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Abstract These lecture notes are attended for a course at Sissa in september
2019: they contain more material than what we will cover but hopefully we will
be able to discuss the topics of the 5 chapters of the notes. Their goal is to
put together the asymptotic analysis of several highly correlated systems such
as the eigenvalues of random matrices or random tilings that can be attacked
by similar tools, namely the derivation and analysis of the Dyson-Schwinger or
loop equations. More complete notes were published by the AMS.

Contents
1__Introductionl 2
IL.L1 _Some historical referencesl . . . . . ... .. ... ... ... ... 2
1.2 Atoymodel|. . . .. ... oo 6
I1.3  Rough plan of the lecture notes| . . . . . .. ... ... ... ... 8
2 The example of the GUE] 9
2.1 Combinatorics versus analysis| . . . . .. ... .. ... ... ... 9
2.2  GUE : combinatorics versus analysis|. . . . . .. ... ... ... 10
2.2.1  Dyson-Schwinger Equations| . . . . . ... ... ... ... 12
[2.2.2  Dyson-Schwinger equation implies genus expansion| . . . . 13
imit theoreml . . . . ... .. ... ... L. 16
2.4 _Generalizationl . . .. .. .. ... .. ... L 0. 19
2.5 GUE topological expansion| . . . . . .. ... ... ... ..... 20
13__Several matrix-ensembles| 20
8.0.1 Non-commutative laws|. . . . . . . ... ... ... ... .. 20
8.1 _Non-commutative derivatives| . . . . . . . . . ... ... ... .. 22
3.2 Non-commutative Dyson-Schwinger equations| . . . . . . . . . .. 22
[3.3 _Independent GUE matrices| . . . .. ... ... ... ..... .. 23
B3I Volculescw's theoreml . . . .« o v oo e 23
B3.3.2 Central imit theorem| . . . . . ... ... ... ... ... 24
3.4 Several interacting matrices models|. . . . . . ... ..o L. 25
3.4.1  First order expansion for the free energy|. . . . . . . . .. 27
13.4.2  Finite dimensionnal Dyson-Schwinger’s equations| . . . . . 28




3.4.3 A priori estimates| . . . . .. ... 28

3.4.4  Tightness and limiting Dyson-Schwinger’s equations| . . . 29

13.4.5  Uniqueness of the solutions to Dyson-Schwinger’s equa- |

| tions for small parameters| . . . . . ... ... 30
13.4.6  Convergence of the empirical distribution| . . . . . . . .. 31

[3.4.7 Combinatorial interpretation of the limit{. . . . . . .. .. 32

3.4.8 onvergence of the free energy| . . . . . . . ... ... .. 36

13.5  Second order expansion for the free energyl. . . . . . . . ... .. 37
[3.5.1 Rough estimates on the size of the correction 6| . . . . . 37

13.5.2  Higher order loop equations.| . . . . ... ... ... ... 39

3.5.3  Inverting the master operator| . . . . . . . ... ... ... 39

B.5.4  Central Imit theoreml . . . . .« « v v ovv v oo oo 42

13.5.5  Second order correction to the free energy | . . . .. . .. 43
4__Beta-ensembles| 45
4.1 Law of large numbers and large deviation principles| . . . . . .. 46
4.2 Concentration of measurel . . . . . ... ... ... ... ..... 54
4.3 The Dyson-Schwinger equations|. . . . . . .. .. ... ... ... 58
4.3.1  Goal and strategyl . . . . . ... ... ... 58

|.3.2  Dyson-Schwinger biquation| . . . . . ... ... ... ... 59

33 Tmproving concentration inequalities] . . . . . . . . . ... 62

4.3.4 Central imit theorem| . . . . . ... ... ... ... ... 65

4.4 Expansion of the partition function|. . . . . . . . ... ... ... 67
[F_Discrete Beta-ensembles 71
5.1 Large deviations, law of large numbers| . . . . . . . . . . ... .. 72
0.2 _Concentration of measurel . . . . . ... ... ... ... ... .. 75
.3 Nekrasov's equations| . . . . . . .. ... ... . 0L, 77
[0.4 Second order expansion of linear statistics| . . . . . ... ... .. 85
5.9 xpansion of the partition function|. . . . . . . . . . ... .. .. 86

6 Continuous Beta-models : the several cut casel 88
[6.1 The fixed filling fractions model| . . . . . . ... ... .. ... .. 90

‘ Central limit theorem for the full modell 99

1 Introduction

1.1 Some historical references

These lecture notes concern the study of the asymptotics of large systems of par-
ticles in very strong mean field interaction and in particular the study of their
fluctuations. Examples are given by the distributions of eigenvalues of Gaus-
sian random matrices, S-ensembles, random tilings and discrete S-ensembles, or
several random matrices. These models display a much stronger interaction be-
tween the particles than the underlying randomness so that classical tools from
probability theory fail. Fortunately, these model have in common that their



correlators (basically moments of a large class of test functions) obey an infi-
nite system of equations that we will call the Dyson-Schwinger equations. They
are also called loop equations, Master equations or Ward identities. Dyson-
Schwinger equations are usually derived from some invariance or some symme-
try of the model, for instance by some integration by parts formula. We shall
argue in these notes that even though these equations are not closed, they are
often asymptotically closed (in the limit where the dimension goes to infinity)
so that we can asymptotically solve them and deduce asymptotic expansions
for the correlators. This in turn allows to retrieve the global fluctuations of the
system, and eventually even more local information such as rigidity.

This strategy has been developed at the formal level in physics [2] for a long
time. In particular in the work of Eynard and collaborators [47), 46}, [45] [14], it
was shown that if one assumes that correlators expand formally in the dimen-
sion N, then the coefficients of these expansions obey the so-called topological
recursion. For instance, in [25 26], it was shown that assuming a formal expan-
sion holds, Dyson-Schwinger equations induce recurrence relations on the terms
in the expansion which can be solved by algebraic geometry means. These
recurrence relations can even be interpreted as topological recursion, so that
the coefficients of these expansions can be given combinatorial interpretations.
In fact, it was realized in the seminal works of t'Hooft [82] and Brézin-Parisi-
Itzykson-Zuber [39] that moments of Gaussian matrices and matrix models can
be interpreted as the generating functions for maps. One way to retrieve this
result is by using Dyson-Schwinger equations and checking that asymptotically
they are similar to the topological recursion formulas obeyed by the enumera-
tion of maps, as found by Tutte [86]. In this case, one first need to analyze the
limiting behavior of the system, given by the so-called equilibrium measure or
spectral curve, and then the Dyson-Schwinger equations, that is the topological
recursion, will provide the large dimension expansion of the observables.

The study of the asymptotics of our large system of particles also starts with
the analysis of its limiting behaviour. I usually derive this limiting behaviour
as the minimizer of an energy functional appearing as a large deviation rate
functional [7], or in concentration of measure estimates [68], but, according to
fields, people can prefer to see it as the optimizer of Fekete points [76], or as the
solution of a Riemann-Hilbert problem [33]. This study often amounts to the
analysis of some equation. The same type of analysis appears in combinatorics
when one counts for example triangulations of the sphere. Indeed, it can be seen,
thanks to Tutte surgery [86], that the generating function for this enumeration
satisfies some equation. Sometimes, one can solve explicitly this equation, for
instance thanks to the quadratic method and catalytic variables [20, 23] or [51]
Section 2.9]. In our models, we will also be able to derive equations for our
equilibrium measure thanks to Dyson-Schwinger equations. But sometimes,
these equations may have several solutions, for instance in the setting of a
double well potential in S-models. The absence of uniqueness of solutions to
these equations prevents the analysis of many interesting models, such as several
matrix models at low temperature. In good cases such as the S-models, we may
still get uniqueness for instance if we add the information that the equilibrium



measure minimizes a strictly convex energy. Dyson-Schwinger equation can then
be regarded as the equations satisfied by the critical points of this energy.

The Dyson-Schwinger equations will be our key to get precise informations
on the convergence to equilibrium, such as large dimension expansion of the free
energy or fluctuations. These types of questions were attacked also in the Rie-
mann Hilbert problems community based on a fine study of the asymptotics of
orthogonal polynomials [50} BT, [40, 10} 22], B2]. It seems to me however that such
an approach is more rigid as it requires more technical steps and assumptions
and can not apply in such a great generality than loop equations. Yet, when
it can be used, it provides eventually more detailed information. Moreover, in
certain cases, such as the case of potentials with Fisher Hartwig singularities,
Riemann Hilbert techniques could be used but not yet loop equations [60, [34].

To study the asymptotic properties of our models we need to get one step
further than the formal approach developped in the physics litterature. In other
words, we need to show that indeed correlators can expand in the dimension up
to some error which is quantified in the large N limit and shown to go to zero.
To do so, one needs in general a priori concentration bounds in order to expand
the equations around their limits. For S-models, such a priori concentration
of measure estimates can be derived thanks to a result of Boutet de Monvel,
Pastur and Shcherbina [2I] or Maida and Maurel-Segala [68]. It is roughly
based on the fact that the logarithm of the density of such models is very
close to a distance of the empirical measure to its equilibrium measure, hence
implying a priori estimates on this distance. In more general situations where
densities are unknown, for instance when one considers the distributions of the
traces of polynomials in several matrices, one can rely on abstract concentration
of measures estimates for instance in the case where the density is strictly log-
concave or the underlying space has a positive Ricci curvature (e.g SU(N)) [55].
Dyson-Schwinger equations are then crucial to obtain optimal concentration
bounds and asymptotics.

This strategy was introduced by Johansson [61] to derive central limit the-
orems for [-ensembles with convex potentials. It was further developped by
Shcherbina and collaborators [II, [79] and myself, together with Borot [II], to
study global fluctuations for S-ensembles when the potential is off-critical in
the sense that the equilibrium has a connected support and its density vanishes
like a square root at its boundary. These assumptions allow to linearize the
Dyson-Schwinger equations around their limit and solve these linearizations by
inverting the so-called Master operator. The case where the support of the
density has finitely many connected component but the potential is off-critical
was adressed in [T7, [12]. It displays the additional tunneling effect where eigen-
values may jump from one connected support to the other, inducing discrete
fluctuations. However, it can also be solved asymptotically after a detailed
analysis of the case where the number of particles in each connected compo-
nents is fixed, in which case Dyson-Schwinger equations can be asymptotically
solved. These articles assumed that the potentials are real analytic in order
to use Dyson-Schwinger equations for the Stieltjes functions. We will see that
these techniques generalize to sufficiently smooth potentials by using more gen-



eral Dyson-Schwinger equations. Global fluctuations, together with estimates of
the Wasserstein distance, were obtained in [65] for off-critical, one-cut smooth
potentials. One can obtain by such considerations much more precise estimates
such as the expansion of the partition function up to any order for general off-
critical cases with fixed filling fractions, see [I2]. Such expansion can also be
derived by using Riemann-Hilbert techniques, see [41I] in a perturbative setting
and [27] in two cut cases and polynomial potential.

But S-models on the real line serve also as toy models for many other mod-
els. Borot, Kozlowski and myself considered more general potentials depending
on the empirical measure in [I5]. We studied also the case of more compli-
cated interactions (in particular sinh interactions) in [I6] : the main problems
are then due to the non-linearity of the interaction which induces multi-scale
phenomenon. The case of critical potentials was tackled recently in [36]. Also
Dyson-Schwinger (often called Ward identities) equations are instrumental to
study Coulomb gas systems in higher dimension. One however has to deal with
the fact that Ward identities are not nice functions of the empirical measure
anymore, so that an additional term, the anisotropic term, has to be controlled.
This could very nicely be done by Leblé and Serfaty [66] by using local large
deviations estimates. Recently we also generalized this approach to study dis-
crete S-ensembles and random tilings [I3] by analyzing the so-called Nekrasov’s
equations in the spirit of Dyson-Schwinger equations.

The same approach can be developed to study multi-matrix questions. Orig-
inally, I developed this approach to study fluctuations and large dimension ex-
pansion of the free energy with E. Maurel Segala [52 (53] in the context of
several random matrices. In this case we restrict ourselves to perturbations of
the quadratic potential to insure convergence and stability of our equations. We
could extend this study to the case of unitary or orthogonal matrices following
the Haar measure (or perturbation of this case) in |28, [54]. This strategy was
then applied in a closely related setting by Chatterjee [24], see also [30].

Dyson-Schwinger equations are also central to derive more local results such
as rigidity and universality, showing that the eigenvalues are very close to their
deterministic locus and that their local fluctuations does not depend much on
the model. For instance, in the case of Wigner matrices with non Gaussian
entries, a key tool to prove rigidity is to show that the Stieltjes transform ap-
proximately satisfies the same quadratic equation than in the Gaussian case
up to the optimal scale [43], 42, 4]. Recently, it was also realized that closely
connected ideas could lead to universality of local fluctuations, on one hand by
using the local relaxation flow [43] [67, [18], by using Lindenberg strategy [0, 8]
or by constructing approximate transport maps [79, 5, 49]. Such ideas could
be generalized in the discrete Beta ensembles [59] where universality could be
derived thanks to optimal rigidity (based on the study of Nekrasov’s equations)
and comparisons to the continuous setting.



1.2 A toy model

Let us give some heuristics for the type of analysis we will do in these lectures
thanks to a toy model. We will consider the distribution of N real-valued
variables A1, ..., Any and denote by

N 1 &
Rt

their empirical measure : for a test function f, gV (f) = % > f(A\i). Then, the
correlators are moments of the type

p
M(flv"'7fp H

where f; are test functions, which can be chosen to be polynomials, Stieltjes
functionals or some more general set of smooth test functions. Dyson-Schwinger
equations are usually retrieved from some underlying invariance or symmetries
of the model. Let us consider the continuous case where the law of the \;’s is
absolutely continuous with respect to [[ d\; and given by

APy (M, ..., N) = WME:ZVMWJHM

11=11i=1

where V' is some symmetric smooth function. Then a way to get equations
for the correlators is simply by integration by parts (which is a consequence of
the invariance of Lebesgue measure under translation) : Let fo, f1,..., f¢ be
continuously differentiable functions. Then

¢ ¢
AN f() H - E[(;Za)\kfb(/\k))> HﬂN(fz)}
i=1 k i=1
1 _[,arPY . _ e dPY,
= _N]E (T;\V) 1%:f0()\k)5,\k (HN (fi)( d/(\[ ))
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where we noticed that since V' is symmetric 0,V (z,2) = 20,V (2, y)|y=2. The
case £ = 0 refers to the case f; = --- = f; = 1. We will call the above equa-
tions Dyson-Schwinger equations. One would like to analyze the asymptotics
of the correlators. The idea is that if we can prove that 4V converges, then we
can linearize the above equations around this limit, and hopefully solve them



asymptotically by showing that only few terms are relevant on some scale, solv-
ing these simplified equations and then considering the equations at the next
order of correction. Typically in the case above, we see that if 4V converges
towards p* almost surely (or in LP) then by the previous equation (with £ = 0)
we must have

/fo(ﬂcl)@mV(xl,xg)du*(xl)d,u*(mg) =0. (1)
We can then linearize the equations around p* and we find that if we set Ay =
N — u*, we can rewrite the above equation with £ = 0 as

E[AN(Efo)] = %E[ﬂN(fé)} - QE[/ fo(21)02,V (21, 22)dA N (21)dA N (22)] (2)

where = is the Master operator given by

Zfo(z) = 2fo(x) /8m1V(z,x1)du*(:c1) + Z/fo(zl)axl‘/(xl,z)du*(xl).

Let us show heuristically how such an equation can be solved asymptotically.
Let us assume that we have some a priori estimates that tell us that Ay is
of order §y almost surely (or in all L*’s)[ that is that for sufficiently smooth
functions g, Anx(g) = (4" — u*)(g) is with high probability (i.e with probability
greater than 1 — N=P for all D and N large enough) at most of order § NCy
for some finite constant Cy|. Then, the right hand side of (2)) should be smaller
than max{d%, N~} for sufficiently smooth test functions. Hence, if we can
invert the master operator Z, we see that the expectation of Ay is of order at
most max{d3,, N~1}. We would like to bootstrap this estimate to show that dx
is at most of order N—!. This requires to estimate higher moments of Ay. Let
us do a similar derivation from the Dyson-Schwinger equations when ¢ = 1 to
find that if Ax(f) = An(f) — E[ANn(f)],

EANEf)An(A)] = 2 / Jo(@1)du, V (@1, 22)dA y (21)dA N (22) A (foy]

FEAN AN+ BB ()] @)

Again if Z is invertible, this allows to bound the covariance E[A N (fo)An(f1)]
by max{d3;, 83 /N, N~2}, which is a priori better than 6% unless dy is of order
1/N. Since An(f) — An(f) is at most of order 6% by (2), we deduce that also
E[AN(fo)AN(f1)] is at most of order §3,. We can plug back this estimate into
the previous bound and show recursively (by considering higher moments) that
dn can be taken to be of order 1/N up to small corrections. We then deduce
that

C(fo, f1) = ]\}gnoo N?E[(An — E[AN])(fo)(ANn —E[AN)(f1)] = #*(E7 " fof1)

and
m(fo) = Jim NE[AN(fo)] = " (E7 fo)')

We can consider higher order equations (with £ > 1) to deduce higher orders of
corrections, and the convergence of higher moments.



1.3 Rough plan of the lecture notes

We will apply these ideas in several cases where V has a logarithmic singularity
in which case the self-interaction term in the potential has to be treated with
more care. More precisely we will examine the following models.

1. The law of the GUE. We consider the case where the \; are the eigenval-
ues of the GUE and we take polynomial test functions. In this case the
operator = is triangular and easy to invert. Convergence towards u* and
a priori estimates on Ay can also be proven from the Dyson-Schwinger
equations.

2. The Beta ensembles. We take smooth test functions. Convergence of i’V
is proven by large deviation principle and quantitative estimates on dy
are obtained by concentration of measure. The operator = is invertible if
©* has a single cut, with a smooth density which vanishes like a square
root at the boundary of the support. We then obtain full expansion of the
correlators. In the case where the equilibrium measure has p connected
components in its support, we can still follow the previous strategy if we
fix the number of eigenvalues in a small neighborhood of each connected
pieces (the so-called filing fractions). Summing over all possible choices of
filing fractions allows to estimate the partition functions as well as prove
a form of central limit theorem depending on the fluctuations of the filling
fractions.

3. Discrete Beta ensembles. These distributions include the law of random
tilings and the \;’s are now discrete. Integration by parts does not give
nice equations a priori but Nekrasov found a way to write new equations
by showing that some observables are analytic. These equations can in
turn be analyzed in a spirit very similar to continuous Beta-ensembles.

4. Several matrix models. In this case, large deviations results are not yet
known despite candidates for the rate function were proposed by Voiculescu
[90] and a large deviation upper bound was derived [9]. However, we can
still write the Dyson-Schwinger equations and prove that limits exist pro-
vided we are in a perturbative setting (with respect to independent GUE
matrices). Again in perturbative settings we can derive the expansion of
the correlators by showing that the Master operator is invertible.

We will discuss also one idea related with our approach based on Dyson-Schwinger
to study more local questions, in particular universality of local fluctuations.
The first is based on the construction of approximate transport maps as intro-
duced in [5]. The point is that the construction of this transport maps goes
through solving a Poisson equation Lf = g where L is the generator of the
Langevin dynamics associated with our invariant measure. It is symmetric with
respect to this invariant measure and therefore closely related with integration
by parts. In fact, solving this Poisson equation is at the large N limit closely
related with inverting the master operator = above, and in general follows the



strategy we developed to analyze Dyson-Schwinger equations. Another strategy
to show universality of local fluctuations is by analyzing the Dyson-Schwinger
equations but for less smooth test functions, that is prove local laws. We will
not developp this approach here. These ideas were developed in [59] for dis-
crete beta-ensembles, based on a strategy initiated in [I9]. The argument is to
show that optimal bounds on Stieltjes functionals can be derived from Dyson-
Schwinger equation away from the support of the equilibrium measure, but at
some distance. It is easy to get it at distance of order 1/ V'N, by straightforward
concentration inequalities. To get estimates up to distance of order 1/N, the
idea is to localize the measure. Rigidity follows from this approach, as well as
universality eventually.

2 The example of the GUE

In this section, we show how to derive topological expansions from Dyson-
Schwinger equations for the simplest model : the GUE. The Gaussian Unitary
Ensemble is the sequence of N x N hermitian matrices X, N > 0 such that
(Xn(ij))i<; are independent centered Gaussian variables with variance 1/N
that are complex outside of the diagonal (with independent real and imaginary
parts). Then, we shall discuss the following expansion, true for all integer k

B[ TH(XR)] = 3 < Mo ()
920

This expansion is called a topological expansion because M, (k) is the number
of maps of genus g which can be build by matching the edges of a vertex with k
labelled half-edges. We remind here that a map is a connected graph properly
embedded into a surface (i.e so that edges do not cross). Its genus is the smallest
genus of a surface so that this can be done. This identity is well known [91]
and was the basis of several breakthroughs in enumerative geometry [58) 62].
It can be proven by expanding the trace into products of Gaussian entries and
using Wick calculus to compute these moments. In this section, we show how
to derive it by using Dyson-Schwinger equations.

