt(z) + ∆1V (z)mt(z) + ∆2V (z)Gt(z)) dzdt

�

6 Continuous Beta-models : the several cut case
In this section we consider again the continuous β-ensembles, but in the case
where the equilibrium measure has a disconnected support. The strategy has
to be modified since in this case the master operator Ξ is not invertible. In
fact, the central limit theorem is not true as if we consider a smooth function
f which equals one on one connected piece of the support but vanishes other-
wise, and if we expect that the eigenvalues stay in the vicinity of the support of
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the equilibrium measure, the linear statistic
∑
f(λi) should be an integer and

therefore can not fluctuate like a Gaussian variable. It turns out however that
the previous strategy works as soon as we fix the filling fractions, the number
of eigenvalues in a neighborhood of each connected piece of the support. The
idea will therefore be to obtain central limit theorems conditionally to filling
fractions. We will as well expand the partition functions for such fixed filling
fractions. The latter expansion will allow to estimate the distribution of the fill-
ing fractions and to derive their limiting distribution, giving a complete picture
of the fluctuations. These ideas were developed in [12, 15]. [12] also includes
the case of hard edges. After this work, a very special case (two connected com-
ponents and a polynomial potential) could be treated in [27] by using Riemann
Hilbert. I will here follow the strategy of [12], but will use general test functions
instead of Stieltjes functionals as in Section 4. So as in Section 4, we consider
the probability measure

dP β,VN (λ1, . . . , λN ) =
1

Zβ,VN

∆(λ)βe−Nβ
∑
V (λi)

N∏
i=1

dλi .

By Theorems 4.4 and 4.3, if V satisfies Assumption 4.2, we know that the
empirical measure of the λ’s converges towards the equilibrium measure µeq

V .
We shall hereafter assume that µeq

V = µV has a disconnected support but a
off-critical density in the following assumption.

Assumption 6.1. V : R → R is of class Cp and µeq
V has support given by

S = ∪Ki=1[ai, bi] with bi < ai+1 < bi+1 < ai+2 and

dµV
dx

(x) = H(x)

√√√√ K∏
i=1

(x− ai)(bi − x)

where H is a continuous function such that H(x) ≥ c̄ > 0 a.e. on S.

We discuss this assumption in Lemma 6.5. Let us notice that the fact that
the support µV has a finite number of connected components is guaranteed
when V is analytic. Also, the fact that the density vanishes as a square root
at the boundary of the support is generic, cf [64]. Remember, see Lemma 4.5,
that µV is described by the fact that the effective potential Veff is non-negative
outside of the support of µV .We will also assume hereafter that Assumption 4.2
holds and that Veff is strictly positive outside S. By Theorem 4.8, we therefore
know that the eigenvalues will remain in Sε = ∪pi=1S

i
ε, S

i
ε := [ai− ε, bi + ε] with

probability greater than 1− e−C(ε)N with some C(ε) > 0 for all ε > 0. We take
ε small enough so that Sε is still the union of p disjoint connected components
Si, 1 ≤ i ≤ p. Moreover, we will assume that V is C1 so that the conclusions of
Theorem 4.14 and Corollary 4.16 still hold. In particular

Corollary 6.2. Assume V is C1. There exists c > 0 and C finite such that

P β,VN

(
max

1≤i≤p
|#{j : λj ∈ [ai − ε, bi + ε]} −NµV ([ai, bi])| ≥ C

√
N lnN

)
≤ e−cN
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We can therefore restrict our study to the probability measure given, if we
denote by Ni = #{j : λj ∈ [ai − ε, bi + ε]}, n̂i = Ni/N and n̂ = (n̂1, . . . , n̂K),
by

dP β,VN,n (λ1, . . . , λN ) = 1maxi |Ni−Nµ([ai,bi])|≤C
√
N lnN

1Sε

Zβ,VN,ε

∆(λ)βe−Nβ
∑
V (λi)

N∏
i=1

dλi

since exponentially small corrections do not affect our polynomial expansions.
As ε > 0 is kept fixed we forget it in the notations and denote

dP β,VN,n̂ (λ1, . . . , λN ) =
1Ni=n̄iN1Sε

Zβ,VN,n̂

∆(λ)βe−Nβ
∑
V (λi)

N∏
i=1

dλi

the probability measure obtained by conditioning the filling fractions to be equal
to n̂ = (n1, . . . , np). Clearly, we have

Zβ,VN =
∑

|Ni−Nµ([ai,bi])|≤C
√
N lnN

N !

N1! · · ·Np!
Zβ,VN,n̂ (78)

P β,VN =
∑

|Ni−Nµ([ai,bi])|≤C
√
N lnN

N !

N1! · · ·NK !

Zβ,VN,n̂

Zβ,VN

P β,VN,n̂ (79)

where the combinatorial term N !
N1!···NK ! comes from the ordering of the eigenval-

ues to be distributed among the cuts. Hence, we will retrieve large N expansions
of the partition functions and linear statistics of the full model from those of
the fixed filling fraction models.

6.1 The fixed filling fractions model
To derive central limit theorems and expansion of the partition function for fixed
filling fractions we first need to check that we have the same type of results that
before we fix the filling fractions. We leave the following Theorem as an exercise,
its proof is similar to the proof of Theorem 4.4. Recall the notation :

E (µ) =

ˆ ˆ
[
1

2
V (x) +

1

2
V (y)− 1

2
ln |x− y|]dµ(x)dµ(y) .

Theorem 6.3. Fix ni ∈ (0, 1) so that
∑
ni = 1. Under the above assumptions

• Assume that (n̂i)1≤i≤K converges towards (ni)1≤i≤K . The law of the vec-
tor of p empirical measures µ̂Ni = 1

Ni

∑N1+···+Ni
j=N1+···+Ni−1+1 δλj under P β,VN,n̂

satisfies a large deviation principle on the space of p tuples of probability
measures on Si = [ai− ε, bi + ε], 1 ≤ i ≤ p, in the scale N2 with good rate
function In = Jn − inf Jn where

Jn(µ1, . . . , µp) = βE(

K∑
i=1

niµi) .
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• Jn achieves its minimal value uniquely at (µni )1≤i≤p. Besides there exists
p constants Cni such that

V neff (x) = V (x)−
ˆ

ln |x− y|d(
∑

niµ
n
i (y))− Cni (80)

is greater or equal to 0 on Si and equal to 0 on the support of µni .

• The conclusions of Lemma 4.14 and Corollary 4.16 hold in the fixed filling
fraction case in the sense that for n̂ = Ni/N,

∑
Ni = N we can smooth∑

n̂iµ̂
N
i = µ̂N into µ̃N (by pulling appart eigenvalues and taking the con-

volution by a small uniform variable), so that there exists c > 0, Cp,q <∞
such that for t > 0

P β,VN,n̂

(
D(µ̃N ,

∑
n̂iµ

n̂
i ) ≥ t

)
≤ eCp,qN lnN−βN2t2 + e−cN

Note above that the filling fractions Ni/N may vary when N grows : the
first two statements hold if we take the limit, and the last with n̂i = Ni/N
exactly equal to the filling fractions (the measures µni are defined for any given
ni such that

∑
ni = 1). The last result does not hold if n̂ is replaced by its

limit n, unless n̂ is close enough to n. To get the expansion for the fixed filling
fraction model it is essential to check that they are off critical if the n̂i are close
to µ(Si) :

Lemma 6.4. Assume V is analytic. Fix ε > 0. There exists δ > 0 so that if
maxi |ni − µV (Si)| ≤ δ, (µni )1≤i≤p are off-critical in the sense that there exists
ani < bni in Siε and Hn

i uniformly bounded below by a positive constant on Siε
such that

dµni (x) = Hn
i (x)

√
(x− ani )(bni − x)dx .

Proof. We first observe that n→
´
fdµni is smooth for all smooth functions f .

Indeed, take two filling fractions n,m and denote in short by µn =
∑
niµ

n
i . Re-

call that µn minimizes E on the set of probability measures with filling fractions
n. We decompose E as

E(ν) = β

ˆ
V neff(x)d(ν−µn)(x) +

β

2
D2(ν, µn)−β

∑
Cnh (ν([âh, b̂h])−nh) (81)

where V neff is the effective potential for the measure µn. Note here that we used
that as ν − µn has zero mass to write

ˆ
ln |x− y|d(ν − µn)(x)(ν − µn)(y) = −D2(ν, µn) .

We then take ν a measure with filling fractions m and since µm minimizes E
among such measures,

E(µm) ≤ E(ν) . (82)
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We choose ν to have the same support than µn so that
´
V neff(x)d(ν−µn)(x) = 0

and notice that
´
V neff(x)d(µm − µn)(x) ≥ 0. Hence, we deduce from (81) and

(82) that
D2(µm, µn) ≤ D2(ν, µn) .