2.1 Combinatorics versus analysis

In order to calculate the electromagnetic momentum of an electron, Feynman
used diagrams and Schwinger used Green’s functions. Dyson unified these two
approaches thanks to Dyson-Schwinger equations. On one hand they can be
thought as equations for the generating functions of the graphs that are enu-
merated, on the other they can be seen as equations for the invariance of the
underlying measure. A baby version of this idea is the combinatorial versus
the analytical characterization of the Gaussian law A/(0,1). Let X be a random
variable with law A/(0,1). On one hand it is the unique law with moments given
by the number of matchings :



E [X"] = # {pair partitions of n points} =: P, . (4)

On the other hand, it is also defined uniquely by the integration by parts formula

EXf(X)] = E[f(X)] (5)
(6)

for all smooth functions f going to infinity at most polynomially. If one applies
the latter to f(x) = ™ one gets

Mpy1 :=E [X"+1] = E [nX"il] = NMy_1 -

This last equality is the induction relation for the number P,;; of pair
partitions of n 4+ 1 points by thinking of the n ways to pair the first point. Since
Py =mg=1and P, = m; =0, we conclude that P, = m,, for all n. Hence, the
integration by parts formula and the combinatorial interpretation of moments
are equivalent.

2.2 GUE : combinatorics versus analysis

When instead of considering a Gaussian variable we consider a matrix with
Gaussian entries, namely the GUE, it turns out that moments are as well de-
scribed both by integration by parts equations and combinatorics. In fact mo-
ments of GUE matrices can be seen as generating functions for the enumeration
of interesting graphs, namely maps, which are sorted by their genus. We shall
describe the full expansion, the so-called topological expansion, at the end of
this section and consider more general colored cases in section 3] In this section,
we discuss the large dimension expansion of moments of the GUE up to order
1/N? as well as central limit theorems for these moments, and characterize these
asymptotics both in terms of equations similar to the previous integration by
parts, and by the enumeration of combinatorial objects.

Let us be more precise. A matrix X = (Xj;)1<i j<n from the GUE is the
random N x N Hermitian matrix so that for £ < j, Xj; = X,lfj —l—iX};H}, with two
independent real centered Gaussian variables with covariance 1/2N (denoted
later N (0, 5&)) variables X,Hfj,X,i]}}) and for k € {1,..., N}, Xpp ~ N (0, %).
then, we shall prove that

B (X)) = Mo(k) + 5 M) + ol p5) @
N - VT e M TN
where
e My(k) = Cj /2 denotes the Catalan number : it vanishes if k is odd and
is the number of non-crossing pair partitions of 2k (ordered) points, that
is pair partitions so that any two blocks (a,b) and (c,d) is such that

a<b<c<dora<c<d<b Cjcan also be seen to be the number
of rooted trees embedded into the plane and k edges, that is trees with a

10



distinguished edge and equipped with an exploration path of the vertices
v — vy — -+ — vy of length 2k so that (vy,vs) is the root and each
edge is visited twice (once in each direction). C} can also be seen as the
number of planar maps build over one vertex with valence k : namely take
a vertex with valence k, draw it on the plane as a point with k half-edges.
Choose a root, that is one of these half-edges. Then the set of half-edges
is in bijection with k ordered points (as we drew them on the plane which
is oriented). A matching of the half-edges is equivalent to a pairing of
these points. Hence, we have a bijection between the graphs build over
one vertex of valence k& by matching the end-points of the half-edges and
the pair partitions of k£ ordered points. The pairing is non-crossing iff the
matching gives a planar graph, that is a graph that is properly embedded
into the plane (recall that an embedding of a graph in a surface is proper
iff the edges of the graph do not cross on the surface). Hence, My (k) can
also be interpreted as the number of planar graphs build over a rooted
vertex with valence k. Recall that the genus g of a graph (that is the
minimal genus of a surface in which it can be properly embedded) is given
by Euler formula :

2 —2g = #Vertices + #Faces — #FEdges ,

where the faces are defined as the pieces of the surface in which the graph
is embedded which are separated by the edges of the graph. If the surface
as minimal genus, these faces are homeomorphic to discs.

e M (k) is the number of graphs of genus one build over a rooted vertex
with valence k. Equivalently, it is the number of rooted trees with k/2
edges and exactly one cycle.

Moreover, we shall prove that for any ki, ..., k&, (Tr(X%) — E[Tr(X"%)])1<j<p
converges in moments towards a centered Gaussian vector with covariance

Mok, 0) = Jim B [(Tr(X*) — B[Tr(X*)])(Tr(X*) ~ E[T(X")])]

My(k, £) is the number of connected planar rooted graphs build over a vertex
with valence k and one with valence ¢. Here, both vertices have labelled half-
edges and two graphs are counted as equal only if they correspond to matching
half-edges with the same labels (and this despite of symmetries). Equivalently
My(k, £) is the number of rooted trees with (k + ¢)/2 edges and an exploration
path with & + ¢ steps such that k consecutive steps are colored and at least an
edge is explored both by a colored and a non-colored step of the exploration
path.

Recall here that convergence in moments means that all mixed moments
converge to the same mixed moments of the Gaussian vector with covariance
M. We shall use that the moments of a centered Gaussian vector are given by
Wick formula :

P
miky, .. k) =E[] [ Xe] =D 11 M (kq, k)

i=1 7™ blocks (a,b) of =

11



which is in fact equivalent to the induction formula we will rely on :
P

m(kl,... ZM kl, kQ,...,k‘ifl,ki+1,...,]€p).
=2

Convergence in moments towards a Gaussian vector implies of course the stan-
dard weak convergence as convergence in moments implies that the second mo-
ments of Zy := (Tr(X*) —E[Tr(X*)])1<j<p are uniformly bounded, hence the
law of Z is tight. Moreover, any limit point has the same moments than the
Gaussian vector. Since these moments do not blow too fast, there is a unique
such limit point, and hence the law of Zy converges towards the law of the
Gaussian vector with covariance M. We will discuss at the end of this section
how to generalize the central limit theorem to differentiable test functions, that
is show that Zn(f) = Trf(X) — E[Trf(X)] converges towards a centered Gaus-
sian variable for any bounded differentiable function. This requires more subtle
uniform estimates on the covariance of Zy(f) for which we will use Poincaré’s
inequality.

The asymptotic expansion as well as the central limit theorem can be
derived using combinatorial arguments and Wick calculus to compute Gaussian
moments. This can also be obtained from the Dyson-Schwinger (DS) equation,
which we do below.

2.2.1 Dyson-Schwinger Equations

Let :
Y, = TrX* — ETrX*

We wish to compute for all integer numbers k1, ..., k, the correlators :

p
E |TeX* [T Vs,

=2

By integration by parts, one gets the following Dyson-Schwinger equations

Lemma 2.1. For any integer numbers ki, ..., k,, we have
p 1 k1—2
E|TeX® [ Ve | = Z TrX TrXxh —2- ”HYk
i=2 £=0 =2

+E Z 2y xk k=2 H Vi, (8)

J=2,j#i

Proof. Indeed, we have

12



E

[
]

p
X I Y,
=2

N P
lXij(Xk‘_l)ji 11

ij=1 i=2

1 & L
N > E|ox, ((Xkll)jiHYk,)
=2

,j=1

where we noticed that since the entries are Gaussian independent complex vari-
ables, for any smooth test function f,

B[, f(Xie, b < 0)] = L El0x, f (Xee, k< 0)]. ©)

But, for any 4, j,k, £ € {1,...,N} and r € N

r—1

Ox,, (X ke = D (X )i (X775 1)

5=0
where (X°);; = 1,—;. As a consequence
Ox,,(Y;) = er?"j_l .
The Dyson-Schwinger equations follow readily. o
Exercise 2.2. Show that
1. If X is a GUE matriz, @ holds. Deduce (2.1)).

2. take X to be a GOE matriz, that is a symmetric matrix with real indepen-
dent Gaussian entries Ng (0, +) above the diagonal, and Ng(0, %) on the
diagonal. Show that

EIX i (Xia, < 0)] = B0, f (Xie, b < 0] + - Eldx,, (X, b < 0).

Deduce that a formula analogous to (2.1) holds provided we have an addi-
tional term N7'E [k TeX* [TV, V..

2.2.2 Dyson-Schwinger equation implies genus expansion
We will show that the DS equation (2.1]) can be used to show that :
1 & 1 1

Next orders can be derived similarly. Let :

1
mp =E [NTYX’“}

13



By the DS equation (with no Y terms), we have that :

k—2
1 1 o
md =K ZNTrXENTrX’“ ¢ 2] : (10)
{=0

We now assume that we have the self-averaging property that for all £ € N :
1 1 ?
( TrX"—E [NTrX ]) ] o(1)

as N — oo as well as the boundedness property

E

supmév < 00.
N

We will show both properties are true in Lemma If this is true, then the
above expansion gives us :

k—2

my =Y m'mil, s+ o(1)
=0

As {m}¥,¢ < k} are uniformly bounded, they are tight and so any limit point
{my, ¢ < k} satisfies

k—2
my = E memg—g—2,mg = 1,my =0.
£=0

This equation has clearly a unique solution.
On the other hand, let My(k) be the number of maps of genus 0 with one
vertex with valence k. These satisfy the Catalan recurrence :

k—2
Mo(k) = Mo(£)Mo(k — £ — 2)
=0
This recurrence is shown by a Catalan-like recursion argument, which goes by
considering the matching of the first half edge with the ¢th half-edge, dividing
each map of genus 0 into two sub-maps (both still of genus 0) of size ¢ and
k—¢—2 for ¢ €{0,...,k—2}.
Since m and M both satisfy the same recurrence (and My(0) = m)f =

1, Mo(1) = m¥Y¥ = 0), we deduce that m = Mj and therefore we proved by
induction (assuming the self-averaging works) that :

my = My(k) + o(1) as N — oo

It remains to prove the self-averaging and boundedness properties.

14



Lemma 2.3. There exists finite constants Dy and Ey, k € N, independent of
N, so that for integer number £, every integer numbers ki, ..., ko then :

‘
a) N(k1,y... k) =E HYki satisfies [c" (ky, ..., kp)| < Dy,
i=1

and

1
b) mgl =K [NTrX’“} satisfies |m£]1| < Bk, -

Proof. The proof is by induction on k = > k;. It is clearly true for k = 0,1
where Ey =1, F; = 0 and Dy = 0. Suppose the induction hypothesis holds for
k — 1. To see that b) holds, by the DS equation, we first observe that :

k—
1
E[NTer} = Z Lpxed Ter =2
=0
b 1
= Z(mévm%ﬁm (6. —(—2))
=0

Hence, by the induction hypothesis we deduce that

k—2
< Z(EZEICfoZ + Do) :=Ej.

'E [;fTrX’“}
=0

To see that a) holds, we use the DS equation as follows

p p P
Vi, [[ Y, = E|TeXy, [[Ye, | - E[TrXy,|E H
j=2 j=2 j=2
1 k—2
= +E > TrXTexhi s 2HY
£=0 j=2
[ » L P
+E |y Txtrset Ty,
_i:2 J=2,j#1i
1 k—2 P
~E NZTrXeTrX’“’E’Q E ]
=0 j=2

We next substract the last term to the first and observe that
TrX TrX™ 2 - E[Tr X TrX " 477

= Nngfc\/;_Q_e+NYkl_2_[mév+nYk1_2_[—CN(€, k1—2-1)

15



to deduce

k1—2

ﬁ 7227@ (k1 —2— ko, ... ky)

P
E m}c1+k oM (ks oy ki1, ki, - Kp)

Z (U ks =2 = 0N (ka, ... kp) — N (lky —2— 0k, .. k)]

£=0
P
Z Ny 4 Ky — 2, ko, ki1, ki kp) (11)
=2
which is bounded uniformly by our induction hypothesis. o

As a consequence, we deduce

Corollary 2.4. For all k € N, %TI(XIC) converges almost surely towards
My(k).

Proof. Indeed by Borel Cantelli Lemma it is enough to notice that it follows
from the summability of

P (|Tr(X* — E (Tr(X*)) | > Ne) < (k. k) _ Do

— g2N2 — g2N2°
o
2.3 Central limit theorem
The above self averaging properties prove that mY = My(k) + o(1). To get the
next order correction we analyze the limiting covariance ¢V (k,¢). We will

show that

Lemma 2.5. For all k,{ € N, ¢ (k, ) converges as N goes to infinity towards
the unique solution My(k,€) of the equation

- 2ZM0 k—2—p,0)+ Mok + £ —2)

so that My(k,¢) =0 if k+¢ < 1.
As a consequence we will show that

Corollary 2.6. N2(mY — My(k)) = mi +o(1) where the numbers (mi)x>o0 are
defined recursively by :

k—2 k—2
mip =2 miMy(k—0—2)+Y My(l,k—{—2)
=0 =0

16



Proof. (Of Lemma Observe that ¢V (k, £) converges for K = k+/ <1 (as it
vanishes uniformly). Assume you have proven convergence towards My (k, £) up
to K. Take ky + ko = K + 1 and use with p = 1 to deduce that ¢V (k1, ko)
satisfies

k1—2 1
Nk, ko) =2 ;) md N (ky—0-2, k2)+k2mg+k2,2+ﬁ > N (U ky—-2, k).

Lemma implies that the last term is at most of order 1/N and hence we
deduce by our induction hypothesis that ¢(k1, k2) converges towards Mo(k1, ko)
which is given by the induction relation

k1
Mo(ky k) = 2 Mo(O)Mo(ky — 2 — €,k2) + ko Mo(ky + ko — 2).
£=0

Moreover clearly My(ki,k2) = 0 if k1 + ko < 1. There is a unique solution to
this equation. o

Exercise 2.7. Show by induction that
My(k, £) = # {planar maps with 1 vertex of degree £ and one vertex of degree k}

Proof. (of Corollary Again we prove the result by induction over k. It is
fine for k = 0,1 where c¢; = 0. By with p = 0 we have :
N2(mY — My(k)) = 2 ZMO(@N2 (mp_g_y — Mo(k —2—10))
+ > N (m = Mo(€)) (mx—p—2 — Mo(k — 2 — )
+> Nk —1-2)

from which the result follows by taking the large N limit on the right hand side.
o

Exercise 2.8. Show that c,l€ = mq (k) is the number of planar maps with genus
1 build on a vertex of valence k.(The proof goes again by showing that mq (k)
satisfies the same type of recurrence relations as cj, by considering the matching
of the root : either it cuts the map of genus 1 into a map of genus 1 and a map
of genus 0, or there remains a (connected) planar maps.)

Theorem 2.9. For any polynomial function P = Y A\pa*, Zy(P) = TrP —
E[TrP] converges in moments towards a centered Gaussian variable Z(P) with
covariance given by

E[Z(P)Z(P)] = 3 Aehe Mok, k)

17



Proof. Tt is enough to prove the convergence of the moments of the Y;’s. Let

Nk, ky) =E Yy, Yy ] .

Then we claim that, as N — oo, ¢™ (k1,...,k,) converges to G(k1,...k,) given
by :
k ~
Glky,.. kp) =Y Mo(ky, ki)Glka, ... ki, ... Kp) (12)
i=2

where " is the absentee hat.

This type of moment convergence is equivalent to a Wick formula and is
enough to prove (by the moment method) that Yy, ,..., Y}, are jointly Gaussian.
Again, we will prove this by induction by using the DS equations. Now assume
that holds for any k1, ..., k, such that > -¥_, k; < k. (induction hypothesis)
We use . Notice by the a priori bound on correlators of Lemma (a) that
the terms with a 1/N are negligible in the right hand side and mJ is close to
My (k), yielding

ki1—2

p
Vi, [ Y4, _QZMO N(ky —2—0 ko, ... ky)

P
1
+Z kzMO(kl + kz — 2)CN(]€2, ooy kifl, ki+1, . kp) + O(N)
1=2

By using the induction hypothesis, this gives rise to :

= 2) My(O)G(ky — € —2,ka,... k)

+ 3 kiMo(ki + kj — 2)G(ka, .. ki, .. ky) + o(1)

It follows that

Gy, kp) =2 Mo(O)G(k1—0=2, kg, ... kp)+ Y kiMy(kit+k;—2)G(ka, ...

But using the induction hypothesis, we get

Gk, ..., kp =Z > Mo(0)M (ky —0—2, ki) +ki Mo (ki+k;—2))G ks, . .. K, . ..

which yields the claim since

Mo(ky, ki) =2 Mo(6)M(ky — € — 2,k;) + ki Mo(ky + ki — 2).

18



2.4 Generalization

One can generalize the previous results to smooth test functions rather than
polynomials. We have

Lemma 2.10. Let o be the semi-circle law given by

= %\/4—x2dx.

1. For any bounded continuous function f with polynomial growth at infinity

]\]121100N2f /f )do (z a.s.

2. For any C? function f with polynomial growth at infinity Z(f) = > f(\i)—
E(Q” f(A)) converges in law towards a centered Gaussian variable.

Our proof will only show convergence : the covariance is well known and can
be found for instance in [74], (3.2.2)].

Exercise 2.11. Show that for alln € N, [a"do(z) = My(n).

Proof. The convergence of - Z 1 f(X\;) follows since polynomials are dense in
the set of continuous functlons on compact sets by Weierstrass theorem. Indeed,

our bounds on moments imply that we can restrict ourselves to a neighborhood
of [-2,2] :

N
%Z/\?pl\AiIZM < ﬁ% Z)\?k—ﬂp
i=1

has moments asymptotically bounded by o (z2%+2P)/M?F < 22P(2/M)?F. This
allows to approximate moments by truncated moments and then use Weierstrass
theorem.

To derive the central limit theorem, one can use concentration of measure
inequalities such as Poincaré inequality. Indeed, Poincaré inequalities for Gaus-
sian variables read : for any C! real valued function F on CNV=1/2 x RN

]E{(F(Xu,k,l)—E[F(Xw,k,Z)]ﬂg% §;|3X F(Xge, b, 1))

Taking F' = Trf(X) we find that dx,; F(Xps, k,1) = f'(X);;. Indeed, we proved
this point for polynomial functions f so that we deduce

2
E [(Te(£(X)) ~ EITR(7(X))])?] < B [Te(7/(X)%)]
Hence, if we take a C! function f, whose derivative is approximated by a poly-

nomial P, on [—M, M] (with M > 2) up to an error € > 0, and whose derivative
grows at most like 22X for |z| > M, we find
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where the right hand side goes to zero as IV goes to infinity and then ¢ goes to
zero. This shows the convergence of the covariance of Z(f). We then proceed
similarly to show that the approximation is good in any LP, hence deriving the
convergence in moments.

o

2.5 GUE topological expansion

The “topological expansion” reads

1 1
E {NTr [Xk]} => ~as Mo (k)
920
where M, (k) is the number of rooted maps of genus g build over a vertex of
degree k. Here, a “map” is a connected graph properly embedded in a surface
and a “root” is a distinguished oriented edge. A map is assigned a genus, given
by the smallest genus of a surface in which it can be properly embedded. This
complete expansion (not that the above series is in fact finite) can be derived as
well either by Wick calculus or by Dyson-Schwinger equations : we leave it as
an exercise to the reader. We will see later that cumulants of traces of moments
of the GUE are related with the enumeration of maps with several vertices.

3 Several matrix-ensembles

Topological expansions have been used a lot in physics to relate enumeration
problems with random matrices. Considering several matrix models allows to
deal with much more complicated combinatorial questions, that is colored maps.
In this section we show how the previous arguments based on Dyson-Schwinger
equations allow to study these models in perturbative situations. In fact, large
deviations questions are still open in the several matrices case and convergence
of the trace of several matrices has only been proved in general perturbative
situations [52] or for very specific models such as the Ising model corresponding
to a simple AB interaction [44] [71] [69] 56| 57].

3.0.1 Non-commutative laws

We let C(Xy,---,X,,) denote the set of polynomials in m-non commutative
indeterminates with complex coefficients. We equip it with the involution * so
that for any i1,...,4 € {1,...,m}, for any complex number z, we have

(Z)(,‘1 c 'X'ik)* = ZXik e 'Xil .
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For N x N Hermitian matrices (A41,---,A;), let us define the linear form
QA A, from C(Xq,---,X,,) into C by

. 1
QA .. A, (P)= NTr(P(A1,~~ v Am))

where Tr is the standard trace Tr(A4) = vazl Ay If Ay, ..., A, are random,
we denote by
fiay A, (P) = E[fia, ... a,, (P)].

LAy, Ays BAy,.. A, Will be seen as elements of the algebraic dual C(X7, - -+ , X, )*
of C{X1, -+, Xm). C{X1,---,X,)* is equipped with its weak topology.

Definition 3.1. A sequence (tp)nen n C{(X1, -+, X;n)* converges weakly to-
wards p € C(Xy, -+, Xon)* iff for any P € C{X1,--- , X)),

lim p,(P) = u(P).

n— oo

Lemma 3.2. Let C be a finite constant and n be an integer number. Set
K, (C)={peCXy, -, Xn)" |p(Xe, - Xe )| <C" W €{1,--- ,m},r € Nyr <n}.

Then, any sequence (fin)nen S0 that p, € K, (C) is sequentially compact if
my goes to infinity with n, i.e. has a subsequence (y(n))nen which converges
weakly. We denote in short K(C') or K (C) the set of such sequances.

Proof. Since p,(Xy, ---Xy,.) € C is uniformly bounded, it has converg-
ing subsequences. By a diagonalisation procedure, since the set of monomials
is countable, we can ensure that for a subsequence (¢(n),n € N), the terms
g(ny (Xey - Xe, ), € € {1,--- ,m},r € N converge simultaneously. The limit
defines an element of C(Xy, -+, X,,)* by linearity. o

The following is a triviality, that we however recall since we will use it several
times.

Corollary 3.3. Let C be a finite non negative constant and m,, a Sequence
going to infinity at infinity. Let (fin)nen be a sequence such that p, € K, (C)
which has a unique limit point. Then (fi,)nen converges towards this limit point.

Proof. Otherwise we could choose a subsequence which stays at positive
distance of this limit point, but extracting again a converging subsequence gives
a contradiction. Note as well that any limit point will belong automatically to
C(Xy, -, Xm)*. o

We shall call in these notes non-commutative laws elements of C(X7, - -+ , X,,)*
which satisfy

W(PPY) >0, u(PQ) = u(QP),u(1) =1

for all polynomial functions P, Q. This is a very weak point of view which how-
ever is sufficient for our purpose. The name ‘law’ at least is justified when m = 1,
in which case iV is the empirical measure of the eigenvalues of the matrix A,
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and hence a probability measure on R, whereas the non-commutativity is clear
when m > 2. There are much deeper reasons for this name when considering
C*-algebras and positivity, and we refer the reader to [89] or [3].

The laws fia, ... A, [1A,,--,A,, are obviously non-commutative laws. Since
these conditions are closed for the weak topology, we see that any limit point of
v, N will as well satisfy these properties. A linear functional on C(X1,--- , X,,)
which satisfies such conditions is called a tracial state. This leads to the notion
of C*-algebras and representations of the laws as moments of non-commutative
operators on C*-algebras. We however do not want to detail this point in these
notes.

3.1 Non-commutative derivatives

First, for 1 < i < m, let us define the non-commutative derivatives 0; with
respect to the variable X;. They are linear maps from C(Xy,---,X,,) to
C(X1, +, X,n)®? given by the Leibniz rule

OPQ=0;Px(1®Q)+ (P®1)x 8Q

and 9;X; = 1,.;1 ® 1. Here, x is the multiplication on C(Xy,---, X,,)®?%
PRQxXxR®S=PR®QS. So, for a monomial P, the following holds

%P= > R®S
P=RX;S
where the sum runs over all possible monomials R, S so that P decomposes
into RX;S. We can iterate the non-commutative derivatives; for instance 97 :
C(X1,  , Xm) 2 C(Xq, -, X)) @C(Xy, -+, X)) @ C(X4, -+, X,pp) 18 given
for a monomial function P by

#P=2 Y R®SEQ.
P=RX;SX;Q

We denote by # : C(X1,- -+, X;n)®2xC(Xy, -+, X;n)—=C(Xy,- -, X,,) the map
P® QiR = PRQ and generalize this notation to P ® Q@ ® R§(S,V) = PSQV R.
So 9; PR corresponds to the derivative of P with respect to X; in the direction
R, and similarly 271[0? P4(R, S) + 0? P4(S, R)] the second derivative of P with
respect to X; in the directions R, S.

We also define the so-called cyclic derivative D;. If m is the map m(A®B) =
BA, we define D; = m o 9;. For a monomial P, D;P can be expressed as

DiP= Y SR

P=RX;S

3.2 Non-commutative Dyson-Schwinger equations

Let XV, ..., X"~ be m independent GUE matrices and set ¥ = AxN.. XN
to be their non-commutative law. Let FPy,---, P, be r polynomials in k& non-
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commutative variables. Then for all < € {1,...,m}

B[N (X Po) [[ N (P)] = E[aN @ iV (@0:P) [ ™ (Py)]
j=1 i=1

I &Ko X
+ w3 2 BN Ry [T N (P)) (13)
Jj'=1 J#3’
The proof is a direct application of integration by parts and is left to the reader.
The main point is that our definitions yield

Oxx Tr(P(X)) = (D P)ji,  Oxx (P(X))iryr = (OkP)wi gy -

3.3 Independent GUE matrices

3.3.1 Voiculescu’s theorem

The aim of this section is to prove that if XV:¢ 1 < ¢ < k are independent GUE
matrices

Theorem 3.4. [Voiculescu [88]] For any monomial q in the unknowns X1, ..., X,
: 1 N N N m
A}gnooE[NTr (Q(Xl 7X2 77Xm))] =0 (Q)

where a™(q) is the number Mo(q) of planar maps build on a star of type q.

Remark 3.5. 0™, once extended by linearity to all polynomials, is called the
law of m free semi-circular variables because it is the unique non-commutative
law so that the moments of a single variable are given by the Catalan numbers
satisfying

o (X7 = a@™))-- (X] = o(a"))) =0,
for any choice of £;,1 < j < p, such that £, # {py1.

Proof. By the non-commutative Dyson-Schwinger equation with P; = 1 for
j > 1, we have for all 4

E[:&N(XiXZl T ka)] = Z E[ﬂN(Xfl T Xej—l)ﬂN(X£j+l T ka)]

j:Zj:i

Let us assume that for all £ < K there exists Ck finite such that for any
ly,.... 0 e{l,...,m} so that > ¢; <K

B[N (Xe, -+ Xe )l < Oy (14)
E[(aN (X, X0 -+ Xo,) — B[N (X, Xop - Xo)))'] < Cu/N? - (15)

Then we deduce that the family E[aY (X, Xy, -+ Xy, )] is tight and its limit
points 7(Xp, - -+ Xy, ) satisfy

(Xp, - X)) = Z (X, Xe, )T(Xey0r - Xoy)

j:éjzll
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and 7(1) = 1, 7(X,¢) = 0. There is a unique solution to this equation. It is
given by {Mo(Xy, -+ Xe,.,1),4; € {1,...,m}} since the later satisfies the same
equation. Indeed, it is easily seen that the number of planar maps on a trivial
star 1 can be taken to be equal to one, and there is none with a star with only
one half-edge. Moreover, the number Mo (Xy, --- Xy, ,1) of planar maps build
on Xy, --- Xy, can be decomposed according to the matching of the half-edge of
the root. Because the maps are planar, such a matching cut the planar map in
to independent planar maps. Hence

Mo(Xe, -+ Koy 1) = Y Mo(Xey - Xg, 1, )Mo (X,

Jiti=t

Xékyl)

j+1

The proof of is a direct consequence of non-commutative Holder inequality
and the bound obtained in the first chapter for one matrix. We leave to
the reader : it can be proved by induction over K using the Dyson-Schwinger
equation exactly as in the one matrix case, see Lemma [2.3]

o

3.3.2 Central limit theorem

Theorem 3.6. Let Py,...,P. be polynomial in X1,...,X,, and set Y(P) =
N(iN(P) — o™(P)). Then (Y(Py),...,Y(Py)) converges towards a centered
Gaussian vector with covariance

C(Pl,PQ) = ZO’m(DiE_lplDipz) s
=1

with ZP = 3 [0;P#X; — (0™ @ I + I @ 6™)(9;D;P)).

Notice above that = is invertible on the space of polynomials with null con-
stant term. Indeed, for any monomial ¢, the first part of = is the degree operator

> 0ig#X; = deg(q)q

whereas the second part reduces the degree, so that the sum is invertible.

Proof. The proof is the same as for one matrix and proceeds by induction based
on (L3). We first observe that my(P) = E[a"(P)] — o(P) is of order 1/N?
by induction over the degree of P thanks to and . We then show the
convergence of the covariance thanks to the Dyson-Schwinger equation with
r=1and P, = P—E[P], and Py = D, P, which yields after summation over i :
NZE[p" (EPo) (i (P) — E[@™ (P)))] = Y _E[i" (DiPoDiP)] + N* Ry (P)

=1

where

Ry(P) = 3 E[(i" — 1) *(9; 0 DiPy)i (P)
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Since P is centered, this is of order at most 1/N? by and . Hence, letting
N going to infinity and inverting = shows the convergence of the covariance
towards C.

Finally, to prove the central limit theorem we deduce from that, if
Y(P) = N(i™V (P) — o™ (P)), we have

GN(P,Py,....P) = EING@N—o™)(P)[[Y(P)]
j=1
= NE[(@N —o™) @ (@ =™ () _aDEP) [[Y(P)]
7 =1
+> ED aN(DiETPDP) [[Y (P
j=1 i=1 0£j

By induction over the total degree of the P;’s, and using the previous estimate,
we can show that the first term goes to zero. Hence, we deduce by induction
that Gn (P, Py, ..., P.) converges towards G(P, Py, ..., P,) solution of

G(P,Py,...,P.) = Zam(DiEflPDin)G(P, Py,...,Pj_1,Pjs1,... P),
j=1
which is Wick formula for Gaussian moments. o

3.4 Several interacting matrices models

In this section, we shall be interested in laws of interacting matrices of the form

1 _nmy
A ( Xy, Xopm) = ok NTr(V (X1, ,Xm))d’uN(Xl)_“dMN(Xm)
1%

where Z‘I,V is the normalizing constant

Zy :/efNTF(V(Xl,n-)XT,L))duN(Xl)...d,uN(Xm)

and V is a polynomial in m non-commutative unknowns. In the sequel, we fix
n monomials ¢; non-commutative monomials;

¢i( X1, X)) = Xj}' "'Xj;';.

g

for some jF € {1,---,m}, 7; > 1, and consider the potential given by
Ve(X1, o, X)) = > tigi(Xa, -+, Xom)
i=1

where t = (t1,...,t,) are n complex numbers such that V; is self-adjoint. More-
over, du™ (X) denotes the standard law of the GUE, that is

_ _Ny(x?2
d/,LN(X) = ZNllXG?—lﬁ)e ];]T (X% H d%(X”) H d%(X”)
1<i<j<N 1<i<j<N
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This part is motivated by a work of 't Hooft [82] and large developments
which occurred thereafter in theoretical physics. 't Hooft in fact noticed that if
V=V-= Z 1 tig; with fixed monomials g; of m non-commutative unknowns

and if we see Zv = ZY as a function of t = (¢1,--- ,t,)
InZ =" N*"29F,(t) (16)
920
where

n tz)k"
Fy(t) :== Z H My (¢, ki)1<i<n)

L.l
Ky, kn ENF i=1 v

is a generating function of the number M,((¢;, ki)i1<i<) of maps with genus
g build over k; stars of type ¢;, 1 < ¢ < n. A map is a connected oriented
graph which is embedded into a surface. Its genus g is by definition the smallest
genus of a surface in which it can be embedded in such a way that edges do not
cross and the faces of the graph (which are defined by following the boundary
of the graph) are homeomorphic to a disc. Intuitively, the genus of a surface is
the maximum number of simple closed curves that can be drawn on it without
disconnecting it. The genus of a map is related with the number of vertices,
edges and faces of the map. The faces of the map are the pieces of the surface
in which it is embedded which are enclosed by the edges of the graph. Then,
the Euler characteristic 2 — 2¢ is given by the number of faces plus the number
of vertices minus the number of edges.

The vertices of the maps we shall consider have the structure of a star; a
star of type ¢, for some monomial ¢ = X, --- Xy, , is a vertex with valence
deg(q) and oriented colored half-edges with one marked half edge of color ¢y,
the second of color {5 etc until the last one of color £5. My((¢;, ki)i<i<n) is
then the number of maps with k; stars of type ¢;, 1 < i < n. The equality
obtained by ’t Hooft [82] was only formal, i.e means that all the derivatives on
both sides of the equality coincide at t = 0. This result can then be deduced
from Wick formula which gives the expression of arbitrary moments of Gaussian
variables.

Adding to V' a term t ¢ for some monomial ¢ and identifying the first order
derivative with respect to ¢t at t = 0 we derive from

ki
/ d:U'Vt ZN 29 Z H I;Z') Mg Quki)lﬁigna(%l))' (17)

920 - kn €Nk i=1

Even though the expansions and were first introduced by 't Hooft to
compute the matrix integrals, the natural reverse question of computing the
numbers M, ((g;, ki)1<i<n) by studying the associated integrals over matrices
encountered a large success in theoretical physics. In the course of doing so,
one would like for instance to compute the limit limy_ oo N2 1n Zév and claim
that the limit has to be equal to Fy(t). There is here the claim that one can
interchange derivatives and limit, a claim that we shall study in this chapter.
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We shall indeed prove that the formal limit can be strenghten into a large N
expansion. This requires that integrals are finite which could fail to happen for
instance with a potential such as V(X) = X3. We could include such potential
to the cost of adding a cutoff 1) x,<as for some sufficiently large (but fixed)
M. This introduces however boundary terms that we prefer to avoid hereafter.
Instead, we shall assume that

(600 = T (VX Xo) 4§ 0K (18)

is convex for all N. We denote by U the set of parameters t = (t1,...,t5)
so that (| . holds Note that this is true when t = 0. This implies that the

Hessian of — In dvt is uniformly bounded below by —N/41, that is is uniformly
log-concave. This property will provide useful a priori bounds. We also denote
B, the set of parameters t = (t1,...,t,) so that |[t||.c = max|t;| is bounded
above by e. In the sequel, we denote by ||t||1 =Y |ti].

Then, we shall prove that for t € U N Be, € small enough,

B IP] = 110N (P)] = o8, (P) + 130% (P) +o(N%)

Ky .
where o7, (¢) = D5, . . ek Hl 1 = ‘? M ((gi, ki)1<i<k, (g, 1)) for monomial
functions ¢ for g =0 or 1.

This part summarizes results from [52] and [53]. The full expansion (i.e
higher order corrections) was obtained by E. Maurel Segala (see [70]).

3.4.1 First order expansion for the free energy

We prove here (see Theorem |3.16]) that

lim 7111/ 2 GNTr (@ (X X)) gy N (X)) - dp™N (X o)

N—oco N

q“ki))l SZS”)
ki, kn€Ni=1

provided V; satisfies | and the parameters t;’s are sufficiently small. To
prove this result we ﬁrst show that, under the same assumptions, ¥ (q) =
,u% tias (N~'Tr(q)) converges as N goes to infinity towards a limit which is as
well related with map enumeration (see Theorem [3.12]).

The central tool in our asymptotic analysis will be again the Dyson-Schwinger’s
equations. They are simple emanation of the integration by parts formula (or,
somewhat equivalently, of the symmetry of the Laplacian in L?(dz)). These
equations will be shown to pass to the large N limit and be then given as some
asymptotic differential equation for the limit points of ul¥ = ugt [™V]. These
equations will in turn uniquely determine these limit points in some small range
of the parameters. We will then show that the limit points have to be given as
some generating function of maps.
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3.4.2 Finite dimensionnal Dyson-Schwinger’s equations

We can generalize the Dyson-Schwinger equations that we proved in Section [3:2]
for independent GUE matrices to the interacting case as follows.

Property 3.7. For all P € C(Xy, -+, X)), alli € {1,--- ;m},
i, (AN @ @Y (9:P)) = py, (BV (X + D;V)P))

Proof. Using repeatidely Stein’s lemma which says that for any differen-
tiable function f on R,

/f(x)xe*%dx:/f’(x)efédx,

we find, since

CIRA )2 1S(A ()2 CIRA ) 1?2 1S4 (rs)) |2
2 2 2

Ai(rs)e = —(Orirs) T 103 (a,(rs)) )€

CIRA )2 1S4 ()2
2 2

= 7aﬁl(rs)e

with 04, (r5) Ak (15) = 0, (sr) Ak (i) = Lk=i1rs=ji, that

N
1 1 _
/NTY(AkP)dN%(A) = 2 E:/aAk(ji)(Pe N 5 TTde™ (4n)

4,j=1

| X
= WZ/ Z QjjRii

ij=1 P=QXLR

n N
—NZ Z tzZPinthih duy, (A)

=1 ql:QXkR h=1

- / (]\;(Tw@ Tr)(0x P) — JiTTI"(Dk‘/tP)) dpyy, (A)

where A = (A44,...,A,,). This yields
[ ¥ (s DV Py i 0 ¥ @) duti () 0. (19)
<&

3.4.3 A priori estimates

Nﬁ is a probability measure with uniformly log-concave density. This provides
very useful a priori inequalities such as concentration inequalities and Brascamp-
Lieb inequalities. We recall below the main consequences we shall use and refer
to [3] and my course in Saint Flour for details.
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We assume V;, = Y t;q; satisfies , thatist = (¢1,...,t,) € U. Brascamp-
Lieb inequalities allow to compare expectation of convex functions with those
under the Gaussian law, for which we have a priori bounds on the norm of
matrices. From this we deduce, see [53] for details, that

Lemma 3.8. For e small enough, there exists My finite so that for allt € UNB,
Vi = > tiqi there exists a positive constant ¢ such that for all i and s > 0

udn (| Xl > s+ Mo — 1) < eV,
As a consequence, for § > 0, for all allr < N/2 and all £;,i <r
E[|aY(Xe, - Xe,)] < (Mo +0)". (20)

Concentration inequalities are deduced from log-Sobolev and Herbst’s argu-
ment [53] section 2.3] :

Lemma 3.9. There exists € > 0 and ¢ > 0 so that for t € U N B, for any
polynomial P

u;, ({1~ (P) = LN (P = [1PIg, 8 0 {IIXGl < Mo +1}) < =V

where || Pl = supjx,j<a(Xpes | DxP(X) D P*(X)|loo) /2 if the supremum is
taken over m-tuples of N x N self-adjoint matrices X = (X1,...,X,,) and all
N.

Note that if P =3 agq, | P[5 < (3 agl? deg q2A2deg(Q))1/2.

3.4.4 Tightness and limiting Dyson-Schwinger’s equations

We say that 7 € C(Xy,---, X,,)* satisfies the Dyson-Schwinger equation with
potential V', denoted in short SD[V], if and only if for all ¢ € {1,--- ,m} and
PeC{Xy, -, Xm),

T(I)=1, 7&7(0:;P)=7((D;V+ X;)P) SD[V].
We shall now prove that

Property 3.10. There exists € > 0 so that for allt € UN B, (i, N € N) is
tight. Any limit point T satisfies SD[V;] and belongs to K(My), with My as in
Lemma and K (M) defined in Lemmal[3.3

Proof. By Lemma we know that gy = pgt [1™V] belongs to the compact
set K(Mj) (the restriction on moments with degree going to infinity with N
being irrelevant) hence this sequence is tight. Any limit point 7 belongs as well
to K(Cp). Moreover, the DS equation , together with the concentration
property of Lemma [3.9] implies that

T((Xg + DpV)P) =7 @ 7(0 P). (21)

<
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3.4.5 Uniqueness of the solutions to Dyson-Schwinger’s equations
for small parameters

The main result of this paragraph is

Theorem 3.11. For all R > 1, there exists € > 0 so that for ||t||cc = maxi<;<n [t <
€, there exists at most one solution 14 € K(R) to SD[V4].

Remark : Note that if V' = 0, our equation becomes
T(X;P) =7 ®7(0; P).

Because if P is a monomial, 7 ® 7(0; P) = > p_p x,p, T(P1)7(P2) with Py and
P, with degree smaller than P, we see that the equation SD[0] allows to define
uniquely 7(P) for all P by induction. The solution can be seen to be exactly
7(P) = o™ (P), o™ the law of m free semi-circular found in Theorem 3.4, When
V4 is not zero, such an argument does not hold a priori since the right hand side
will also depend on 7(D;q;P), with D;q; P of degree strictly larger than X;P.
However, our compactness assumption K (R) gives uniqueness because it forces
the solution to be in a small neighborhood of the law 79 = ¢™ of m free semi-
circular variables, so that perturbation analysis applies. We shall see in Theorem
[B:I3]that this solution is actually the one which is related with the enumeration
of maps.

Proof. Let us assume we have two solutions 7 and 7/ in K(R). Then, by
the equation SD[Vy], for any monomial function P of degree [ — 1, for i €

{17 - ’m}7
(r = T)XP) = ((r =) @ T)OP) + (7' ® (7 = T)(OP) ~ (r ) (D:ViP)
We define for [ € N

Ay(r,7') = sup |T(P) —T7'(P)].
monomial P of degree <i

Using SD[V¢] and noticing that if P is of degree [ — 1,

12
P =Y pi@piay
k=0

where pi, i = 1,2 are monomial of degree k or the null monomial, and D;V; is
a finite sum of monomials of degree smaller than D — 1, we deduce

Ay(r,7') = max max {|7(X;P) — 7' (X;P)|}
P monomial of degree <i—11<i<m
-2 D-1
< 22 Ag(r,7)R727F 4 Ot 0 Z Apgpi(m,7)
k=0 p=0

30



with a finite constant C' (which depends on n only). For v > 0, we set

dy(1,7") = Z YA (T, 7).

1>0
Note that in (K(R)), this sum is finite for v < (R)~!. Summing the two sides
of the above inequality times 7' we arrive at
D-1
dy(1,7") < 292(1 = yR) ', (1,7") + C||t] o Z v P (1, 7).
p=0
We finally conclude that if (R, ||t||cc) are small enough so that we can choose
v € (0, R71') so that
D—1
2°(L=yR) ™ + Clltllos D77 <1
p=0

then d,(7,7") = 0 and so 7 = 7/ and we have at most one solution. Taking
v = (2R)~! shows that this is possible provided

1 D—1
_ 2R)P1L 1
7+ Ol Y 2P <

so that when ||t||c goes to zero, we see that we need R to be at most of order
1

~D-—2
[[6]loc” .

<

3.4.6 Convergence of the empirical distribution

We can finally state the main result of this section.

Theorem 3.12. There exists € > 0 and My € RT (given in Lemma@ so that
for allt € UN B, @V (resp. ol ) converges almost surely (resp. everywhere)
towards the unique solution of SD[V] such that

[7(Xe, -+ X, )| < Mg
for all choices of 1, , ;.