Finally we choose ν = µn +
∑
i(mi − ni)

1Bi
|Bi|dx with Bi is an interval in the

support of µni where its density is bounded below by some fixed value. For
max |mi−ni| small enough it is a probability measure. Then, it is easy to check
that

D2(µm, µn) ≤ D2(µ, µn) ≤ C‖m− n‖2∞
from which the conclusion follows from (48).

Next, we use the Dyson-Schwinger equation with the test function f(x) =
(z − x)−1 to deduce that Gni (z) =

´
(z − x)−1dµni (x) satisfies the equation

Gni (z)(
∑

njG
n
j (z)) =

ˆ
V ′(x)

z − x
dµni (x) = V ′(z)Gni (z) + fni (z)

where fni (z) = −
´

(V ′(y)− V ′(z))(y − z)−1dµni (y). Hence we deduce that

Gni (z) =
1

2ni

V ′(z)−∑
j 6=i

njG
n
j (z)−

√
(V ′(z)−

∑
j 6=i

njGnj (z))2 − 4nifni (z)

 .

The imaginary part of Gni gives the density of µni in the limit where z goes to
the real axis. Since the first term in the above right hand side is obviously real,
the latter is given by the square root term and therefore we want to show that

F (z, n) = (V ′(z)−
∑
j 6=i

njG
n
j (z))2 − 4nif

n
i (z)

vanishes only at two points ani , bni for z ∈ Si. The previous point shows that F
is Lipschitz in the filling fraction n as V is C3 (since then f in is the integral of
a C1 function under µni ) whereas Assumption 6.1 implies that at n∗i = µV (Si),
F vanishes at only two points and has non-vanishing derivative at these points.
This implies that the points where F (z, n) vanishes in Si are at distance of order
at most max |ni−mi| of ai, bi. However, to guarantee that there are exactly two
such points, we use the analyticity of V which guarantees that F (., n) is analytic
for all n so that we can apply Rouché theorem. As F (z, n∗) does not vanish
on the boundary of some compact neighborhood K of ai, for n close enough to
n∗, we have |F (z, n) − F (z, n∗)| ≤ |F (z, n∗)| for z ∈ ∂K. This guarantees by
Rouché’s theorem, since F (., n) is analytic in neighborhood of Si as V is, that
F (., n) and F (., n∗) have the same number of zeroes inside K. �

To apply the method of Section 4, we can again use the Dyson-Schwinger
equations and in fact Lemma 4.17 still holds true : Let fi : R → R be C1

b
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functions, 0 ≤ i ≤ p. Then, taking the expectation under P β,VN,n̂ , we deduce

E[MN (Ξf0)

p∏
i=1

Nµ̂N (fi)] = (
1

β
− 1

2
)E[µ̂N (f ′0)

p∏
i=1

Nµ̂N (fi)]

+
1

β

p∑
`=1

E[µ̂N (f0f
′
`)
∏
i 6=`

Nµ̂N (fi)]

+
1

2
E[

ˆ
f0(x)− f0(y)

x− y
dMN (x)dMN (y)

p∏
i=1

Nµ̂N (fi)]

+O(e−cN )

where the last term comes from the boundary terms which are exponentially
small by the large deviations estimates of Theorem 4.8. We still denoted
MN (f) =

∑
f(λi) − N

∑
n̂iµ

n̂
i (f) but this time the mass in each Si is fixed

so this quantity is unchanged if we change f by adding a piecewise constant
function on the Si’s. We therefore have this time to find for any sufficiently
smooth function g a function f such that there are constants Cj so that

Ξn̂f(x) = V ′(x)f(x)−
p∑
i=1

n̂i

ˆ
f(x)− f(y)

x− y
dµn̂i (y) = g(x) + Cj , x ∈ Sj .

By the characterization of µn̂, if Sn̂j = [an̂j , b
n̂
j ] denotes the support of µn̂ inside

Siε, this question is equivalent to find f so that on every [an̂j , b
n̂
j ],

Ξn̂f(x) := PV

ˆ
f(y)

x− y
H n̂
j (y)

√
(y − an̂j )(bn̂j − y)dy = g(x) + Cj

This question was solved in [73] under the condition that g, f are Hölder with
some positive exponent. Once one gets existence of these functions, the property
of the inverse are the same as before since inverting the operator on one Si will
correspond to the same inversion. For later use, we prove a slightly stronger
statement :

Lemma 6.5. Let θ ∈ [0, 1] and set for ni ∈ (0, 1),
∑
ni = 1. Let Sni denote the

support of µni . We set, for i ∈ {1, . . . ,K}, all x ∈ Sni

Ξnθ f(x) := V ′(x)f(x)−ni
ˆ
f(x)− f(y)

x− y
dµni (y)+θ

∑
j 6=i

nj

ˆ
f(x)− f(y)

x− y
dµnj (y) .