Proof. By Property the limit points of iV belong to K(My) and satisfies
SD[V;]. Since My does not depend on t, we can apply Theorem to see
that if t is small enough, there is only one such limit point. Thus, by Corollary
m we can conclude that (i)Y, N € N) converges towards this limit point. From
concentration inequalities we have that

ud (I = p)(P)]P) < BC(P, M)N ™2 4 C*IN?e @ MN/2
insuring by Borel-Cantelli’s lemma that

lim (@Y —aM)(P)=0 a.s
N —o00

resulting with the almost sure convergence of . o
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3.4.7 Combinatorial interpretation of the limit

In this part, we are going to identify the unique solution 7 of Theorem as a
generating function for planar maps. Namely, we let for k = (kq1,--- , k,) € N*
and P a monomial in C(X7y, -+, X,,),

My (P) = card{ planar maps with k; labelled stars of type ¢; for 1 <i <mn

and one of type P} = Mo((P,1), (g, ki)1<i<n)-
This definition extends to P € C(Xy,---,X,,) by linearity. Then, we shall
prove that

Theorem 3.13. 1. The family {My(P),k e N,P € C(X1,---,X,,)} satis-
fies the induction relation : for alli € {1,--- ;m}, allP € C(X1,--- , X;),
all k € N,

Mu(X;iP) = Y HCPJM ®Mip(BiP)+ > kjMi_1,([Dig;]P)

0<p;<k; j=1 1<j<n
1<j<n

(22)
where 1;(7) = 1i—; and My (1) = 1. defines uniquely the family
{Mk<P>7k € (C<X1a e aXm>aP € (C<X17 e aXm>}

2. There exists A, B finite constants so that for all k € N", all monomial
PeC{Xy, -, Xm),

Mi(P)] < KIAZI= R g9 T ¢y, Clegcr) (23)

i=1

with k! := []"_, k;! and C, the Catalan numbers.
3. Fort in B(4A)71,

ZH kl Mk)

keN™ i=1

1s absolutely convergent. For t small enough, My is the unique solution
of SD[V;] which belongs to K(4B).

By Theorem and Theorem [3.12] we therefore readily obtain that

Corollary 3.14. For all ¢ > 0, there exists n > 0 so that for t € U. N By, N
converges almost surely and in expectation towards

ok
n(P) = Mu(P) = 3 TS M(p)

keNn? =1
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Let us remark that by definition of 4%, for all P,Q in C(X1, -, X,n),

i (PP >0 fN(PQ) = iV (QP).
These conditions are closed for the weak topology and hence we find that

Corollary 3.15. There exists n > 0 (n > (4A)™1) so that for t € B, My is a
linear form on C(Xy,--- , X,,) such that for all P,Q

My(PP) >0 My(PQ) = M(QP) Mq(1) = 1.

Remark. This means that My is a tracial state. The traciality property can
easily be derived by symmetry properties of the maps. However, the positivity
property My(PP*) > 0 is far from obvious but an easy consequence of the
matrix models approximation. This property will be seen to be useful to actually
solve the combinatorial problem (i.e. find an explicit formula for My).

Proof of Theorem [B.13l

1. Proof of the induction relation .

e We first check them for k = 0 = (0,---,0). By convention, there is
one planar map with a single vertex, so Mg(1) = 1. We now check
that

Mo(X;P) = Mo ® Mo(diP) = Y Mo(p1)Mol(p2)

P=p1Xip2

But this is clear since for any planar map with only one star of
type X;P, the half-edge corresponding to X; has to be glued with
another half-edge of P, hence if X; is glued with the half-edge X,
coming from the decomposition P = p; X;p2, the map is split into two
(independent) planar maps with stars p; and py respectively (note
here that p; and py inherites the structure of stars since they inherite
the orientation from P as well as a marked half-edge corresponding
to the first neighbour of the glued Xj;.)

e We now proceed by induction over the k and the degree of P; we
assume that is true for > k; < M and all monomials, and for
> ki = M + 1 when deg(P) < L. Note that My (1) =0 for k| > 1
since we can not glue a vertex with no half-edges with any star.
Hence, this induction can be started with L = 0. Now, consider
R = X;P with P of degree less than L and the set of planar maps
with a star of type X;Q) and k; stars of type ¢q;, 1 < j < n, with
|k| => ki = M + 1. Then,

o either the half-edge corresponding to X; is glued with an half-
edge of P, say to the half-edge corresponding to the decomposition
P = pi1X;p2; we see that this cuts the map M into two disjoint
planar maps M; (containing the star p;) and My (resp. ps), the
stars of type g; being distributed either in one or the other of these
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two planar maps; there will be r; < k; stars of type ¢; in M7, the rest
in My. Since all stars all labelled, there will be [T C}! ways to assign
these stars in M7 and Ms.

Hence, the total number of planar maps with a star of type X; P and
k; stars of type g;, such that the marked half-edge of X;P is glued
with an half-edge of P is

oo > TG Melp) Mic(p2) (24)

P=p1X;ps 0<r;<k; =1
p1dip I<i<n

¢ Or the half-edge corresponding to X; is glued with an half-edge of
another star, say g;; let’s say with the edge coming from the decom-
position of g; into g; = ¢1X;g2. Then, we can see that once we are
giving this gluing of the two edges, we can replace X;P and ¢; by
G2q1 P

We have k; ways to choose the star of type ¢; and the total number
of such maps is

Z kjMui—1,(q2q1 P)

q;=q1X:q2

Note here that My is tracial. Summing over j, we obtain by linearity

Of Mk .
> kiMici, ([Dig;)P) (25)

and give . Moreover, it is clear that defines
uniquely My (P) by induction.

2. Proof of . To prove the second point, we proceed also by induction
over k and the degree of P. First, for k = 0, Mo (P) is the number of
colored maps with one star of type P which is smaller than the number of
planar maps with one star of type 298 P gince colors only add constraints.
Hence, we have, with C} the Catalan numbers,

My (P) < C[degw)] < Cdeg(P)

showing that the induction relation is fine with A = B = 1 at this step.
Hence, let us assume that is true for Y k; < M and all polynomials,
and Y k; = M 41 for polynomials of degree less than L. Since M(1) =0
for > k; > 1 we can start this induction. Moreover, using , we get
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that, if we denote k! = [/, k;!,

Mu(X;P Mp(Py) My_p(P
ki{! ) DS p(! ) (11{«_;)!)

0<p;<k; P=P1X,; P>
1<j<n

Mic—1,((Dig; P)
LD T
1<j<n
kj#0

Hence, taking P of degree less or equal to L and using our induction
hypothesis, we find that with D the maximum of the degrees of g;

Mk(X,P) ‘ P n
‘ T S Z Z AZ b Bd gb—t H Cpi Ckz —DPi CdegP1 CdegP2

0<pj<k;j P=P1X;P i=1
1<j<n
kj—1 degP+d 1
+D E A2 HC B9 egn= CdegP+deng 1
1<i<n 7

Y b
2l A

ki ndegP
S AZ B +1H0kicdegP+1
7

<4n SNicic Bdegqj24degqj2>
SJsn

It is now sufficient to choose A and B such that

4n - Bdegqj—24degqj—2
— + DZlSJS

B2 A
(for instance B = 2"*! and A = 4nDBP~24P=2 if D is the maximal
degree of the ¢;) to verify the induction hypothesis works for polynomials
of all degrees (all L’s).

<1

3. Properties of My. From the previous considerations, we can of course
define My and the serie is absolutely convergent for [t| < (4A4)~! since
C) < 4F. Hence M¢(P) depends analytically on t € B44)-1. Moreover,
for all monomial P,

M(P)| < H (4t; A% (4B) o9 < ﬁ 1 — 4At;) "1 (4B)e9P.

keNm i=1
so that for small ¢, My belongs to K(4B).

4. My satisfies SD[V4]. This is derived by summing written for all k
and multiplied by the factor [](¢;)*/k;!. From this point and the previous
one (note that B is independent from t), we deduce from Theorem
that for sufficiently small t, My is the unique solution of SD[V;] which
belongs to K(4B).
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3.4.8 Convergence of the free energy

Theorem 3.16. There exists € > 0 so that fort € U N B,

1,z
Jm o= > H

N keNn\(0,..,0) 1<i<n

Moreover, the right hand side is absolutely converging. Above My denotes the
number of planar maps build over k; stars of type q;, 1 <i <mn.

Proof. Note that if V satisfies , then for any « € [0, 1], oV also satisfies

(118). Set
1
FN(CY) = ﬁlnzv‘“

Then,

! In Z]‘\/’t—F (1) — Fn(0)

Nz Z9 TN N
Moreover

OaFN(a) = =y, (AN (V) - (26)

By Theorem we know that for all @ € [0, 1], we have

Jim Y, (Y (W) = Tae(V2)

whereas by , we know that ugm (ﬂN (qi)) stays uniformly bounded. There-
fore, a simple use of dominated convergence theorem shows that

IAC ! = !
J\}gnoo N2 In Z?V = _/O Tat(Ve)da = _;ti/o Tat(gi)do. (27)

Now, observe that by Corollary that with 1, = (0,...,1,0,...,0) with the
1 in ¢** position,

7¢(g:) Z H

keN” 1<j<n

S D VS |

keN"\{0,-,0} 1<5<n

so that results with

1 Zy !
R NI SR | [ L T

keN"\{0,- o} 1<j<n

- Y I

keN?\{0,---,0} 1<j<n
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3.5 Second order expansion for the free energy

We here prove that

7111 (/ > tiNTr((Ii(le"'7Xm))d,uN(X1) . 'dMN(Xm))

_ZN2g 2

for some parameters t; small enough and such that ) ¢,¢; satisfies . As for
the first order, we shall prove first a similar result for z¥. We will first refine
the arguments of the proof of Theorem to estimate i — 7¢. This will
already prove that (¥ — 7¢)(P) is at most of order N=2. To get the limit of
N2(ia) — 7¢)(P), we will first obtain a central limit theorem for 4 — 7y which
is of independent interest. The key argument in our approach, besides further
uses of integration by parts-like arguments, will be the inversion of the master
operator. This can not be done in the space of polynomial functions, but in the
space of some convergent series. We shall now estimate differences of iV and
its limit. So, we set

. 1
o((qi, ki), 1 Szén)JrO(NQ)

- kneNi=1

o = N@EN-m)
N = / Nl = N — )
BN = NN ) =8Y 5.

3.5.1 Rough estimates on the size of the correction 6N

In this section we improve on the perturbation analysis performed in section
in order to get the order of

for all monomial P.

Proposition 3.17. There exists ¢ > 0 so that for t € U N By, for all integer
number N, and all monomial functions P of degree less than N,

cdeg (P)

SN
<

Proof. The starting point is the finite dimensional Dyson-Schwinger equation
of Property [3.7]

w (PN [(Xi + DV)P)) = )y (BN @ pN (0, P)) (28)
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Therefore, since 7 satisfies the Dyson-Schwinger equation SD[V], we get that
for all polynomial P,

5 (XiP) = =00 (DiVi P) + 63 @ il (8iP) + 7 @ 63 (9;P) + (N, P)  (29)

with ~ ~

(N, P) = N~ ) (55 ® 55(@}7)) .
By Lemma if P is a monomial of degree d, r(N, P) is at most of order
d*M{~'/N. We set

DY = max |6 (P)].
P monomial of degree <d

Observe that by , for € > 0 and any monomial of degree d less than N/2,
| (P)|<(Mo +€)?,  |7(P)| <M.
Thus, by [29), writing D;V = 3" ¢;D;q;, we get that for d < N/2

n d—1
1
N N d—l-11yN 37 rd
Dy, < 121%7571 z; |tj|Dd+deg(Diqj) +2 Z(MO +e) D" + Nd Mg
j:

We next define for k<1
N/2

D" (k,€) = Z KDY,
k=1
We obtain, if D is the maximal degree of V,

DY(r) < [nftfec +2(1 = (Mo +e)r)~'w* D" (k)

N/2+D N/2 1
tnfltle > Kk*DDg+kaﬁk3(Mo+e)k (30)
k=N/2+1 k=1

where we choose k small enough so that n = (My+¢€)x < 1. In this case the sum
of the last two terms is of order 1/N. Since D} is bounded by 2N (M, + €)*,

N/2+D k—DTN D, N/2
Zk:N/z.H k Dy, n /
we deduce

is of order Nk~ is going to zero. Then, for x small,

DV (k)<C(k,e)N~!
and so for all monomial P of degree d<N/2,
16N (P)|<C(k, )k I N1,
S

To get the precise evaluation of N§{¥(P), and of the full expansion of the
free energy, we use loop equations, and therefore introduce the corresponding
master operator and show how to invert it.
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3.5.2 Higher order loop equations.

To get the central limit theorem we derive the higher order Dyson-Schwinger
equations. To this end introduce the Master operator. It is the linear map on
polynomials given by

m d
EP =Y 0;P#X;+ > 0iP#D;Vi — (1@ 1 + 7 ®1)9;.D;P.
=1 =1
Recall here that if P is a monomial Y ", 9;P#X; = deg(P)P. Using the
traciality of Siv and again integration by parts we find that

Lemma 3.18. For all monomials po, . ..pr we have

k. m
= > ity | AV (DipoDip;) [T o8 (o)

j=11i=1 LF£j
1« AN % o
+5 ZMQ ((5{\[ ® 0y [0i © Dipo) H‘S.Z.V(Pz)>
i=1 i=1

3.5.3 Inverting the master operator

Note that when t = 0, = is invertible on the space of self-adjoint polynomials
with no constant terms, which we denote C(X7,-- - | Xm>0. The idea is therefore
to invert = for t small. If P is a polynomial and ¢ a non-constant monomial we
will denote ¢,(P) the coefficient of ¢ in the decomposition of P in monomials.
We can then define a norm ||.|[4 on C(X1,--,X,,)° for A > 1 by

1Pla= D |6(P)lAdse.

deg g#0

In the formula above, the sum is taken on all non-constant monomials. We also
define the operator norm given, for T from C(X7y, -+ , X,,)? to C(X1, -+, X;n)°,
by
N[Tl[la= sup [T(P)|a-
IPlla=1
Finally, let C(X1,---,X,,)% be the completion of C(X7y,---,X,,)° for |.]a-
We say that T is continuous on C(X7y,- -+, X,,)% if [||T]]|4 is finite. We shall

prove that Z is continuous on C(X1, -+, X,,,)% with continuous inverse when t
is small.
We define a linear map ¥ on C(Xy,---, X,,) such that for all monomials ¢
of degree greater or equal to 1
_ . q
(¢) = dogq’



Moreover, ¥(q) = 0if deg g = 0. We let II be the projection from C(Xy, -, X, )sa
onto C(Xy,- -+, X,,)° (i.e I(P) = P— P(0,---,0)). We now define some oper-
ators on C(X71,--+, X,,,)? ie. from C(Xq, -+, X,,)° into C({X71,--+, X,;n)Y, we
set

2 :P—1I (Z akEPﬁDkV>

k=1

Zy: P —1I (Z(Tt®l+l®7't)(akazp)>-
k=1
We denote

5011752:>HOEOZ:E()+51,

where I is the identity on C(Xy,---,X,,)°. Note that the images of the op-
erators =;’s and I o Z o ¥ are indeed included in C(X7, -+, X,;)sq since V is
assumed self-adjoint.

Lemma 3.19. With the previous notations,
1. Fort € U, the operator = is invertible on C(X1,- -+, X;)°.

2. There exists Ag > 0 such that for all A > Ay, the operators 25, Zg and Eal
are continuous on C(X1,--+, Xn)% and their norm |||.]||a are uniformly
bounded for t in B, NU.

3. For all €, A > 0, there exists n. > 0 such for ||t||cc < e, Z1 is continuous
on C(X1,, Xm)% and |||Z1]]|a<e.

4. For all A > Ag, there exists n > 0 such that fort € B,NU, [IoEo0 X
is continuous, invertible with a continuous inverse on C(Xy,--- ,Xm>?4.
Besides the norms of 1o Z and (Il o Z)~! are uniformly bounded for t in
B,.

n

5. For any A > My, there is a finite constant C such that
1Pl5z, < ClIPILa-
The norm ||.||§;, was defined in Lemma .
Proof.

1. Recall that =y = I — E5, whereas since =5 reduces the degree of a poly-
nomial by at least 2,

P 3 (E)"(P)

n>0

is well defined on C(X71, -+, X,,)? as the sum is finite for any polynomial
P. This clearly gives an inverse for =.
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2. First remark that a linear operator T has a norm less than C with respect
to ||.]|.a if and only if for all non-constant monomial g,

IT(g)|a<C A%,

Recall that 7¢ is uniformly bounded (see Lemma |3.10) and let Cy < 400
be such that |7 (q)|<CS®8? for all monomial q. Take a monomial ¢ =
X;, --- X, , and assume that A > 2C,

i1 " ips

||H<Z<I®n>awkzq> la<p™ 3 Irmra)la

k k,q=q1 Xq2,

qoq1=7r1 X T2

—1p—2

: 1% e

<t Y amegn < LSS g
k,qg=q1 X} q2, pn:O =0

a2q1="r1 X2
p—2 Co p—2—1
< AP = <2A72
< (T) 24l

where in the second line, we observed that once deg(q;) is fixed, goq1
is uniquely determined and then rq,r; are uniquely determined by the
choice of [ the degree of r;. Thus, the factor 1 is compensated by the
number of possible decomposition of ¢ i.e. the choice of the degree of ¢;.
IfA>2 P13, (I®m)0DrXP) is continuous of norm strictly less
than . And a similar calculus for IT (3", (7¢ ® 1), DiX) shows that =,
is continuous of norm strictly less than 1. It follows immediately that =g
is continuous. Recall now that

-1

Zo =

—n
=9 .

n>0
As =y is of norm strictly less than 1, = 1 is continuous.

3. Let ¢ = X;, --- X;, be a monomial and let D be the degree of V'

! 1
p 2 NaDVaeliss D [l Drarmeo

k,q=q1 X1 q2 k,q=q1 X q2

IA

1Z1(q)]|a

= [tlloeDnA” 2| q]| .
It is now sufficient to take 1. < (nDAP~=2)"le.
4. We choose < (nDAP=2)71||Z5!|||3" so that when [t|<n,
1E1llalllEg Il < 1.

By continuity, we can extend Zg, Z;, Zp, [ToZ 0 ¥ and Z;* on the space
C(X1, -+, Xm)%. The operator

P> (-5t

n>0

(1]

)"
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is well defined and continuous. And this is clearly an inverse of
MoZoY=5y+Z; =Z(I +Z5'Ey).

Finally, we notice that ¥~! is bounded from C(Xy, -+ , X;,,)% to C(X1,- -+, X;n)%
for Ag < A’ < A, and hence up to take A slightly larger 1= = (IIZX)oX !
is continuous on C(X7y, -, X,,)% as well as its inverse.

5. The last point is trivial.

3.5.4 Central limit theorem

Theorem 3.20. Take t € UN B, for n small enough and A > My A Ay. Then
For all Py,..., Py in C(Xq,-, X%, (6N (P1),...,0N(Py)) converges in law
to a centered Gaussian vector with covariance

m

o®(P,Q) =) 7(D;E7'PD;Q).

i=1

Proof. It is enough to prove the result for monomials P; (which satisfy
P;(0) = 0). We know by the previous part that for A large enough there exists
Q1 € C(Xq, -+, X;n)Y so that P, = Ilo=0XQ;. But the space C(X7, -+, X,,)°
is dense in C(X71,---, X,,)% by construction. Thus, there exists a sequence QY
in C(X1,- -+, X,,)° such that

lim [|Q1 — QY|4 =0.
p—o0

Let us define R, = Z0XQ; — Z 0 3QY in C(X1, -, X;n)%. By the previous
section, it goes to zero for ||| 4+ for A’ € (Ao, A), but also for ||. |7, for A > M.

But, by Lemma and we find that since 55\, has mass bounded by N, for
any polynomial P and § > 0 and r integer number smaller than N/2

i (1B R)) < i (10 (I e xagiany )
sl (B (R il I > b))
< (IR [ rar e o do + (N(2Mo + 2)7e Y
We deduce by taking R = R, that for all r € N

lim limsup uff (|64 (R,)[") = 0.

P—=0 N_so0
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Therefore Lemma implies that there exists o(p) going to zero when p goes

to infinity such that
k
'U’Vt < H a4 > )

k
‘LL‘/,‘_ <5N H z >
iy, ﬂN(DiQpDin)HSéV(QK)

1 t£

k
ut<5N®5NaoDQpH ) (p)

I
Mw
NE

1

.
Il
.
Il

3

<.
Il
_

7e(DiQpDig;) v, | [T 0 (ae) | + o(p)
oy

1
'Mw 2=

~
Il
—
-
Il
—

3
S
S

1
™M=

6 (D P)Digj)py, | [T o8 (@) | + o)

1i=1 231

<.

J

where in the last line we used that ||D;Q, — D;Q||a, goes to zero and that 7
is continuous for this norm. The result follows then by induction over k since
again we recognize Wick formula.

Exercise 3.21. Show that for P,Q two monomials,

,Q, (qi,4:))

is the generating function for the enumeration of planar maps with two stars of
type P, Q and {; of type q;, 1 < i <n.
3.5.5 Second order correction to the free energy

We now deduce from the Central Limit Theorem the precise asymptotics of
N6V (P) and then compute the second order correction to the free energy.

Let ¢p and ¢ be the linear forms on C(Xy,--- , X,,) which are given, if P is
a monomial, by

m

P)=>" > o (P3P, Py).

i=1 P=P1 X; P, X, Ps

Note that ¢ vanishes if the degree of P is less than 2.