Then for all g ∈ Ck, k > 2, there exist constants Cj , 1 ≤ j ≤ p, so that the
equation

Ξnθ f(x) = g(x) + Cj , x ∈ Snj
has a unique solution which is Hölder for some exponent α > 0. We denote by
(Ξnθ )−1g this solution. There exists finite constant Dj such that

‖(Ξnθ )−1g‖Cj ≤ Dj‖g‖Cj−2 .
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Proof. Let us first recall the result from [73, section 90] which solves the case
θ = 1. Let Snk = [ank , b

n
k ]. Because of the characterization of the equilibrium

measure, inverting Ξ1 is equivalent to seek for f Hölder such that there are K
constants (Ck)1≤k≤K such that on Sk

K1f(t) = PV

ˆ
∪Sk

f(x)

t− x
dx = g(t) + Ck

for all k ∈ {1, . . . ,K}. Then, by [73, section 90], if g is Hölder, there exists a
unique solution and it is given by

K−1
1 g(x) := f(x) =

σ(x)

π

∑
k

PV

ˆ
Sk

dy

σ(y)

1

y − x
(g(y) + Ck)

where σ(x) =
√∏

(x− ani )(x− bni ). The proof shows uniqueness and then
exhibits a solution. To prove uniqueness we must show that K1f = Ck has a
unique solution, namely zero. To do so one remarks that

Φ(z) =

ˆ
∪Sk

f(x)

x− z
dx

is such that Ψ(z) = (Φ(z)−Ck/2)
√

(x− ank )(x− bnk ) is holomorphic in a neigh-
borhood of Snk and vanishes at ank , b

n
k . Indeed, K1f = Ck is equivalent to

Φ+(x) + Φ−(x) = Ck implies that Ψ+(x) = Ψ−(x) on the cuts. Hence

Φ(z)− Ck/2 = [(z − ank )(z − bnk )]1/2Ω(z) (83)

with Ω holomorphic in a neighborhood of Snk , and so Φ′(z)σ(z) is holomorphic
everywhere. Hence, since Φ′ goes to zero at infinity like 1/z2, P (z) = Φ′(z)σ(z)
is a polynomial of degree at most K − 2. We claim that this is a contradiction
with the fact that then the periods of Φ vanish, see [37, Section II.1] for details.
Let us roughly sketch the idea. Indeed, because Φ = u + iv is analytic outside
the cuts, if Λ = ∪Λk is a set of contours surrounding the cuts and Λc the part
of the imaginary plan outside Λ, we have by Stockes theorem

J =

ˆ
Λc

(
(∂xu)2 + (∂yu)2

)
dxdy =

ˆ
Λ

udv̄

Letting Λ going to S we find
ˆ

Λ

udv̄ =

ˆ
S

u+dv+ −
ˆ
S

u−dv−

But by the condition Φ++Φ− = Ck we see that u++u− = <(Ck), d(v++v−) = 0
and hence

J =
∑
k

<(Ck)

ˆ
Sk

dv+ =
∑
k

<(Ck)(v+(bnk )− v+(ank )) .
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On the other hand Φ(z) =
´ z
−∞ P (ξ)/σ(ξ)dξ for any path avoiding the cuts and

hence converges towards finite values on the cuts. But since Φ′(ξ) = P (ξ)
σ(x) is

analytic outside the cuts, going to zero like 1/z2 at infinity,

0 =

ˆ
Λk

Φ′(ξ)dξ = 2

ˆ
Snk

Φ′(x)dx = 2(Φ(bnk )− Φ(ank ))

Thus, v(bnk ) − v(ank ) = 0 and we conclude that J = 0. Therefore Φ vanishes,
and so does f .