Proposition 3.22. Take t € U small enough. Then, for any polynomial P,
lim NoN(P) = ¢(Z~'1IP).

N—o00
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Proof. Again, we base our proof on the finite dimensional Dyson-Schwinger
equation which, after centering, reads for ¢ € {1,--- ,m},

N2 (@Y = 7) (X + DiV)P — (I @ 7 + 7 @ DO P) = p (5N ® 5”(31‘13)})

(31)
Taking P — D,IIP and summing over ¢ € {1,--- ,m}, we thus have
N2 (BN = 7)(EP)) = ) <8N @MY 00 DiP>> (32)
i=1

By Theorem [3.20] we see that
. N [ 3N o &N _ _ _
Jim ) (5 ® 0 (; i oDzHP)> o(P)
which gives the asymptotics of N6V (ZP) for all P in the imgae of Z.

To generalize the result to arbitrary P, we proceed as in the proof of the
full central limit theorem. We take a sequence of polynomials @),, wich goes to
Q = =Z7'P when n go to oo for the norm ||.||[4. We denote R, = P — 2Q,, =
2(Q—Qy). Note that as P and @, are polynomials then R, is also a polynomial.

N&N(P) = N6 (EQy) + N6V (R,,)
According to Proposition for any monomial P of degree less than N'—¢,
NN (P)| < ¢desP),

So if we take the limit in IV, for any monomial P,

limsup |[N§N (P)| < ¢deeP)
N

and if P is a polynomial, Lemma [3.9] yields for C < A
thsup|N5N(p>| < |IPlI& < (1P a-

We now fix n and take the large N limit,
limsup |[NO™ (P — 2Q,,)| = limsup |N6™ (R,,)| < ||Rnl|a.
N N

If we take the limit in n the right term vanishes and we are left with :
lim N6V (P) = limlim N6™(Q,,) = lim ¢(Q,,).
N n N n
It is now sufficient to show that ¢ is continuous for the norm |.||4. But
P — 3" 8;0D;P is continuous from C(X7y, -+, X;,)% to C(X1, -+, Xoin)% 4

and o2 is continuous for ||.||4_; provided A is large enough. This proves that ¢
is continuous and then can be extended on C(X1,- -+, X,,)%. Thus

lim NN (P) = lim ¢(Qn) = $(Q)-
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Theorem 3.23. Take t € U small enough. Then

Ve
In ng = N?F, + F} +0(1)
N
with
1
Ft :/ ’Tat(‘/t)da
0
and

1
Fl :/ Dot (e Vi )ds.
0

Proof. As for the proof of Theorem[3.16] we note that aVy = Va4 is c-convex
for all « € [0, 1] We use to see that

OanzZy =l (™ (W)

so that we can write

VA 1
g = N[ Y (h)da

1
N2F, + / [NSD.(Vi)]ds (33)
0

with L
Ft = / Tat(%)da.
0

Proposition and finish the proof of the theorem since by Proposition
all the No™(¢;) can be bounded independently of N and t € B, N U so
that dominated convergence theorem applies. o

Exercise 3.24. Show that F! is a generating function for maps of genus one.

4 Beta-ensembles

Closely related to random matrices are the so-called Beta-ensembles. Their
distribution is the probability measure on RY given by

N
1 |
dPZY (M, An) = PTG AP NEEVOITT )
N i=1

where A(XN) = [T, A — Ajl.

1<j

Remark 4.1. In the case V(X) = %x2 and = 2, P]%,’£2/4 is exactly the law
of the eigenvalues for a matriz taken in the GUE as we were considering in the
previous chapter (the case 8 =1 corresponds to GOE and 8 = 4 to GSE). This

is left as a (complicated) exercise, see e.g. [3].
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[ ensembles also represent strongly interacting particle systems. It turns
out that both global and local statistics could be analyzed in some details. In
these lectures, we will discuss global asymptotics in the spirit of the previous
chapter. This section is strongly inspired from [?]. However, in that paper,
only Stieltjes functions were considered, so that closed equations for correlators
were only retrieved under the assumption that V is analytic. In this section, we
consider more general correlators, allowing sufficiently smooth (but not analytic)
potentials. We did not try to optimize the smoothness assumption.

4.1 Law of large numbers and large deviation principles

Notice that we can rewrite the density of S-ensembles as :

argY
5= = Zﬁv exp {283 A - Al - BN V(M)
i#£j

1 N
» __» Wexp{_ﬁj\ﬂg(ﬂN)}
N

where [iy is the empirical measure (total mass 1), and for any probability mea-
sure p on the real line, we denote by £ the energy

://[%V(:c)—k =

V(y) ~ 5 Il ylldp(a)duty)

(the “=" is in quotes because we have thrown out the fact that In |z — y| is
not well defined for a Dirac mass on the “self-interaction” diagonal terms)

Assumption 4.2. Assume that hmlanHC>O 1n(\z|) > 1 (i.e. V(x) goes to in-

finity fast enough to dominate the log term at infinity) and V is continuous.

Theorem 4.3. If Assumption[.4 holds, the empirical measure converges almost
surely for the weak topology

i = i as
where pyt is the equilibrium measure for V, namely the minimizer of €(y).

One can derive this convergence from a related large deviation principle [§]
that we now state.

Theorem 4.4. If Assumptwnu holds, the law of iy under PB’ satisfies a
large deviation principle with speed N? and good rate function

I(p) = BE(p) — B inf E(v).

veP(R)

In other words, I has compact level sets and for any closed set F' of P(R),

hmsup lnPﬁ (v € F) < igf[

N —o0

46



whereas for any open set O of P(R),

liminf — N lnPﬁ (an € O) > —igf]

N —oc0

To deduce the convergence of the empirical measure, we first prove the ex-
istence and uniqueness of the minimizers of €.

Lemma 4.5. Suppose Assumption[{.4 holds, then :

o There exists a unique minimizer iy to E. It is characterized by the fact
that there exists a finite constant Cy such that the effective potential

Ve () = V(x) - / In |z — | duS3(y) — Cy

vanishes on the support of it and is non negative everywhere.

e For any probability measure u, we have the decomposition

0 = £Gi) + [ 2| [ - i) @| + [Vaaryaute . 30

Proof. We notice that with f(z,y) = 3V (z) + 3V (y) — s In|z — y|,

— [ #.dut)duty) = suw [ 1) A Mdu(a)duty)
by monotone convergence theorem. Observe also that the growth assumption
we made on V insures that there exists v > 0 and C' > —oo such that

f(@,y) = y(In(|z| +1) + In(ly[ + 1)) + T, (35)

so that f A M is a bounded continuous function Hence, £ is the supremum of
the bounded continuous functions s () := [ [ f(z,y) A Mdp(x)du(y), defined
on the set P(R) of probability measures on R equipped with the weak topology.
Hence £ is lower semi-continuous. Moreover, the lower bound on f yields

Ly :={pePR):Eu) <M} C {/ln(x| + Ddu(z) < MQ’YC} =: Ky

(36)

where K is compact. Hence, since L), is closed by lower semi-continuity of £

we conclude that L, is compact for any real number M. This implies that &

achieves its minimal value. Let p{! be a minimizer. ertlng that E(uj +ev) >

E(pyt) for any measure v with zero mass so that p( + ev is positive for e small

enough gives the announced characterization in terms of the effective potential

Ver-

For the second point, take p with £(u) < oo and write

v:veg+/1n\.—y|du‘€?<y>+cv
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so that

£ =€) — 5 [ [ wle = sldtu - i @d(u - w0) + [ Vialo)du(o)

On the other hand, we have the following equality for all z,y € R

1n|x—y|—/oo1<e_2‘lf—e = yz)dt
. 2t

One can then argue [7] that for all probability measure p with £(u) < oo(in
particular with no atoms), we can apply Fubini’s theorem and the fact that
p— py is massless, to show that

/ / In fz — yld(u — 59 (@)d(n — 1) (1)

_ / / / T g — ) (@) — ) ()t

2

/ew‘zd(,u —pyh)(x)| dAdt

/ —LeA?
= — e 2
0 2\/ 27t

\/ vl — i) ()|

This term is concave non-positive in the measure p as it is quadratic in u, and
in fact non degenerate as it vanishes only when all Fourier transforms of 1 equal
those of py/, implying that 1 = pi'. Therefore £ is as well strictly convex as it
differs from this function only by a linear term. Its minimizer is thus unique. ¢

Remark 4.6. Note that the characterization of uy; implies that it is compactly
supported as Vog goes to infinity at infinity.

Remark 4.7. It can be shown that the equilibrium measure has a bounded
density with respect to Lebesque measure if V is C2. Indeed, if f is C' from
R — R and € small enough so that .(x) = x +ef(x) is a bijection, we know
that

Ie=#uy') = I(py')

where we denoted by e the pushforward of p by @ given, for any test function
g, by :

/ o(y)dotnly) = / o((@))du(z) .

As a consequence, we deduce by arguing that the term linear in € must vanish

that
3 | [P @) = [vior@dae).
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By linearity, we may now take f to be complex valued and given by f(x) =
(z — x)~'. We deduce that the Stieltjes transform Seq(z) = [(z — z) " tduj(x)
satisfies

2 Vl(x) eq /
Seq(2)” = [ ———dpy'(z) = Seq(2)V'(R(2)) + f(2)

2 z—x

Z—T

with

dpy ().
f is bounded on compacts if V is C?. Moreover, we deduce that
S(2) = V'(R(2)) = VV'(R(2))? + 2 (2).

But we can now let z going to the real axis and we deduce from Theorem 77

that pyt has bounded density \/V'(x)? — 4f(x).

Note also that it follows, since V'(x)?—4f(x) is smooth that when the density
of uy vanishes at a it vanishes like |z — a|‘1/2 for some integer number ¢ > 1.

Because the proof of the large deviation principle will be roughly the same
in the discrete case, we detail it here.
Proof of Theorem [4.4] We first consider the non-normalized measure

aQY
dA

1
= exp §BZIn|)\i—>\j|—5NZV(>\i)
i#]

and prove that it satisfies a weak large deviation principle, that is that for any
probability measure p,
1

—-BE = limsuplimsup —
) 550" Nooss N

POV N
= liminfliminf N2 an?\,’V(d(,uN,,u) < 0)

6—0 N-—oo

Q%Y (d(jin, 1) < )

where d is a distance compatible with the weak topology, such as the Vasershtein
distance.
To prove the upper bound observe that for any M > 0

Y (i) < 8) < / eIV oy SN MARN (RN () T =8V A g,
 Jagy w<s

_ G SNM / e~ PN [ 1 e AMd @™ ) T e=8Y ) ap,
d(aN,pu)<é

where in the first line we used that the A; are almost surely distinct. Now, using
that for any finite M, £y is continuous, we get

N (A ) < 8) < PNMem ANl EN Tl / e PV VanN
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Taking first the limit NV going to infinity, then § going to zero and finally M
going to infinity yields

: : 1 N
hmsuphmsupm In Q]ﬁ\;v(d(uN,u) <) < —BE(W).
6—0 N —o00

To get the lower bound, we may choose p with no atoms as otherwise £(u) =
+00. We can also assume p compactly supported, as we can approximate it by
par(dr) = 1z <ardp/ p([—M, M]) and it is not hard to see that £(uar) goes to
E(pn) as M goes to infinity. Let x; be the i*" classical location of the particles
given by p((—o0,;]) = i/N. z; < z;41 and we have for N large enough and
p>07 lfUZ:)\Z—{EZ,

Q= Ni{luil < N7P,u; < uipa} C {d(fin, p) < 0}

so that we get the lower bound

N
Q%V(d(ﬂmﬂ) <) > /H |z —zj +u; — uj\ﬁ Hexp (=NBV (z; + u;)) du;
o i>i i=1

Observe that by our ordering of z and u, we have |z; —x; +u; —u;| > max{|z; —
x|, |u; — u;|} and therefore

[Tl =2 +wi—wl® > T Jws =2l T lwisn — 2l T fwin = wil
i>j i>j+1 i i
where for ¢ > j+ 1
i Tj+1
In|z; — ;| > / / In |z — y|dp(z)du(y)
Ti—1 xj
whereas
In|z; —zi_1| > 2/ / LosyIn |z — yldpi (2)dps (y) -
LTi—1 Y Ti—1
We deduce that
1 N2 eq eq
Z In|z;, —x;| + 3 Zln |xig1 — x| > -5 In |z — y|dpy' (z)dpy (y) -
i>5+1 i

Moreover, V is continuous and p compactly supported, so that

N

1 & 1
N;V(xi +u;) = NZV(Q;Z-) +o(1). (37)

i=1

Hence, we conclude that

Y%

Q%Y ([d(in, 1) < 6) eXp{—5N25(M)}/QH [ Hdui

exp{—BN?E(n) + o(N?)} (38)

Y
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which gives the lower bound. To conclude, it is enough to prove exponential
tightness. But with Kj; as in we have by

?\/’V(Kﬁ/f) S/ 672'yN(N71)fln(\z|+1)dﬂN(m)7C’N2 Hd>\¢ < eNz(C’72'yM)
Ky
with some finite constant C’ independent of M. Hence, exponential tightness
follows :
. . 1 BV (e
limsuplimsup — In Q" (Kj;) = —o0
M—oo N-—oo N2
from which we deduce a full large deviation principle for Qﬁ,’v and taking F' = O
be the whole set of probability measures, we get in particular that
lim — In 257 = —Binf &
N—oo N2 N '
o
We also have large deviations from the support : the probability that some
eigenvalue is away from the support of the equilibrium measure decays exponen-
tially fast if Vg is positive there. This was proven for the quadratic potential
in [6], then in [3] but with the implicit assumption that there is convergence of
the support of the eigenvalues towards the support of the limiting equilibrium
measure. In [I1] [I5], it was proved that large deviations estimate for the sup-
port hold in great generality. Hence, if the effective potential is positive outside
of the support S of the equilibrium measure, there is no eigenvalue at positive
distance of the support with exponentially large probability. It was shown in
[48] that if the effective potential is not strictly positive outside of the support
of the limiting measure, eigenvalues may deviate towards the points where it
vanishes. For completeness, we summarize the proof of this large deviation
principle below.

Theorem 4.8. Let S be the support of pj. Assume Assumption and that
V is C2. Then, for any closed set F in S°¢

1
lim sup - In PEV(E@ie{1,N}: N e F) < — inf Vegr

N—o00

whereas for any open set O C S°
liminfilnP’B’V(ﬂi e{l,N}: )\ €0)>—infV,
N—oo N N ’ o - o

Proof. Observe first that Veg is continuous as V' is and  — [In |z — y|dui? (y)
is continuous by Remark [I.7] Hence, as Vog goes to infinity at infinity, it is a
good rate function.

We shall use the representation

T3 (F)

TR (F)
5" (R)

e
<PyV[3i MeF<N VR
N

o1



where, for any measurable set X :
B, 7% {*NﬁV(E)Jr(N*l)ﬁfdﬂ - ()\)lnléfM}
T30 = Py [ [ ase v ] )

We shall hereafter estimate + In T%V(X). We first prove a lower bound for

Tlﬁv’v(X) with X open. For any x € X we can find € > 0 such that (z—¢,z+¢) C
X. Let §.(V) = sup{|V(z) = V(y)|, |z — y| < e}. Using twice Jensen inequality,
we lower bound T%V(X) by

P,@,% V”E dfe{NﬁV(5>+(N1>ﬁfdﬂN1(n)1n|5n|}]

v

N-1
—€

v

—&

v | Ehe N-1)8 [dian—_1(\)1In|é=X
o NB(V@)+o.(v)) poA l/ dge{( ) [ diin—1(A) In [¢ |}]

NV

BN NS
> 2 efN,B(V(a:)jLéa(V)) e{(N—l)ﬁ Py NT! [J din-1(A) Hm(k)} }

B, Y, .
> 266_Nﬁ(V(m)+5€(V))e{(Nfl)BPNfX ! [.fduzvfl(k)m,x(/\)Hw,a(A)}} (a1)
where we have set :
x+e df
Ho) = [ 5t mle-A (12)
Tr—E€ 25

and ¢, i is a continuous function which vanishes outside of a large compact K
including the support of 17, is equal to one on a ball around « with radius 14-¢
(note that H is non-negative outside [ — (1 + ¢),z + 1 + €] resulting with the
lower bound ) and on the support of uj, and takes values in [0, 1]. For any
fixed € > 0, ¢y x H; - is bounded continuous, so we have by Theorem [4.4] (note
that it applies as well when the potential depends on N as soon as it converges
uniformly on compacts) that :

50 (V(a)46.(V)) e{(Nﬂ)/a.f O b, (V) Hw,E(A>+NR<e>N)}

THV(X) > 2e e 2 (43)

with limy 0o R(e, N) = 0 for all ¢ > 0. Letting N — oo, we deduce since
[ At () ¢o ik (N) Hy e(N) = [ dpit(N) Hy o(N) that :

N —o0

liminf% In T2V (X) > —B6.(V) — ,B(V(x) - / I (\) Hm(/\)) (44)

Exchanging the integration over ¢ and z, observing that £ — [ duj(A) In|€— )|
is continuous by Remark and then letting ¢ — 0, we conclude that for all
x € X,

1
lim inf - In TV (X) > =B Veg () - (45)

N—oc0
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We finally optimize over x € X to get the desired lower bound. To prove the
upper bound, we note that for any M > 0,

NV —-NBV N-1 dign—1 (M) Inmax(|é=A|,M !
T]BV,V(X) gP]:[:rv_Nl—l |:/ dé-e{ BV(&)+( )Bf an—1(\) a. (If ‘ )}‘| '
X

Observe that there exists Cy and ¢ > 0 and d finite such that for |{| larger
than Cj :

W) =V(©) = [ du(y) max((g = N, M) = cluf¢] + d

by the confinement Hypothesis (4.2)), and this for all probability measures p on
R. As a consequence, if X C [—C, C]¢ for some C' large enough, we deduce that

T?\,’V(X) < /nge—(N—l)g(clnlfl—‘rd) < e—Ngclnc (46)

where the last bound holds for IV large enough. Combining , and
shows that )
lim sup lim sup i lnPﬁ,’V[Eli [Ai| > Cl = —o0.

C—oco N

Hence, we may restrict ourselves to X bounded. Moreover, the same bound

NV

extends to ij,jvlj so that we can restrict the expectation over fix_1 to prob-
ability measures supported on [—C,C] up to an arbitrary small error e~V e(C)
provided C is large enough and where e(C) goes to infinity with C. Recall
also that V(&) — 2 [ din—1(A) Inmax(|¢ — A|, M) is uniformly bounded from
below by a constant D. As A— Inmax(|¢ — A|, M~!) is bounded continuous on
compacts, we can use the large deviation principles of Theorem [£.4] to deduce
that for any € > 0, any C > (Y,

T]ﬁ\;V(X) < e1\721%(6,1\@0) + 67N(e(C)7§D) (47)

N / g e{-N,@v<g)+(N-1)5fdu§’;(,\) In max(\g—,\|,M*1)+NMa}
X

with limsupy_,, R(¢, N, C) equals to

. 1 A A N e
limsup 5 In Py ({1 (1=C.C)) = 1} 0 {d(an—1,45) > e}) < 0.

N—oco

Moreover, { = V(§) — [ duy () Inmax(|€ — A|, M 1) is bounded continuous so
that a standard Laplace method yields,

1
lim sup N In T?V’V(X)

N—oc0

o[ ®

< max {—inf [B(V(f)—/d,u?,q()\) In max <|§—)\|7M—1))] ,—(e(C)—

£ex

D)}.
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We finally choose C' large enough so that the first term is larger than the sec-
ond, and conclude by monotone convergence theorem that [ dyuy?(X) Inmax (|¢—
Al, M~1) decreases as M goes to infinity towards [ dui(A)In[€ — A|. This com-
pletes the proof of the large deviation.

o

Hereafter we shall assume that
Assumption 4.9. V. is positive outside S.

Remark 4.10. As a consequence of Theorem[{.8 we see that up to exponen-
tially small probabilities, we can modify the potential at a distance € of the
support. Later on, we will assume we did so in order that Ve’ff does not vanish
outside S.

In these notes we will also use that particles stay smaller than M for some
M large enough with exponentially large probability.

Theorem 4.11. Assume Assumption[].9 holds. Then, there exists M finite so
that

1
limsupﬁlnPﬁ,’v(Eli e{l,...,N}:|\| > M) <o0.

N—oc0

Here, we do not need to assume that the effective potential is positive ev-
erywhere, we only use it is large at infinity. The above shows that latter on, we
can always change test functions outside of a large compact [—M, M| and hence
that L? norms are comparable to L> norms.

4.2 Concentration of measure

We next define a distance on the set of probability measures on R which is well
suited for our problem.

Definition 4.12. For u, p’ probability measures on R, we set

zx%w>:<AwL/awau—wxm2fv%.

It is easy to check that D defines a distance on P(R) (taking eventually the
value +o00, for instance on measure with Dirac masses). Moreover, we have the
following property

Property 4.13. Let f € L'(dz) such that f belongs to L*(dt), and set 1flli/2 =
. 1/2
( St ft|2dt> .

e Assume also [ continuous. Then for any probability measures p, p’

\/f@ﬂ@—uvm>smulmewv.
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o Assume moreover f, f' € L?. Then
1fll72 < 200 f 12 + 11f]lz2) - (48)

Proof. For the first point we just use inverse Fourier transform and Fubini to
write that

[ @)@l = | [ fia

o0
2/ 2t 2 | — | dt < 2D 1)1 £ 112
0

IN

where we finally used Cauchy-Schwarz inequality. For the second point, we
observe that

o 1 R .
1182 = [ i< g [ 1Pac [ 1ehpan = 5051+ 17052

from which the result follows. S

We are going to show that jiy = % Zfil 0, satisfies concentration inequal-
ities for the D-distance. However, the distance between finy and uj! is infinite
as fiy has atoms. Hence, we are going to regularize iy so that it has finite
energy, following an idea of Maurel-Segala and Maida [68]. First define A by
M = A and \; = \;_; + max {on, i — Ai—1} where on will be chosen to be
like N=P. Remark that \; — \;_; > on whereas |\ — 5\1\ < Noy. Define
iy =Ey [% > 5;\1_ +UJ where U; are independent and equi-distributed random
variables uniformly distributed on [0, N~9] (i.e. we smooth the measure by
putting little rectangles instead of Dirac masses and make sure that the eigen-
values are at least distance NP apart). For further use, observe that we have
uniformly |A; + U; — A\;j| < NP + N=9. In the sequel we will take ¢ = p+ 1 so
that the first error term dominates. Then we claim that

Lemma 4.14. Assume V is C'. For 3 <p+1 < q there exists C 4 finite and
¢ > 0 such that

P]€]7V (D([LN,M';Q) >t) < ecp,qunN_gNzg bemeN

Remark 4.15. Using that the logarithm is a Coulomb interaction, Serfaty et al
could improve the above bounds to get the exact exponent in the term in NIn N,
as well as the term in N. This allows to prove central limit theorems under
weaker conditions. Qur approach seems however more robust and extends to
more general interactions [15].

Corollary 4.16. Assume V is C'. For all ¢ > 2 there exists C finite and

¢, co > 0 such that
> 1) <e N

/@d(ﬂN — ()

1
P ( sup
( e N=%2|gllL + coN~1/2VIn Nljgl|
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Moreover
QO(J?) — @(y) ~N eq ~N eq 1
‘/Hd(ﬂ — ) (@)d(@™ - i) (y)| < O mN|lelle= (49)

le(@)—p(y)|

lz—y]
loller = X per 19| Note that we can modify ¢ outside a large set [—M.M]
up to modify the constant c.

with probability greater than 1 — e~ “N. Here |||, = sup,, and

Proof. We take ¢ = p+ 1. The triangle inequality yields :

[t =i = | [t i)+ [ et - i)
141 [ ¢00n - w0

el e N7 + 2]l D (i, 1)

IN

N

1

v > Eulp(h) — o(Xi + U)]
i=1

IN

where we noticed that |A; — ;| is bounded by N~?*! and U by N~¢ and used
Cauchy-Schwartz inequality. We finally use to see that on {|\;| < M} we
have by the previous lemma that for all ¢

‘/WdMN 1y)

with probability greater than 1—eCr.aV 12 N ~3N*" We next choose t = co\/m
with ¢3 = 4|C,4]/8 so that this probability is greater than 1 — e=¢%/2NInN
Theorem completes the proof of the first point since it shows that the
probability that one eigenvalue is greater than M decays exponentially fast.

We next consider

< NP gl +tlell

¢ T)— Qﬁ Y ~ e ~ e
)im [ A=A — it i)
on {max|A;| < M}. Hence we can replace ¢ by ¢xa where xas is a smooth
function, equal to one on [~M, M] and vanishing outside [~M —1, M +1]. Hence
assume that ¢ is compactly supported. If we denote by Ly (¢) the quantity
defined as Ly (¢) but with jiy instead of 4V we have that
|En(9) = Ln(9)] < 26PN+

We can now replace ¢ by its Fourier representation to find that

@=/ﬁmaoéim/€M%mN—uﬁmw/a“ﬂ%me—ﬁﬁwy
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We can then use Cauchy-Schwartz inequality to deduce that

=
2

&
A

[ auedo | do [ et - w0
/dt|t<§(t)| /01 %al /ew‘”d(ﬁw — ) (@)?

/ dtftd(0)| D (fin. 22
< OD(jin, 19?6l (50)

IN

where we noticed that

R R 1/2 1/2
/dt|t¢(t)| < (/dt|t¢(t)|2(1+t2)) (/dt(1+t2)_1>
< Cl16P 2 + 11¢'ll22) < Cllg]l o2
as we compactified ¢. The conclusion follows from Theorem [4.11 o

We next prove Lemma [{.14] We first show that :
Z5V > exp (=N?BE(uy!) + CNInN)

The proof is exactly as in the proof of the large deviation lower bound of The-
orem [4.4| except we take p = pit and V is C', so that

1 . Ll . oL
N; (l"H-Uz')—N; () + (N)'

This allows to improve the lower bound into

zy" BV (A, 15y < 6)

>
> exp{—BN?E(uy!) + CNIn N} (51)

Now consider the unnormalized density of Qﬁ,’v = Zf,’VPf,’V on the set
where |\;| < M for all ¢

dox" () _ g
]Zli)\ = g|)\i—)\j| exp (—Nﬁzv()\z‘)>

I

1<j

IA

Ai — A ’B exp (—Nﬂ Z V(S‘i))

because the A only increased the differences. Observe that for Al < M,

V) =V +U) < sup [V/(@)[(N'77 + N79).
|z|<M+1
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Moreover for each j > i

In 5\i+ui—5\j—uj +O(N7q+p).

/N\Z‘—S\j’ =EIn

Hence, we deduce that on |A\;| < M for all ¢, there exists a finite constant C'
such that

aryV
d\

<exp (=N?B(E(fin) — E(WFY)) + CNIn N + CN?7 917 4 CN?7P)

As we chose ¢ = p+ 1, p > 2, the error is at most of order N In N. We now
use the fact that

() ~ £(?) = D 2 + [ (V)@ — ) (o)

where the last term is non-negative, and Theorem to conclude

N
PR ({D(fin, 1 > t} 0 {max | \;| < M}) < ENImN=oN* (/ eNBchdem)

where the last integral is bounded by a constant as V.g is non-negative and goes
to infinity at infinity faster than logarithmically. We finally remove the cutoff
by M thanks to Theorem [{.11]

4.3 The Dyson-Schwinger equations
4.3.1 Goal and strategy
We want to show that for sufficiently smooth functions f that

o
K

B | 00| =)+ X el + ol

g=1
e > f(N) —E[DC f(A\i)] converges to a centered Gaussian.

We will provide two approaches, one which deals with general functions and
a second one, closer to what we will do for discrete 8 ensembles, where we will
restrict ourselves to Stieltjes transform f(x) = (z — 2)~! for 2 € C\R, which
in fact gives these results for all analytic function f by Cauchy formula. The
present approach allows to consider sufficiently smooth functions but we will
not try to get the optimal smoothness. We will as well restrict ourselves to
K = 2, but the strategy is similar to get higher order expansion. The strategy
is similar to the case of the GUE :
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e We derive a set of equations, the Dyson-Schwinger equations, for our ob-
servables (the correlation functions, that are moments of the empirical
measure, or the moments of Stieltjes transform) : it is an infinite system
of equations, a priori not closed. However, it will turn out that asymptot-
ically it can be closed.

e We linearize the equations around the limit. It takes the form of a lin-
earized operator acting on our observables being equal to observables of
smaller magnitudes. Inverting this linear operator is then the key to im-
prove the concentration bounds, starting from the already known concen-
tration bounds of Corollary [£.16]

e Using optimal bounds on our observables and the inversion of the master
operator, we recursively obtain their large N expansion.

e As a consequence, we derive the central limit theorem.

4.3.2 Dyson-Schwinger Equation

Hereafter we set My = N(iy — puy). We let = be defined on the set of C} (R)
functions by

=1 =V @) - [T,

= will be called the master operator. The Dyson-Schwinger equations are given
in the following lemma.

Lemma 4.17. Let f; : R — R be C} functions, 0 <i < K. Then,

L
B

| —

K
JE[in (f) [T N (£:)]

i=1

K
4 %ZE[ﬂN(fofé)HNﬂN(fi)]
(=1 £l

K
E[My(Efo) [[Nan ()] = (

i=1

+ gl [ PR any iy ) T] i ()

i=1

Proof. This lemma is a direct consequence of integration by parts which implies
that for all j

K K
ElfoO) [T Naw (5] = BE | fo(y) NV/(Aj)_ZAiAk T Nin(s)
=1 k#j " i=1

K
= "Elfo(\) £ [ Niw (£)]
=1 i£l
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Summing over j € {1,..., N} and dividing by N yields

(MN (V'fo) — // fole p— fo (x)d,aN(y)> f[lNﬂN(fi)l

K K
- ﬂ—gmmM%HIMMUM+XFMMEMIDWMﬂH
i=1 =1 i£l

BNE

where we used that (z —y) "1 (f(z) — f(y)) goes to f'(z) when y goes to z. We
first take fy = 1 for £ € {1,..., K} and fy with compact support and deduce
that as iy goes to uy almost surely as IV goes to infinity, we have

o) - 5 [ LD s @y ) 0. 62)

This implies that py has compact support and hence the formula is valid for all
fo. We then linearize around py to get the announced lemma. o

The central point is therefore to invert the master operator =. We follow
a lemma from [5]. For a function A : R — R, we recall that [|hl/ci®) =

1:0 | () | Lo (r), Where h(") denotes the r-th derivative of h.

Lemma 4.18. Given V : R — R, assume that p3; has support given by [a,b]
and that

dp
—(@) = S(@)V/(z —a)(b— )

with S(x) > ¢ >0 a.e. on [a,b.
Let g : R=R be a C* function and assume that V is of class CP. Then there
exists a unique constant cg such that the equation

Ef(z) =g(x) + ¢4
has a solution of class C*=2NP=3) " More precisely, for j < (k—2) A (p — 3)
there is a finite constant C; such that

I fllci®y < Cjllgllcitemys (53)

where, for a function h, ||hllciw) = - —0 Hh(r)HLm(R).
This solution will be denoted by ”_19 It is C* if g is C**2 and p > k + 1.
It decreases at infinity like |V’ (x)x| L.

Remark 4.19. The inverse of the operator Z can be computed, see [5]. For
x € [a,b] we have that =~ 1g(x) equals

2

o (/’¢‘53/92 o) yw(xa+b)@@0+%>+@>,
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where ¢g and cy are chosen so that =~ 1g converges to finite constants at a and
b. We find that for x € S

. 1 b 1
9@) = 5S<x>PV/ag(y)<y—x> DI
1 b 1
= BS() / W) =) ot =9

and outside of S f is given by (see Remark .

fw) = (V(x) - [e- y)lduwy))l [ .

Remark 4.20. Observe that by Remark the density of py! has to vanish
at the boundary like |z — a|‘1/2 for some q € N. Hence the only case when we
can invert this operator is when q = 1. Moreover, by the same remark,

Sz)/(z—a)b—x)=/V'(x)? - f(z) =V'(z) — PV/(x —y) tdui (y)

so that S extends to the whole real line. Assuming that S is positive in [a,b]
we see that it is positive in a open neighborhood of [a,b] since it is smooth. We
can assume without loss of generality that it is smooth everywhere by the large
deviation principle for the support.

We will therefore assume hereafter that

Assumption 4.21. V : R — R is of class C? and p3; has support given by
[a,b] and that

dp
— (@) = S(@)V/ (e —a)(b—x)

with S(x) > &> 0 a.e. on [a,b]. Moreover, we assume that (|V'(z)z| +1)~1 is
integrable.

The first condition is necessary to invert = on all test functions (in critical
cases, = is may not be surjective). The second implies that for Z-!f decays
fast enough at infinity so that it belongs to L' (for f smooth enough) so that
we can use the Fourier inversion theorem.

We then deduce from Lemma [£.17] the following :

Corollary 4.22. Assume that [4. 21 with p > 4. Take fo C*, k >3 and f; C".
Let g = 271 fy be the C*=2 function such that there exists a constant cg such
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that =fo = g+ c4. Then

K L1 K
E[][ M (£:)) = (B - i)E[ﬂN((Eﬂfo)') T M ()]

1= =1

1 =
+BZ lan (E7" fo ) [T M (f:

=1 i#£l

1 E folz) == foly)
+ﬁ]E[/ 0 :”x_y ) M (z)d My (y HMN )]

4.3.3 Improving concentration inequalities

We are now ready to improve the concentration estimates we obtained in the
previous section. We could do that by using the Dyson-Schwinger equations
(this is what we will do in the discrete case) but in fact there is a quicker way
to proceed by infinitesimal change of variables in the continuous case :

Lemma 4.23. Take g € C* and assume p > 4. Then there exists universal
finite constants Cy and ¢ > 0 such that for all M >0

pyY (NI /g(x)d(ﬂN —)(@)| = Cvllglles In N + MlnN> <o N L NM

Proof. Take f compactly supported on a compact set K. Making the change of
variable \; = A + % f()\]), we see that 7%V equals

J TIN5 (00 = FOu) 1P TLe ¥V O R0 14 L P () (54)

Observe that by Taylor’s expansion there are 6;; € [0, 1] such that

TT %~ 2+ 5 () = FOD| =TT~ Aslexnd 5 2 W

e (=)

1<j

where the last term is bounded by || f’||2,. Similarly there exists 6; € [0, 1] such
that

VO + 17 00) = V) + 670V ) + 35570V O+ 257 (0)

where the last term is bounded for N large enough by Ck (V)| f||2, with Cx =
SUPg(s,k)<1 |V (2)]. We deduce by expanding the right hand side of that
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Using Chebychev inequality we deduce that if f is C' and compactly supported

8V e e —M_C(f)
Py 2N27,\f,\ ZV M) >MInN | < N~ Me

(55)
with C(f) = Cllfl1% + (8 +1)(1 + ||ffuoo>2. But

DI o R I

= NG -wEn+oy [ [ wc«w — )@ — i) ()

where if f is O2 the last term is bounded by C|/f|lc2In N with probability
greater than 1 — e~ °N by Corollary Hence, we deduce from that

P

(WY — W)(Ef)| > MInN) < NI lez=MClS1E 4 g=eN

and inverting f by putting ¢ = Zf concludes the proof for f with compact
support. Again using Theorem allows to extend the result for f with full
support. <o

Exercise 4.24. Concentration estimates could as well be improved by using
Dyson-Schwinger equations. However, using the Dyson-Schwinger equations
necessitates to loose in reqularity at each time, since it requires to invert the
master operator. Hence, it requires stronger reqularity conditions. Prove that
if Assumption holds with p > 12, for any f be C* with k > 11. Then for
{=1,2, there exists Cy such that

B[N (i = 159 (D)] < Cellflleosae | Fll 72 (i N)F

Hint :  Use the DS equations, concentration, invert the master operator and
bootstrap if you do not get the best estimates at once.

Theorem 4.25. Suppose that Assumption holds with p > 10. Let f be C*
with k > 9. Then

my(f) = Jim BN Gy = i)(0) = (5 = ilE ).

Let fo, fi be C* with k> 9 and p > 12. Then

. 1 —
Cv(fo, f1) = I&EHOO]E[MN(JC@MN(JCQ] =my (fo)mv(f1) + Bu‘{'/q(f{: "fo) .-
Remark 4.26. Notice that as C is symmetric, we can deduce that for any fo, f1
in C* with k > 9,
V(AET fo) = i (foE™ )
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Proof. To prove the first convergence observe that

1 1

E[Mn(fo)] = (B - §)E[ﬂN((Eflf0)/)] (56)
Jr%E[/ E71f0($3)j : jlfo(y) dMy (x)dMy(y)] .

—_——_

The first term converges to the desired limit as soon as (271 f;)’ is continuous.
For the second term we can use the previous Lemma and the basic concentration
estimate to show that it is neglectable. The arguments are very similar to
those used in the proof of Corollary [£.16] but we detail them for the last time.
First, not that if y; is the indicator function that all eigenvalues are bounded
by M, we have by Theorem that

Eilfo(mi : \jlfO(y) dMN(I)dMN(y)H < ”EflfouclNZech'

(- ) [

We therefore concentrate on the other term, up to modify Z~! f; outside [— M, M]
so that it decays to zero as fast as wished and is as smooth as the original func-
tion (it is enough to multiply it by a smooth cutoff function). In particular we
may assume it belongs to L? and write its decomposition E@ms of Fourier
transform. With some abuse of notations, we still denote (£~! fy), the Fourier
transform of this eventually modified function. Then, we have

o [ ERE=E R iy yany)

< [ETI | Ebaly(e ) idads

To bound the right hand side under the weakest possible hypothesis over fj,
observe that by Corollary applied on only one of the My we have

E[x | My (e't)|?] < CVNIn N|tE[| My (e'*t)|] + N2e=<N (57)

where again we used that even though e!®* has infinite 1/2 norm, we can modify
this function outside [—M, M| into a function with 1/2 norm of order [¢t|. We
next use Lemma m to estimate the first term in (with |le?**||ca of order
|at|* + 1) and deduce that :

b [ ERE =R iy wyaniy o)

< C(1nN)3/2\/N/|t(ﬂ)tlltl5dt
< C(InN)¥2VN|E7 foll o
< C(InN)*2VN| follco
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Hence, we deduce that

e[ L == 0D ng@yant(w)] < 0w NP VE oo

goes to zero if fo is C°. This proves the first claim. Similarly, for the covariance,
we use Corollary with p = 1 to find that for fy, f1C*,

Cn(fo. f1) = E[N@EN — i) (fo)Mn(f1)]
1

= (5~ PHHE ) EMN () + 5t o)
+(5 = 3By = W) (E o) )M (1)
+5Bl( — i)E o f)) (59)
gL [ SR g yanty )t (1)

The first line converges towards the desired limit. The second goes to zero as
soon as (E71fy) is Cland f; is C*, as well as the third line. Finally, we can
bound the last term by using twice Lemma[4.23] Cauchy-Schwartz and the basic
concentration estimate once

==1f(g) —=-1
|IEJ[/“ Jo( q);—y fo(y)dMN(x)dMN(y)MN(fl)”

Cn NPV [ ETR, Aol

IN

< CnNYP2YN|E foller | Aol 22

which once plugged into yields the result. o

4.3.4 Central limit theorem

Theorem 4.27. Suppose that Assumption holds with p > 10. Let f be
C* with k > 9. Then My(f) := Zi\;l f(\i) = Nuj(f) converges in law under
Pé\,lv towards a Gaussian variable with mean my (f) and covariance o(f) =
WAET)

Observe that we have weaker assumptions on f than in Lemma This
is because when we use the Dyson-Schwinger equations, we have to invert the
operator = several times, hence requiring more and more smoothness of the test
function f. Using the change of variable formula instead allows to invert it only
once, hence lowering our requirements on the test function.

Proof. We can take f compactly supported by Theorem We come back
to the proof of Lemma [£.23] but go one step further in Taylor expansion to see

65



that the function

)\i_ )\] f)\j 2 / /
)]ﬂvzf(Az_ﬁj 2N22< A_AJ( )>ﬁZV(A)f(A)

B S 0o+ L3 P
- N Z ' ' N =1

ln/eAN(f)dPﬁ,’V

where the constant C' may depend on the support of f. For any 6 > 0, with

probability greater than 1—e~C@®N* for some C (&) > 0, the empirical measure

[N is at Vasershtein distance smaller than § from pif. On this set, for f C*

satisfies )
< I

. 2
sz< - A SO )> b VIO = C() +00)
where
C(f) - %/ (‘W) d,u(\zfq(x)d,ui/?(y)+/V”($)f($)2d,u;q($)

whereas

¥ SO = M) o)), it M) = [ £t

As An(f) is at most of order N, we deduce by letting N and then § going to
zero that

PRUIENI SR O ES U SN

satisfies for any f C!

lim [ e?¥NgplV = c(B-DM(N+5C()

N—o0

In the line above we took into account that we added a diagonal term to Zn(f)
which contributed to the mean. We can now replace f by tf for real numbers
f and conclude that Zy(f) converges in law towards a Gaussian variable with
mean ( g — 1)M(f) and covariance SC(f). On the other hand we can rewrite
Zn(f) as

Zn(f)=BMN(ES) +en(f)
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where
=20 [HO=I0 a0y ey - i)

Now, we can use Lemma to bound the probability that ey (f) is greater
than some small §. We again use the Fourier transform to write :

5 / tht / MV )(1_a)t(ﬂN - M?/q)atdt-

We can bound the L' norm of ey(f) by Cauchy-Schwartz inequality by

Bllen(Ol) < 5 [ 1] / V) B — ) o T 2dbd

Finally, Lemma implies that

|41nN

E[[(AN — i) a1V < Clt +N°¢

from which we deduce that there exists a finite constant C

In N2

Ellen(1)) < € [ 1141

Thus, the convergence in law of Zy(f) implies the convergence in law of

My(Ef) towards a Gaussian variable with covariance C(f) and mean (3 —

LYM(f). If fis CY we can invert = and conclude that My(f) converges

B
towards a Gaussian variable with mean m(f) = (3 — %)M(E_l(f)) and co-

variance C(27!(f)). To identify the covariance, it is enough to show that
C(f) =/ ((Ef) f). But on the support of puj/

EN () =V"f(z)+ PV/ W‘W?}(y)

from which the result follows.