Next, we consider the general case θ ∈ (0, 1). We show that Ξnθ is injective on
the space of Hölder functions. Again, it is sufficient to consider the homogeneous
equation

Kθf(x) = (1− θ)K0f(x) + θK1f(x) = Ck (84)

on Sk for all k. Here K0f(x) =
´
Sk

f(y)
y−xdy on Sk for all k. If Kθ is injective, so

is Ξnθ by dividing the function f on Sk by σk(x)Sk(x) = dµnk/dx. Recall that
Tricomi airfol equation shows that K0 is invertible, see Lemma 4.18, and we
have just seen that K1 is injective. To see that Kθ is still injective for θ ∈ [0, 1]
we notice that we can invert K1 to deduce that we seek for an Hölder function
f (= K1g) and a piecewise constant function C so that

f(x) = −1− θ
θ

K−1
1 (K0f − C)

Let us consider this equation for x ∈ Sk and put f = K−1
0 g. By the formula for

K−1
1 and K−1

0 we deduce that we seek for constants d,D and a function g so
that on Sk :

1

σk(x)
PV

ˆ
Sk

g(y) + dk
x− y

σk(y)dy = −1− θ
θ

1

σ(x)

∑
`

PV

ˆ
S`

g(y) +D`

y − x
σ(y)dy .

Here, we used a formula forK−1
0 where σk was replaced by σ−1

k : this alternative
formula is due to Parseval formula [85, (2) p.174], see (16) and (18) in [85].
Note here that both side vanish at the end points of Sk by the choices of the
constants. As a consequence

1

σk(x)

ˆ
Sk

g(y) + dk
x− y

σk(y)dy +
1− θ
θ

1

σ(x)

∑
`

ˆ
S`

g(y) +D`

y − x
σ(y)dy

is analytic in a neighborhood of Sk.We next integrate over a contour Ck around

95



Sk to deduce thatˆ
Sk

g(y) + dk
x− y

σk(y)dy =
1

2πi

ˆ
Ck

dz

z − x

ˆ
Sk

g(y) + dk
z − y

σk(y)dy

= −1− θ
θ

1

2πi

ˆ
Ck

dz

z − x
σk(z)

σ(z)

∑
`

ˆ
S`

g(y) +D`

y − z
σ(y)dy

= −1− θ
θ

ˆ
Sk

σk(y)

σ(y)

g(y) +Dk

x− y
σ(y)dy

= −1− θ
θ

ˆ
Sk

g(y) +Dk

x− y
σk(y)dy

where we used that σk/σ is analytic in a neighborhood of Sk, as well as the
terms coming from the other cuts. Hence we seek for g satisfying

1

θ

ˆ
Sk

g(y) + dk
x− y

σk(y)dy = 0

for some constant dk. Tricomi airfol equation shows that this equation has a
unique solution which is when g+dk is a multiple of 1/(σk)2. By our smoothness
assumption on g, we deduce that g+dk must vanish. This implies that f = K−1

0 g
vanishes by Tricomi. Hence, we conclude that Kθ, and therefore Ξnθ is injective
on the space of Hölder continuous functions.

To show that Ξnθ is surjective, it is enough to show that it is surjective when
composed with the inverse of the single cut operators Ξn = (Ξn1 , . . . ,Ξnp), that
is that

Lθf(x) := nif(x)+θRf(x), Rf(x) =
∑
j 6=i

nj

ˆ
(Ξnj )−1f(y)

x− y
dµnj (y), x ∈ Si = [ani , b

n
i ]

is surjective. But R is a kernel operator and in fact it is Hilbert-Schmidt in
L2(σ−εdx) for any ε > 0 (here σ(x) =

∏√
(x− ani )(bni − x)). Indeed, on x ∈ Si,

R is a sum of terms of the formˆ
(Ξnj )−1f(y)

x− y
dµnj (y) =

ˆ
1

x− y
1

Sj(y)
PV

(ˆ bnj

anj

f(t)

(y − t)
σj(t)dt

)
dµnj (y)

by Remark 4.19. Even though we have a principal value inside the (smooth)
integral we can apply Fubini and notice that

PV

ˆ
1

(x− y)(y − t)
1

Sj(y)
dµnj (y) =

1

x− t
PV

ˆ
(

1

(x− y)
+

1

(y − t)
)dσj(y)

= 1− 1

x− t
σj(x)

where we used that t belongs to Sj but not x to compute the Hilbert transport
of σj at t and x. Hence, the above term yields

ˆ
(Ξnj )−1f(y)

x− y
dµnj (y) =

ˆ
Sj

f(t)

σj(t)
(1− 1

x− t
σj(x))dt, x ∈ Si
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from which it follows that R is a Hilbert-Schmidt operator in L2(σ−εdx). Hence,
R is a compact operator in L2(σ−εdx). But Lθ is injective in this space. Indeed,
for f ∈ L2(σ−εdx), Lθf = 0 implies that f = θn−1

i Rf is analytic. Writing back
h = (Ξn)−1f , we deduce that Ξnθh = 0 with h Hölder, hence h must vanish by
the previous consideration. Hence Lθ is injective. Therefore, by the Fredholm
alternative, Lθ is surjective. Hence Lθ is a bijection on L2(σ−εdx). But note
that the above identity shows that R maps L2(σ−ε) onto analytic functions,
therefore K−1 maps Hölder functions with exponent α onto Hölder functions
with exponent α. We thus conclude that Ξnθ = Lθ ◦ Ξn is invertible onto the
space of Hölder functions. We also see that the inverse has the announced
property since for x ∈ [anj , b

n
j ]

(Ξnθ )−1g(x) = Ξ−1[g − h], h(x) = θ
∑
j 6=i

nj

ˆ
(Ξnθ )−1g(y)

x− y
dµnj (y)]

where h is C∞. The announced bound follows readily from the bound on one
cut as on Lk we have

(Ξnθ )−1f(x) = (Ξn0 )−1(f − θ
∑
6̀=k

ˆ
(Ξnθ )−1f

x− y
dµn` (y))

is such that

‖(Ξnθ )−1f‖Cs ≤ cs‖f−θ
∑
` 6=k

ˆ
(Ξnθ )−1f

x− y
dµn` (y))‖Cs+2 ≤ c̃s(‖f‖Cs+2+‖(Ξnθ )−1f‖∞) .

�

As Ξn1 is invertible with bounded inverse we can apply exactly the same
strategy as in the one cut case to prove the central limit theorem :

Theorem 6.6. Assume V is analytic and the previous hypotheses hold true.
Then there exists ε > 0 so that for max |ni − µ([ai, bi])| ≤ ε, for any f Ck

with k ≥ 11, the random variable MN (f) :=
∑N
i=1 f(λi)−Nµn(f) converges in

law under P β,VN,n towards a Gaussian variable with mean mn
V (f) and covariance

CnV (f, f), which are defined as in Theorem 4.27 but with µn instead of µ and
Ξn instead of Ξ.

We can also obtain the expansion for the partition function

Theorem 6.7. Assume V is analytic and the previous hypotheses hold true.
Then there exists ε > 0 so that for max |n̂i − µ([ai, bi])| ≤ ε, n̂i = Ni/N , we
have

ln

(
N !

(n̂1N)! · · · (n̂KN)!
ZN,n̂β,V

)
= C0

βN lnN + C1
β ln(N)

+N2F n̂0 (V ) +NF n̂1 (V ) + F n̂2 (V ) + o(1) (85)
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with C0
β = β

2 , C
1
β = −(K − 1)/2 + 3+β/2+2/β

12 and for ni > 0,
∑
ni = 1,

Fn0 (V ) = −E(µnV )

Fn1 (V ) = (
β

2
− 1)

ˆ
ln(

dµnV
dx

)dµnV −
β

2
ni lnni + f1

where f1 depends only on the boundary points of the support. Fn2 (V ) is a con-
tinuous function of n. Above the error term is uniform on n in a neighborhood
of n∗.

Proof. The proof is again by interpolation. We first remove the interaction
between cuts by introducing for θ ∈ [0, 1]

dP β,θ,VN,n̂ (λ1, . . . , λN ) =
1

Zβ,θ,VN,n̂

∏
h6=h′

eN
2 β

2 θ
´

ln |x−y|d(µ̂Nh −µ
n̂
h)(x)d(µ̂N

h′−µ
n̂
h′ )(y)

∏
dP

β,V n̂eff
N,n̂h

where P
β,V n̂eff
N,n̂h

is the β ensemble on Sh with potential given by the effective
potential. We still have a similar large deviation principle for the µ̂Nh under
P β,θ,VN,n̂ and the minimizer of the rate function is always µn̂h. Hence we are
always in a off critical situation. Moreover, we can write the Dyson-Schwinger
equations for this model : it is easy to see that the master operator is Ξnθ of
Lemma 6.5 which we have proved to be invertible. Therefore, we deduce that
the covariance and the mean of linear statistics are in a small neighborhood of
Cθ,n̂V and mθ,n̂

V . It is not hard to see that this convergence is uniform in θ.
Hence, we can proceed and compute

ln
Zβ,1,VN,n̂

Zβ,0,VN,n̂

= N2

ˆ 1

0

P β,θ,VN,n̂

(∑
h<h′

β

ˆ
ln |x− y|d(µ̂Nh − µn̂h)(x)d(µ̂Nh′ − µn̂h′)(y)