4.4 Expansion of the partition function

Theorem 4.28. 1. For f C'" and V C?,
E ~N __,eq 1 1 K 1
Py, i (f)]—ﬂv(f)‘f'NmV(f)‘*‘m (f)+O(N2)’

with my (f) as in Theorem[{.25 and

Kv(f)= (B_%)m‘/( 1fo /tht _1f ) daC (Zto‘ et(lfa)-)_
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2. Assume V C?°, then
InZy = CgNInN + CyIn N + N?Fy(V) + NFy (V) + Fo(V) + o(1)

0_ B8 1 _ 3+B/2+2/B
with Cy = 5, CB = =55 and

(V) = —&u)

(V) = —(g - 1)/ d(;;v dpst + f1 (59)
1

FQ(V) = 7ﬁ/0 Kva(V*Vo)dOéﬁLfQ

where fi1, f2 only depends on b — a, the width of the support of pui

Proof. The first order estimate comes from Theorem[1.25] To get the next term,
we notice that if 27! f belongs to L' we can use the Fourier transform of =71 f
(which goes to infinity to zero faster than (|t| +1)72 as 271 f is C°) so that

[ == gy @yant )

T —

t@

/ dtit==1 f(t) / daE[My (e My (et (1=))]
0
P 1
~ /dtitE*lf(t)/ daCy (et et1=2))
0

We can therefore use to conclude that

2

NEDM (D] =mlf) = (5= mv((E1))
/dtzt = 1f )/1 dacv(eita.,eit(ka),)

which proves the first claim. We used that f is C12 so that (271 f)" is C? and
Theorem [£.25]for the convergence of the first term. For the second we notice that
the covariance is uniformly bounded by C(|¢t|*? + 1), so we can apply monotone
convergence theorem when fdt|E/_1\f(t)Ht|13 is finite, so f C167F.

To prove the second point, the idea is to proceed by interpolation from a
case where the partition function can be explicitly computed, that is where
V is quadratic. We interpolate V with a potential Vo(x) = c(x — d)?/4 so
that the limiting equilibrium measure p.q, which is a semi-circle law shifted
by d and enlarged by a factor /c, has support [a,b] (so d = (a + b)/2 and

= (b — a)?/16). The advantage of keeping the same support is that the
potential V,, = oV + (1 — a)Vp has equilibrium measure p, = api! + (1 — @) pe,q

68



since it satisfies the characterization of Lemma [£.5l We then write

N

Zsy
oy

B,Vo

1
1 / Oon 2}y, da
0

1
BN [ By [0V - Va)lda
Epy,

It is not hard to see that if uj satisfy hypotheses so does p, and that the
previous expansion can be shown to be uniform in «. Hence, we obtain the
expansion from the first point if V is C2° with

1
R(V) = -8 / v (V = Voydor+ f
1
(V) = -8 / my (V — Vo)da + fi
0
1
R(V) = -8 /0 Ky, (V - Vo)da + fo

where fo, f1, fo are the coefficients in the expansion of Selberg integrals given
in [72] :

ZN 5= N% N2 N fok N fitfoto()
0,

with fg, f1, fo only depending on b — a :

b = om[-2 (5]
fo= -2 (PT) <12 /44 (5/2)(8/2) + n(2x) — (1 + 5/2)
o= X528, + 22D

The first formula of Theorem [£.2§]is clear from the large deviation principle and
the last is just what we proved in the first point. Let us show that the first order
correction is given in terms of the relative entropy as stated in (59)). Indeed, by
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integration by part and Remark we have
1 1. eq m—
B_i) 'my (f) = uy (2 r)]
dpgd
=1 vy
— | = —)d
[y
eq

_ du
- _ = 1 1 Vv /d eq
/ f(In dr ) Hy

1 AUV
- [ =

(

To complete our proof, we will first prove that if g is C'° |

lim s~ (uyt = ') (9) = uy (g f) (60)

s—0

which implies the key estimate

1 1. o dpgt dpust

(B —3) mv(f) = —/f': Hin =22 )dpyt = Oy g (In =72

To prove (60)), we first show that my (f) = [ f(x)duy (2) is continuous in V in
the sense that

M=o (61)

D(pv,pw) < VIV =Wl - (62)

Indeed, by Lemma applied to p = pw and since [ Vegd(puw — py) > 0, we
have

D(pw,pmv)? < E(pw) — E(uy)
< inf{/ Wi+ 350} —inf{/ Vi + 550}
< W=Vl

As a consequence (uy' ., — py')(g) goes to zero like /s for g Lipschitz and f
bounded. We can in fact get a more accurate estimate by using the limiting
Dyson-Schwinger equation to pyt f and p( and take their difference to
get :

(s = m)Eve) =suyt . 4(9f") (63)
+ ;/Wd(quf — uy)(@)d(py—sp — 1) (Y) -

The last term is at most of order s if g is C? by (62)) (see a similar argument in
(50)), and so is the first. Hence we deduce from (63) that (uy' . — py?)(g) is
of order s if g € C* and f is C°. Plugging back this estimate into the last term
in together with (62)), we get for g € C® and f € CY.
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From 7 we deduce that

1
F(V) - fi Z-%A7de—%Ma

: e 1 d
_ (5_1)/0 (Oupy; ) (0 Lo >da—<§—1>/0 v, (O In =2 do

duy!
dx

1
= G- [ Ol 0 L

wich yields the result. Above in the second line the last term vanishes as
py, (1) = 1.
o

5 Discrete Beta-ensembles

We will consider discrete ensembles which are given by a parameter 6 and a
weight function w :

P = — T = 6 [T w (6. )

0
ZN i<j

where for x > 0 we have set

I'(z+1)I(z+0)

b@) = s Tar1-0)

where I' is the usual I-function, I'(n + 1) = nI'(n). The coordinates ¢1,..., ¢y
are discrete and belong to the set Wy such that

£i+1—fi6{9,9+1,...}

and ¢; € (a(N),b(N)) with w(a(N),N) = w(b(N),N) = 0 and ¢; — a(N) €
N,b(N) — Iy €N

Example 5.1. When 0 = 1 this probability measure arises in the setting of
lozenge tilings of the hexagon. More specifically, if one looks at a “slice” of the
hexagon with sides of size A, B,C, then the number of lozenges of a particu-
lar orientation is exactly N and the locations of these lozenges are distributed
according the P]{,’w. Along the vertical line at distance t of the vertical side of
size A (see Figure , the distribution of horizontal lozenges corresponds to a
potential of the form

wl,N) = [(A+B+C+1—t—0), 5 (0)c|,

where (a), is the Pochhammer symbol, (a), = ala+1)---(a+n —1).
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Figure 1: Lozenge tilings of a hexagon

More generally, as © — 400 the interaction term scales like :
Ip(x) =~ \x|20 as T — 0o

so the model for # should be compared to the 8 ensemble model with § <> 26.
Note however that when 6 # 1, the particles configuration do not live on ZN.
These discrete 3-ensembles were studied in [I3]. Large deviation estimates can
be generalized to the discrete setting but Dyson-Schwinger equations are not
easy to establish. Indeed, discrete integration by parts does not give closed
equations for our observables this time. A nice generalization was proposed
by Nekrasov that allows an analysis similar to the analysis we developed for
continuous 8 models. It amounts to show that some functions of the observables
are analytic, in fact thanks to the fact that its possible poles cancel due to
discrete integration by parts. We present this approach below.

5.1 Large deviations, law of large numbers

Let iy be the empirical measure :

LN
AN = N;(S&/N

Assumption 5.2. Assume that a(N) = aN + O(In N),b(N) = bN + O(In N)
for some finite a,b and the weight w(x, N) is given for x € (a(N),b(N)) by :
x
w(z, N) = exp (—NVN (N))

where Vi (u) = 20V (u) + x-en(Nu). Vo is continuous on [a,b] and twice con-

72



tinuously differentiable in (a, l;) It satisfies

1 1

1 < C(1 =
W@l <CO+ p—g + s

).

en s uniformly bounded on [a(N) + 1,b(N) — 1]/N by Cln N for some finite
constant C' independent of N.

For the sake of simplicity, we define Vj to be constant outside of [d, b] and
continuous at the boundary.

Example 5.3. In the setting of lozenge tilings of the hexagon of Example
we assume that for large N

A=AN+0(1),B=BN +0(1),C =CN +0(1),t =N + O(1)

with 1€> rr}ax{é,é’}. Then a(N) = 0,b(N) = A+ B+C+1—1t obey a = 0,b =
A+ B+ C —t. Moreover, the potential satisfies our hypothesis with

Vow) = ulnu+(A+B+C—t—uw)n(A+B+C—i—u)
—(A+C—uw)n(A+C —u)— (- C+u)ln(i—C +u)

Notice that Vi s infinite at the boundary since w vanishes. However, particles
stay at distance at least 1/N of the boundary and therefore up to an error of
order 1/N, we can approximate Vi by Vj.

Theorem 5.4. If Assumption[5.4 holds, the empirical measure converges almost
surely :

UN — KV,

where py, is the equilibrium measure for Vo. It is the unique minimizer of the
energy

0 = [ (5% + 3¥500) ~ 3 nle 1) duto)iuty)

subject to the constraint that p is a probability measure on [&,13] with density
with respect to Lebesque measure bounded by 0~ 1.

Remark 5.5. We have already seen that £ is a strictly convex good rate function
on the set of probability measures on [a, IA)}, see (34). To see that it achieves its
minimal value at a unique minimizer, it is therefore enough to show that we
are minimizing this function on a closed convex set. But the set of probability
measures on [a, l;] with density bounded by 1/0 is clearly convex. It can be seen
to be closed as it is characterized as the countable intersection of closed sets
given as the set of probability measures on [a, l;} so that

[ f@auto| < 18

for bounded continuous function f on [a,b] so that || f| = [1f(z)]dz < .
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The case where a, b are infinite can also be considered [13]. This result can
be deduced from a large deviation principle similar to the continuous case [35] :

Theorem 5.6. If Assumption holds, the law of N under ng,w satisfies a
large deviation principle in the scale N? with good rate function I which is infi-
nite outside of the set Py of probability measures on [a, I;] absolutely continuous
with respect to the Lebesgue measure and with density bounded by 1/6, and given
on Py by
() = 20(& () — inf&).

Proof. The proofs are very similar to the continuous case, we only sketch the
differences. In this discrete framework, because the particles have spacings
bounded below by 6, we have, for all x < y,

0#{i:4; € N[z,y]} < (y—x)N+6

so that
ly—z| 1

fin () < 55+

In particular, 4V can only deviate towards probability measures in Py. The
proof of the large deviation upper bound is then exactly the same as in the
continuous case. For the lower bound, the proof is similar and boils down
to concentrate the particles very close to the quantiles of the measure towards
which the empirical measure deviates : one just need to find such a configuration
in Wy. We refer the reader to [35].

In particular in the limit we will have :

eq
dpry <1
de — 0

The variational problem defining 7' in this case takes this bound into ac-
count. Noticing that £(uj +tv) > E(uj?) for all v with zero mass, non-negative
outside the support of uj and non-positive in the region where duj = 0~ ldx,
the characterization of the equilibrium measure is that 3Cy s.t. if we define :

Van(z) = Vaw) ~ [ (lo ~ y)di?() - Cv

and Vg satisfies :

dpca
Ver(2) =0 on0< G- <3
Vett(x) >0 onj—’;zo
Vert(2) <0 on%:%

The analysis of the large deviation principle and concentration are the same as
in the continuous 3 ensemble case otherwise. o
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5.2 Concentration of measure

As in the continuous case we consider the pseudo- distance D and the
regularization of the empirical measure jiy given by the convolution of i~ with
a uniform variable on [0, &] (to keep measures with density bounded by 1/6).
We then have as in the continuous case

Lemma 5.7. Assume Vj is C'. There exists C finite such that for allt >0
w ~ n — 242
PR (D(finv, ) > 1) < eON NN

As a consequence, for any N € N, any e > 0
w 1 R t 1 0 N—N2¢2
P (s | [ @ =)o) 2 o+ i ) < e
2:8z>e

z—x T2 2N
Proof. We set Q% (f) = N’GNZZJQ\;WP]%’”(E) and set for a configuration £,
E(l) = E(in),

N
1 ¢; 20 ¢;
E0 =y LW - pLhiy -y
i=1

1<j

o We first show that Q%¥(¢) = e~ N"206(O+OWNInN)  Indeed, Stirling for-
mula shows that InI'(z) = zlnz — z — Inv27z + O(L), which implies

that
-+ 1T — ¢+ 6) 20 O(X,_: 72)
— g _ E’L 1<j éj—lj
FE—K T(l,—;+1-0) g'ﬂ [Te
with 37, ) E) = O(NInN) as ¢; —¢; > 0(j — i). Similarly, by our

assumption on Vy, for all configuration ¢ so that ¢; # a(N) and ¢y #
a(N), we have :

N N
N ; VN(N) =N ; Vo(ﬁ) + O(T) :
Hence we deduce that for any configuration with positive probability :
Q?\}w(f) _ 67N2205(€)+O(N1nN) (64)
o We have the lower bound N_9N2Zf\;‘“ > e—N?20E(nvy)+CNInN T prove

this bound we simply have to choose a configuration matching this lower
bound. We let (¢;)1<i<n be the quantiles of py, so that

v (a0 = 2
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Then we set
Qi=a(N)+0(i—1)+ [Ng —a(N)— (i —1)f]

Because the density of uy, is bounded by 1/6, ¢;+1 — ¢; > 6 and there-
fore Q;+1 — Q; > 0. Moreover, Q1 — a(N) is an integer. Hence, @ is a
configuration. We have by the previous point that

N79N2Zj0\;w > 6—N2295(Q)+O(N1nN) (65)

We finally can compare £(Q) to E(uy,). Indeed, by definition Q; €
[Ngi,N¢; + 1] and Q; — Q; > (i — j), so that

Zln|@\ > Z ln|%|+O(NlnN)

1<j i+[2]<j
1
> Z 1n|qj—qi—N|+O(N1nN)
i+[2]<j
= ) Inlg—qg/+O(NhN)
i+[3]<j
qi+1
> N Y / / In fz — yldpavs (2)dpvy () + O(N In N)
H—[ 1<j 95—
> N° / In Jz — yldpuvy (2)dpavs (4) + O(N In N)
<y

where we used that the logarithm is monotone and the density of uy,
uniformly bounded by 1/6.

Moreover

(59 - [ @i o >|<02/ (1 g g -

is bounded by C’/N.

We conclude that 0N
n
€(Q) < &(uw) + O(—)

so that we deduce the announced bound from .

We then show that Q]g\’,w(f) = ¢~ N*206(in)+O(NInN) - \We start from
and need to show we can replace the empirical measure of i’V by iy and
then add the diagonal term ¢ = j up to an error of order N In N. Indeed,
if u, v are two independent uniform variables on [0, 8], independent of ¢,

Sl - SEml - U5

i#]
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== Elm|——+0(}_ Ly —owmn)

A
i I ’

whereas
4; Uu In N

N
1 gl %
— E Y 22 I = O/
N Pz(ifw(g) < 67N229D2(ﬂN,uv0)+O(N1nN)'

We can now write
E(ian) = E(pvy) + / Verr(@)d(fin — pvy)(x) + D*(fin s vy

D? is indeed positive as fiy and py, have the same mass. V. f¢(x) vanishes
on the liquid regions of uy;, is non-negative on the voids where iy — py,
is non-negative, and non positive on the frozen regions where iy — py,
is non-negative since fiy has density bounded by 1/6. Hence we conclude
that

/[A . Vers(@)d(iin — pv,)(x) 2 0.

On the other hand the effective potential is bounded and so our assumption
on a(N) — Na implies

N [ Vsl = ) (@) = OV Ia ).
[a,b]¢

Hence, we can conclude by the previous two points.

5.3 Nekrasov’s equations

The analysis of the central limit theorem is a bit different than for the continuous
B ensemble case. Introduce :

We want to study the fluctuations of {N(Gn(z) — G(z))}. To this end, we
would like an analogue of Dyson-Schwinger equations in this discrete setting.
The candidate given by discrete integration by parts is not suited to asymptotic
analysis as it yields densities which depend on [](1 + (¢; — ¢;)~') which is not
a function of V. In this case the analysis goes by the Nekrasov’s equations
which Nekrasov calls “non-perturbative” Dyson-Schwinger equations. Assume
that we can write :
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Assumption 5.8.
w@,N) _ ¢h()
w(x_ LN) ¢]T/'(x)

where (bﬁ are analytic functions in some subset M of the complex plane which
includes [a(N),b(N)] and independent of N.

Example 5.9. In the example of random lozenge tilings of Example[5.1] we can
take

1 1
qi)}(z):ﬁ(t—O—l—z)(A—FB—FC'—t—z), qﬁ&(z):ﬁz(A—FC—z).

With these defined, Nekrasov’s equation is the following statement.

ﬁ(l+§gl)]

i=1

Theorem 5.10. If Assumption [5.8 holds

Ry () = ¢n(OEpo.w lﬁ (1 - 59@)

i=1

+ ¢]J(r (g)Epz‘f;“’

s analytic in M.

Proof. In fact this can be checked by looking at the poles of the right hand side
and showing that the residues vanish. Noting that there is a residue when £ = /;
or £; — 1 we find that the residue at £ = m is

N
— w 9
—0pn(m) Y Y PR (00, oy limamy big, o UN) II<1_m—€->

J

i Li=m Ve

N
2 : }: w 0
+€¢E(m) P]?f (617"7£7371am_17£7§+17' .. 7£N) H <1 + )

N - m — gj -1
i Li=m—1 E

If m = a(N) + 1 the second term vanish since the configuration space is such
that ¢; > a(N) for all 4, whereas ¢ (a(/N)+ 1) = 0. Hence both term vanish.
The same holds at b(N) and therefore we now consider m € (a(N) 4+ 1,b(N)).
Similarly, a configuration where ¢; = m implies that ¢;_; < m — 6 whereas
l; = m — 1 implies ¢;_1 < m — 1 — 6. However, the first term vanishes when
l;_1 = m — 6. Hence, in both sums we may consider only configurations where
l;_1 < m —1—0. The same holds for £;1; > m + 6. Then notice that if ¢ is
a configuration such that when we shift £; by one we still have a configuration,
our specific choice of weight w and interaction with the function I' imply that

N
w 0
(b]_\/'(’rn)j_)]‘?]7 (617"7m7£i+17"'a€]\7) H(l_ )
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N
0
=L (m)P Uy, . om — 1,051, ... 14—
¢N(m) N (El, ,m 7€L+17 aEN) H( +m_€j_1
J#i
On the other hand a configuration such that when we shift the ith particle by
one we do not get an admissible configuration has residue zero. Hence, we find
that the residue at £ = ¢; and ¢; — 1 vanishes. o

Nekrasov’s equation a priori still contains the analytic function Ry as an
unknown. However, we shall see that it can be asymptotically determined based
on the sole fact that it is analytic, provided the equilibrium measure is off-
critical.

Assumption 5.11. Uniformly in M,
+ o+ z 1 + 4 1
G (2) = 65 () + ot (2) + Ol3rg)

Observe here that (ﬁ may depend on NV and be oscillatory in the sense that
it may depend on the boundary point. For instance, in the case of binomial
weights, ¢%(z) = (A — 2),¢5(z) = z, we see that if M/N goes to m,
¢~ (z) =z and ¢; () =0, but

ot (x)=m—z,¢(2) =M +1—Nm

where the latter may oscillate, even if it is bounded. We will however hide
this default of convergence in the notations. The main point is to assume the
functions in the expansion are bounded uniformly in N and z € M.

Example 5.12. With the example of lozenge tiling, we have
pt)=(F-C+2)(A+B+C—t—2), ¢ (2)=2(A+C—2).
whereas if AD = D — LD,

6t (2) = 2(At — AC + AA + AB + AC — At), ¢ (x) = %x(AA +AC).

To analyze the asymptotics of G, we expand the Nekrasov’s equations
around the equilibrium limit. We set £ = Nz for z € C\R. Since we know by
Lemma that AGy(z) = Gn(z) — G(z) is small (away from [a,b]), we can
expand the Nekrasov’s equation of Lemma to get :

Ry(€) = Ru(2) — 0Q,(2)E[AGN(2)] + % Bu(2) + Tu(2) (66)
where we have set :
RM(Z> = (b_ (z)e_eG(z) + ¢+(Z)€0G(z)
Quz) = ¢*(z)e*9G(z) _ ¢+(z)60G(z)
— _ 2 92 R 92
Bue) = 6705 0.606) + 67 (060 (G -0) 2,60

+o1 (2)e7 9 4 ¢ (2)e?9) .
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I',, is the reminder term given by which basically is bounded on {Sz >
e} N M by

042 < C(6) (BAGN ()] + - I0EIAGH G +ol )

The a priori concentration inequalities of Lemmalp.7show that T',,(z) = O(In N/N).
We deduce by taking the large N limit that R, is analytic in M and we set

R, =Ry — R,,.
Let us assume for a moment that we have the stronger control on I',

Lemma 5.13. For any € > 0,

E[AGN (2)) + 1-E[AGN ()] = o)

uniformly on M N {|Sz| > e}.

Let us deduce the asymptotics of NE[AGy(z)]. To do that let us assume
we are in a off-critical situation in the sense that

Assumption 5.14.
0Qu(2) = V(2 —a)(b—2)H(z) =: 0(2)H(2)
where H does not vanish in M.

Remark 5.15. Observe that if p is the density of the equilibrium measure,

20m0p(E) _ Ryu(E) + Qu(E —1i0)
R,(E) + Qu(E +i0)

Our assumption implies therefore that p(E) = 0 or 1/6 outside [a,b] and goes to
these values as a square root. There is a unique liquid region, where the density
takes values in (0,1/0), it is exactly [a,b].