)
dθ

Indeed, using the Fourier transform of the logarithm we have

N2P β,θ,VN,n̂

(ˆ
ln |x− y|d(µ̂Nh − µn̂h)(x)d(µ̂Nh′ − µn̂h′)(y)

)
=

ˆ
1

t
P β,θ,VN,n̂

(
(N

ˆ
eitxd(µ̂Nh − µn̂h)(x)(N

ˆ
e−ityd(µ̂Nh′ − µn̂h′)(y))

)
dt

where the above RHS is close to

[Cθ,n̂V (eit., e−it.) + |mθ,n̂
V (eit.)|2]

Hence, decoupling the cuts in this way only provides a term of order one in the
partition function. It is not hard to see that it will be a continuous function of
the filling fraction (as the inverse of Ξn̂θ is uniformly continuous in n). Finally
we can use the expansion of the one cut case of Theorem 4.28 to expand Zβ,0,VN,n̂

to conclude. �
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6.2 Central limit theorem for the full model
To tackle the model with random filling fraction, we need to estimate the ratio
of the partition functions according to (78). Recall that n∗i = µ([ai, bi]). We
can now extend the definition of the partition function to non-rational values of
the filling fractions by using Theorem 6.7. Then we have

Theorem 6.8. Under the previous hypotheses, for max |ni − n∗i | ≤ ε, there
exists a positive definite form Q and a vector v such that

D(n) :=
(Nn∗1)! · · · (Nn∗K)!

(Nn1! · · · (NnK)!

ZN,nβ,V

ZN,n
∗

β,V

= exp{−1

2
Q(N(n− n∗))(1 +O(ε)) + 〈N(n− n∗), v〉+ o(1)} ,

where ZN,n
∗

β,V /(Nn∗1)! · · · (Nn∗K)! is defined thanks to the expansion of (85) when-
ever n∗N takes non-integer values (note here the right hand side makes sense
for any filling fraction n). O(ε) is bounded by Cε uniformly in N. We have
Q = −D2Fn0 (V )|n=n∗ and vi = ∂niF

n
1 (V )|n=n∗ . As a consequence, since the

probability that the filling fractions n̂ are equal to n is proportional to D(n),
we deduce that the distribution of N(n̂− n∗)−Q−1v is equivalent to a centered
discrete Gaussian variable with values in −Nn∗−Q−1v+Z and covariance Q−1.

Note here that Nn∗ is not integer in general so that N(n̂−n∗)−Q−1v does
not live in a fixed space : this is why the distribution of N(n̂−n∗)−Q−1v does
not converge in general. As a corollary of the previous theorem, we immediatly
have that

Corollary 6.9. Let f be C11. Then

EPNβ,V [e
∑
f(λi)−Nµ(f)] = exp{1

2
Cn
∗

V (f, f) +mn∗

V (f)}

×
∑
n

exp{− 1
2Q(N(n− n∗)) + 〈N(n− n∗), v + ∂nµ

n|n=n∗(f)〉}∑
n exp{− 1

2Q(N(n− n∗)) + 〈N(n− n∗), v〉}
(1 + o(1))

We notice that we have a usual central limit theorem as soon as ∂nµn|n=n∗(f)
vanishes (in which case the second term vanishes), but otherwise the discrete
Gaussian variations of the filling fractions enter into the game. This term comes
from the difference Nµ(f)−Nµn(f).

As is easy to see, the last thing we need to show to prove these results is
that

Lemma 6.10. Assume V analytic, off-critical. Then

• n→ µn(f) is C1 and CnV (f, f),mn
V (f) are continuous in n,

• n→ Fni (V ) is C2−i in a neighborhood of n∗,

• Q = −D2Fn0 (V )|n=n∗ is definite positive.
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Let us remark that this indeed implies Corollary 6.9 and Theorem 6.8 since
by Theorem 6.7 we have for |ni − n∗i | ≤ ε

ln
(Nn∗1! · · · (Nn∗K)!

(Nn1)! · · · (NnK)!

ZN,nβ,V

ZN,n
∗

β,V

= N2{Fn0 (V )− Fn
∗

0 (V )}+N(Fn1 (V )− Fn
∗

1 (V ))

+(Fn2 (V )− Fn
∗

2 (V )) + o(1)

= −1

2
Q(N(n− n∗), N(n− n∗))(1 +O(ε))

+∂nF
n
1 (V )|n=n∗ .(N(n− n∗))

where we noticed that ∂nFn0 (V ) vanishes at n∗ since n∗ minimizes Fn0 and Q
is definite positive. Hence we obtain the announced estimate on the partition
function. About Corollary 6.9 we have by (78) and by conditionning on filling
fractions

EPNβ,V [e
∑
f(λi)−NµV (f)] = E

[
eN(µn̂(f)−µn

∗
(f))EPN,n̂β,V

[e
∑
f(λi)−Nµn̂(f)]

]
' E

[
eN〈n̂−n

∗,∂nµ
n(f)|n=n∗ 〉EPN,n̂β,V

[e
∑
f(λi)−Nµn̂(f)]

]
(1 + o(1))

So we only need to prove Lemma 6.10.

Proof. n → µn is twice continuously differentiable. We have already seen in
the proof of Lemma 6.4 that n → µn is Lipschitz for the distance D for n in a
neighborhood of n∗. This implies that νε = ε−1(µn+εκ − µn) is tight (for the
distance D and hence the weak topology). Let us consider a limit point ν and its
Stieltjes transform Gν(z) =

´
(z−x)−1dν(x). Along this subsequence, the proof

of Lemma 6.4 also shows that ε−1(an+εκ
i − ani ) has a limit (and similarly for bn,

as well as Hn
i ). Hence, we see that ν is absolutely continuous with respect to

Lebesgue measure, with density blowing up at most like a square root at the
boundary. By (80) in Theorem 6.3 we deduce that

Gν(E + i0) +Gν(E − i0) = 0

for all E inside the support of µn. This implies that
√∏

(z − ani )(bni − z)Gν(z)
has no discontinuities in the cut, hence is analytic. Finally, Gν goes to zero at
infinity like 1/z2 so that

√∏
(z − ani )(bni − z)Gν(z) is a polynomial of degree

at most p − 2. Its coefficients are uniquely determined by the p − 1 equations
fixing the filling fractions since for a contour Cni around [ani , b

n
i ]

ˆ
Cni

Gµn(z)dz = ni ⇒
ˆ
Cni

Gν(z)dz = κi .

There is a unique solution to such equations. As it is linear in κ, it is given by

Gν(z) =
∑

κiω
n
i (z) (86)
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where ωni (z) = Pni (z)/
√∏

(z − ani )(bni − z) satisfyˆ
Cnj

ωni (z)dz = δi,j (87)

and Pni are polynomials of degree smaller or equal than p − 2. Hence Gν is
uniquely determined as well as ν, we conclude that n → µn is differentiable,
as well as ani , bni . The latter implies that n → ωni is as well differentiable and
hence n→Gµn is twice continuously differentiable. In turn, we conclude that
ani , b

n
i , H

n
i are twice continuously differentiable with respect to n, and therefore

so is the density of µn.
CnV (f, f),mn

V (f) are continuous in n. From the continuity of dµn/dx we
deduce that Ξn is continuous, and since Ξn has uniformly bounded inverse
(provided we take sufficiently smooth functions), we deduce that (Ξn)−1 is con-
tinuous in n, from which the continuity of CnV (f, f),mn

V (f) follows for smooth
enough f .

n → Fni (V ) is C2−i, i = 0, 1, 2. For i = 1, by the formulas of Theorem
6.6, it is a straightforward consequence of the fact that dµn/dx is continuously
differentiable and its differential is integrable. It amounts to show that the
inverse of the operators Ξnθ are continuous in n, but again this is due to the
continuity of the endpoints and the explicit formulas we have.

D2Fn0 (V ) is well defined and definite negative at n = n∗. Set

νη = lim
t→0

µn+tη − µn

t
(88)

By the formula for J in terms of the effective potential

Fn
∗+tη

0 (V )− Fn
∗

0 (V ) =
(
J [µn

∗+tη]− J [µn
∗
]
)

= −β
2

(
D2[µn

∗+tη, µn
∗
]−
¨

V n
∗

eff (x)d(µn
∗+tκ − µn

∗
)(x)

)
where we used that at n = n∗ the constants in the effective potential are all equal
and that

∑
ηi = 0. Since V n

∗

eff vanishes on ∪[ai, bi] as well as its derivative and
the derivatives of ε → µn+εη are smooth and supported in ∪[ai, bi], we deduce
that F 0

∗n+tη is a C2 function of t and its Hessian is :

∂2
t F

n∗+tη
0 |t=0 = −β

2
D2[ν∗, ν∗] (89)

where ν∗ = ∂tµ
n∗+tη|t=0. D2F0 vanishes only when ν∗ vanishes, which implies

η = 0 by (86), since no non trivial combination of the ωni can vanish uniformly
by (87). Therefore, the Hessian is definite negative. �
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