We now proceed with similar techniques as in the 8 ensemble case, to take
advantage of equation as we used the Dyson-Schwinger equation before.

Lemma 5.16. If Assumption holds, for any z € M\R,
E[NAGN(2)] = m(2) + o(1) (67)
with m(z) = K~'E,(z) where

1 5’5 11

KO = 5oty fu e O
Remark 5.17. If we compare to the continuous setting, K is the operator of
multiplication by 0Q,(z) whereas in the continuous case it was multiplication
by ﬁ‘;—‘; = G(z2) = V'(2). Choosing ¢t (z) = eV (/2 ¢~ (2) = eV (/2 we see
that Q,(z) = sinh(0G,, — V'(2)/2) is the hyperbolic sinus of the density. Hence,
the discrete and continuous master operators can be compared up to take a sinh.
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Proof. To get the next order correction we look at :

0Qu(2)E (8GN ()] = 3 Eul2) = Rulz) + 1)

We can then rewrite as a contour integral for z € M :

FAEIAGKE)] = 5= P e OEIAGHE] i

5 | B~ Rul©) + T ag
H

where we used that cAGy goes to zero like 1/z to deduce that there is no
residue at infinity so that we can move the contour to a neighborhood of [a, b],
that R,,/H is analytic in a neighborhood of [a, b] to remove its contour integral,
and assumed Lemma [5.13] holds to bound the reminder term, as the integral is
bounded independently of N. o

1
QZwygb]f—zH(
141
207 Jian € — 2 H(E)

Remark 5.18. The previous proof shows, without Lemmal[5.13, that E[AG ()]
is at most of order In N/N sin T, is at most of this order by basic concentration
estimates.

We finally prove Lemma To do so, it is enough to bound E[|AG y(2)|?]
by o(1/N) uniformly on M N {|Sz| > €/2} by analyticity. Note that Lemma
already implies that this is of order In N/N. To improve this bound, we get

an equation for the covariance. To get such an equation we replace the weight
w(z, N) by

wy(z, N) = w(z, N) (1 ! /N>

for ¢ very small. This changes the functions ¢ ~ by

V(@) = 03 (@) (' = 2/N +1) ( /N + fv) ,

on'(x) = oy (@) (2 — w/N) <Z’ —z/N+t+ ]1[) .

We can apply the Nekrasov’s equations to this new measure for ¢ small enough
(so that the new weights w; does not vanish for 2/ € M) to deduce that

N N
j =o' 0 - 79 ot 6,w 79
Ry(§) = PN (f)EpN,wt Ll:[l (1 £ > +on (f)]EPN’ ¢ |Jl:[1 <1 + E—t; — 1)]
(68)
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is analytic. We start expanding with respect to N by writing

¢ / ’ _ | 1
AN/ — )i+ 2 ) = (65(0) + 07 (@) + o)
with o+ (2) (@)
=0t @+ 2 gty o+ 2
We set

Riy(x) = (Riy(Nx) = Ry (2)) /(2 — 2)(t + 2’ — x)
which is analytic up to a correction which is o(1/N) and analytic away from 2’
in a neighborhood of which it has two simple poles. We divide both sides of

Nekrasov equation by (2’ — x)(t + 2’ — z), and take £ = Nz and again using
Lemma we deduce that

0Qu (B [AGN(2)] = Ry () + 1 BL() 4 TL(2) (69)

where #*(2) 6 (2)

z “(z

Et 2) = E 2 769G(z) 76—9G(2‘)
u(2) “()+z/—z +t—|—z’—z

and T (2) is a reminder term. It is the sum of the reminder term coming from
and the error term coming from the expansion of . The latter has single
poles at 2z’ and 2’ 4t and is bounded by 1/N?2. We can invert the multiplication
by @, as before to conclude (taking a contour which does not include 2’ so that
RY, stays analytic inside) that

Epo [AGN(2)] = K‘l[%Eﬁ +T7](2) + 0(%) ;

where we noticed that the residues of e are of order one.
We finally differentiate with respect to ¢t and take t = 0 (note therefore that

we need no estimates under the tilted measure Pﬁ,’w‘, but only those take at
t = 0 where we have an honest probability measure). Noticing that the operator
K does not depend on ¢, we obtain, with AGn (%) = Gn(2') — E[Gn(Z)] :

NZIEP%w [AGN(2)AGN(Y)] = —K_l[L(')e_eG(‘)](z)—i—NK_l[atFZh:O](z)

EENE
(70)
It is not difficult to see by a careful expansion in Nekrasov’s equation that

0T, (2)]e=0] < C(€)<NE[IAGN(Z)|2AGN(Z’)I] (71)

+HOEIAGN()AGK (]| + EIAGN ()]
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By Lemma it is at most of order (In N)?/+/N so that we proved

N7 [AGN(BGx ()] = ~K [ 5-Ehe 101) + O((n NPV
| (72)
This shows by taking 2’ = z that for 3z > ¢
E[|[NAGN(2)]?] < (InN)*VN . (73)

We note here that AGy(z) and AGy(z) only differ by In N/N by Remark
This completes the proof of Lemma
We derive the central limit theorem in the same spirit.

Theorem 5.19. If Assumption|5. 14| holds, for any 21, ...,z € M\R, (NAGN(21)—
m(z1),..., NAGN(zr) — m(zx)) converges in distribution towards a centered
Gaussian vector with covariance

Cl(z,7) = _K—l[(j_(-'))ze—ef;(.)](@

Remark 5.20. [t was shown in [13] that the above covariance is the same than
for random matrices and is given by

(o) = 1 <1_ 2w — $(a+b)(z+w) + ab )

(z —w)? V(z—a)(z =b)y/(w—a)(w—1b)

It only depends on the end points and therefore is the same than for continuous
B ensembles with equilibrium measure with same end points. However notice
that the mean given in 1s different.

Proof. We first prove the convergence of the covariance by improving the esti-
mates on the reminder term in by a bootstrap procedure. It is enough to
improve the estimate on 0,I',, according to . But already, our new bound
on the covariance and Lemma allow to bound the right hand side of
by (In N)*/N. This allows to improve the estimate on the covariance as in
the previous proof and we get :

E[[NAGx(2)]?] < C(e)(In N)*. (74)

In turn, we can again improve the estimate on |0,I',(2)| since we now can
bound the right hand side of by (In N)°N~—1/2 which implies the desired
convergence of E[AG y(2)AGy(2')] towards C(z, 2').

To derive the central limit theorem it is enough to show that the cumulants
of degree higher than two vanish. To do so we replace the weight w(z, N) by

wy(z, N) = w(z, N) ﬁ(Ht/N)



The cumulants are then given by

NOw, Oy, - 00, B powr [AGN(2)] lty=ta=-=t,=0

Indeed, recall that the cumulant of NAGx(21),... NAGN(2,) is given by
p
8t1 ce 8tp lnEPz’wt [exp{N Z tiGN(Zi)}]|t1:t2:~~~:tp:0
i=1
which is also given by

8t2 e ﬁtp IHEPISV’W‘ [NAGN(Zl)”tl:tQ:“':tp: .

Noticing that E 6., [AGn(2) — AGn(2)] is independent of ¢, we conclude that
N
it is enough to show that

N3t18t2 s 5‘tpEP;,wt [AGN(Z)] |t1:t2:---:tp:0

goes to zero for p > 2. In fact, we can perform an analysis similar to the previous
one. This changes the functions gbﬁ by

N (@) =

::ws

(Zi*ff/Nthi)a(?&’t( ) =on(2)

i=1 i

N
&
Jamb

(2i —x/N).

1

We can apply the Nekrasov’s equations to this new measure for ¢; small enough
(so that the new weights do not vanish) to deduce that

R (€) = 03" (€)E po.o [ﬁ( — fi) O OB pa [1_11( Ez_lﬂ (75)

i=1
is analytic. Expanding in N we deduce that

E v [AGn(2)] = K[ BL(2) + T(2)]

where

¢ z a (.CL' — z
E;(z):E#(zHZZ 9G<>+Zt+z_$ 6G(2)
i=1 """ i=1 " v

and

0000, T —al2)] <€) (B [ (8GN ()P + 575) TTINAG (a0
#3710 EIAGY () [[NAGx (9] )
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The contour in the definition of K~! includes z and [a,b] but not the z;’s.
Taking the derivative with respect to t1,...,t, at zero we see that for p > 1

O Oy - - 5tp]EPg«wt [NAGN(2)] = K104, 04, - - - Btle"fL(z)]

where we used that the operator K is independent of ¢t. We finally need to show
that the right hand side goes to zero. It will, provided we show that for all p € N,
all z1,...,2, € M\[A, B] there exists C' depending only on min d(z;, [4, B]) and
p such that

P
E[J[ NAGN(2)]
i=1
This provides also bounds on E[|AG y(z)|P] when p is even. Indeed 0y, - - - 9;, NT',(2)
can be bounded by a combination of such moments. We can prove this by induc-
tion over p. By our previous bound on the covariance, we have already proved
this result for p = 2 by . Let us assume we obtained this bound for all
¢ < p for some p > 2. To get bounds on moments of correlators of order p + 1,
let us notice that [9;,dy, - -- 8y, NT",|i—o is at most of order (InN)**2 if p is
even by the induction hypothesis and Lemma (by bounding uniformly the
Stieltjes functions depending on z). This is enough to conclude. If p is odd, we
can only get bounds on moments of modulus of the Stieltjes transform of order
p—1. We do that and bound also the Stieltjes transform depending on the argu-
ment z; by using Lemma We then get a bound of order (In N)3»*+3y/N for
|0¢, 0, - - - O, NT", |i=0. This provides a similar bound for the correlators of order
p—+1, which is now even. Using Hélder inequality back on the previous estimate
and Lemma on at most one term, we finally bound |9y, 0y, - - - 0, NFZ|t:0 by
(In N)3®+1) which concludes the argument.

< C(lnN)*,

<

5.4 Second order expansion of linear statistics

In this section we show how to expand the expectation of linear statistics one
step further. To this end we need to assume that ¢ﬁ expands to the next order.

Assumption 5.21. Uniformly in M,

1 1 1
£y . 4t + +
on(2) =1 07(2) + N(bl (2) + N ¢y (2) + O(ng)
Lemma 5.22. Suppose Assumption[5.21] holds. Then,

Z&EHOOE[NQAGN(Z) — Nm(z)]—r(z) =0 (76)
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with r(z) = K~1F,(z) where

2
L10G2) + (J0.0(2) + <aﬂ)

R = 070 (Gome) - oG+ 5

61 (2)e %) ( 3G()9m®0+¢ﬂ@emw

62 03

+67 (2)e%C) <(2 ~ 0)0.m(z) + (5 +0 - 7)326;( )
2 J—

+5lm(e) — 25 20,60 + (2.2

92

+07 (2)e"CD0m(2) + (5 = 0)0:G(2)] + ¢ (2)e”)

Proof. The proof is as before to show that

1 1 o 1
N Ee() + gz lu(z) + R (2) +o <N2>

by using Nekrasov’s equation of Theorem [5.10] expanding the exponentials and
using Lemmas and We then apply K ! on both sides to conclude.
o

0Q.(2)E[AGN(2)] =

5.5 Expansion of the partition function

To expand the partition function in the spirit of what we did in the continuous
case, we need to compare our partition function to one we know. In the con-
tinuous case, Selberg integrals were computed by Selberg. In the discrete case
it turns out we can compute the partition function of binomial Jack measure
[13] which corresponds to the choice of weight depending on two positive real
parameters «, 8 > 0 given by :

D(M+6(N—1)+3%)
Fre+1)Ir(M+0(N-1)+1-1)

wy () = (B86)" (77)

Then, the partition function can be computed explicitely and we find (see the
work in progress with Borot and Gorin) :

Theorem 5.23. With summation going over (¢1,...,{N) satisfying {1 € Z>
and biy1 — £, €{60,0+1,0+2,...},ie{l,...,N—1}, we have

N
1 Tliyr — i+ DI (liys — 4 +6)
7] = 1

) 2 1<i1<_J[<N NPT (ligr — )0 (b — L +1 — 1;[

1+ ﬂa)MN(Oéﬁe N(N-1) II—V[ T(O(N+1—i)I'(M+6(N—1)+ %)

wr)’ 1 T(O)C(M +1+0(i — 1))
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On the other hand, the equilibrium measure p; for this model can be com-
puted and we find that if % — (m —0) and ¢ = af0, there exists «, 5 € (0, m)
so that p; has density equal to 0 or 1/6 outside (v, 8), and in the liquid region
(ar, B) the density is given by :

z(l—q)+qm—qb — 0
wy(x) = —arccot
0 V((@(1 = q) + qm — g6 — 0))? + 4aq(m — x)
where arccot is the reciprocal of the cotangent function. Therefore, depending

on the choices of the parameters, the behavior of p;(z) as x varies from 0 to m
is given by the following four scenarios (it is easy to see that all four do happen)

Near zero py(x) = 0, then 0 < py(x) < 671, then py(x) = 67! near m;

Near zero py(z) = 671, then 0 < py(z) < 71, then ps(x) = =1 near m;

Near zero py(x) = 0, then 0 < py(z) < 67, then py(z) = 0 near m;

Near zero p7(z) = 071, then 0 < py(z) < 71, then p;(x) = 0 near m.

We want to interpolate our model with weight w with a Jack binomial model
with weight w;. To this end we would like to consider a model with the same
liquid/frozen/void regions so that the model with weight w'w’™", ¢ € [0,1],
corresponds to an equilibrium measure with the same liquid /frozen/void regions
and an equilibrium measure given by the interpolation between both equilibrium
measure. However, doing that we may have problems to satisfy the conditions of
Nekrasov’s equations if w/w; may vanish or blow up. It is possible to circumvent
this point by proving that the boundary points are frozen with overwhelming
probability, hence allowing more freedom with the boundary point. In these
lecture notes, we will not go to this technicality.

Theorem 5.24. Assume there exists M, q so that In(w/wy) is approzimated,

uniformly on [a,b)] by

In %(Nx) =-NV =-Vy)(z)+ A1V (z) + %AQV(.’E) + 0(%) )

where y —Vy and A1V are analytic in M, whereas A3V is bounded continuous
on [a,b]. Assume moreover that qﬁﬁ satisfies Assumption m Then, we have

0, w
In ZZ]Y] = —N?Fy(0,V) + NF1 (0, w) + Fy(0, w) + o(1)
with
Fo(0,V) = —20E(u) + 20& (1)
0, Vv) = 27”/ / V=V dt—i—%/ /A1V )G (2)dt
BO.v) = 27”/ / (Vi = V)(@)re(2) + ArV (2)me(2) + DoV (2)Gi(2)) dzdt
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Proof. We consider P]%’wt the discrete 8 model with weight wtw‘lft. We have

Z@w 1 0 w
= [ P> In—(£))dt
G = e )
1
_ /pJ%Wt(gN (N2(Vy = V) + NALV + AgV))dt + o(1).
0

Denote p; the equilibrium measure for wtwhlft. Clearly

1
hm Pe we ( 75 (AgV))dt / Mt (AQV) dt .
0

N—o0 0

For the first two terms we use the analyticity of the potentials and Cauchy
formula to express everything in terms of Stieltjes functions

/1 Py (N (N?(Vy — V) + NALV))dt

/ / (N2(Vy = V) + NALV) (2) P3" (G (2))dzdt .

27rz

We then use Lemma [5.22] since all our assumptions are verified. This provides
an expansion :

ZG,w

In ZIY] = —N?Fy(0,V) + NF,(0,w) + Fy(,w) + o(1) .
N

Again by taking the large N limit we can identify Fy(0,V) = —&(uy). For Fy
we find

1 1
Fl(ﬁ,w):%/() /C(VJ—V)( dt+%/ /A1V VG (2)dt

and

2(6,w) 27m_/ / (Vi = V)(2)re(z) + A1V (2)ma(z) + A2V (2)Gi(2)) dzdt

<

6 Continuous Beta-models : the several cut case

In this section we consider again the continuous [-ensembles, but in the case
where the equilibrium measure has a disconnected support. The strategy has
to be modified since in this case the master operator = is not invertible. In
fact, the central limit theorem is not true as if we consider a smooth function
f which equals one on one connected piece of the support but vanishes other-
wise, and if we expect that the eigenvalues stay in the vicinity of the support of
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the equilibrium measure, the linear statistic > f(};) should be an integer and
therefore can not fluctuate like a Gaussian variable. It turns out however that
the previous strategy works as soon as we fix the filling fractions, the number
of eigenvalues in a neighborhood of each connected piece of the support. The
idea will therefore be to obtain central limit theorems conditionally to filling
fractions. We will as well expand the partition functions for such fixed filling
fractions. The latter expansion will allow to estimate the distribution of the fill-
ing fractions and to derive their limiting distribution, giving a complete picture
of the fluctuations. These ideas were developed in [12] [I5]. [12] also includes
the case of hard edges. After this work, a very special case (two connected com-
ponents and a polynomial potential) could be treated in [27] by using Riemann
Hilbert. I will here follow the strategy of [12], but will use general test functions
instead of Stieltjes functionals as in Section [d] So as in Section [d we consider
the probability measure

1

N
JAN) = WA(A)Be_NﬁZV()"‘) HdAi'
N

i=1

aPgY (A, ...

By Theorems [4.4] and if V satisfies Assumption we know that the
empirical measure of the \’s converges towards the equilibrium measure pi.
We shall hereafter assume that pu{ = py has a disconnected support but a
off-critical density in the following assumption.

Assumption 6.1. V : R — R is of class C? and p3 has support given by
S = U{il[ai7bi] with b; < a1 < b7;+1 < Q42 and

i=1
where H 1is a continuous function such that H(x) > ¢ >0 a.e. on S.

We discuss this assumption in Lemma [6.5] Let us notice that the fact that
the support py has a finite number of connected components is guaranteed
when V' is analytic. Also, the fact that the density vanishes as a square root
at the boundary of the support is generic, cf [64]. Remember, see Lemma
that py is described by the fact that the effective potential Vg is non-negative
outside of the support of yy.We will also assume hereafter that Assumption [£:2]
holds and that Vg is strictly positive outside S. By Theorem [£.8] we therefore
know that the eigenvalues will remain in S. = UP_, S, S¢ := [a; — €, b; + €] with
probability greater than 1 — e~V with some C(e) > 0 for all € > 0. We take
¢ small enough so that S. is still the union of p disjoint connected components
S;,1 < i < p. Moreover, we will assume that V is C! so that the conclusions of
Theorem [£.14] and Corollary [£.16] still hold. In particular

Corollary 6.2. Assume V is C'. There exists ¢ > 0 and C finite such that

Pfﬂv (112?<Xp|#{j i € [a; —e,bi + €]} — Nuv([as, bi])] > C\/NlnN) <N
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We can therefore restrict our study to the probability measure given, if we
denote by N; = #{j : \; € [a; —&,b; + €]}, n; = N;/N and 7o = (7, ..., 7K),
by

N
1
v 5. _ I
dPJL\;/,n (>\1’ ) AN) = lmax7¢ |IN;—Np([a;,b;])|<CVNIn N 1 A()\)ﬂe NEZ V) dAZ

€ =1

since exponentially small corrections do not affect our polynomial expansions.
As € > 0 is kept fixed we forget it in the notations and denote

N
Iyn,—n.n 1
dPgY (A1,... ) = 7N;’g’§ AN e VIRV TT s
N,n i=1

the probability measure obtained by conditioning the filling fractions to be equal
to s = (n1,...,n,). Clearly, we have

N!
vo= 8V
T 2 AR RO (78)
|N; = Np(las,bi])|SCVNIn N P
BV
N! VA
BV v
Py = > Nyl Nyl 787 DN (79)
|N:—Nu(lai,bi])|<CVNIn N N

where the combinatorial term ﬁ comes from the ordering of the eigenval-
ues to be distributed among the cuts. Hence, we will retrieve large IV expansions
of the partition functions and linear statistics of the full model from those of
the fixed filling fraction models.

6.1 The fixed filling fractions model

To derive central limit theorems and expansion of the partition function for fixed
filling fractions we first need to check that we have the same type of results that
before we fix the filling fractions. We leave the following Theorem as an exercise,
its proof is similar to the proof of Theorem [£:4] Recall the notation :

e = [ [3V@+ 3V - 3t - slldnte)duty).

Theorem 6.3. Fizn; € (0,1) so that Y n; = 1. Under the above assumptions

o Assume that (N;)1<i<k converges towards (n;)i<i<x. The law of the vec-
tor of p empirical measures Y = N% Zjvzl;\rh:NiN,lH dx, under Pﬁx
satisfies a large deviation principle on the space of p tuples of probability
measures on S; = [a; —e,b; +¢€], 1 <i < p, in the scale N? with good rate

function I, = J, —inf J,, where

K
=1
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o J, achieves its minimal value uniquely at (1] )1<i<p. Besides there exists
p constants C' such that

@) = V(@) ~ [nle —yldPC ) - cr (60

is greater or equal to 0 on S; and equal to 0 on the support of ul'.

e The conclusions of Lemmalf.1 and Corollary[f.16 hold in the fized filling
fraction case in the sense that for i = N;/N,> N; = N we can smooth
S nply = aN dnto iy (by pulling appart eigenvalues and taking the con-
volution by a small uniform variable), so that there exists ¢ > 0,C) 4 < 00
such that fort >0

PEY (Dl 3 up) > ) < cCraNmN-5N 4

Note above that the filling fractions N;/N may vary when N grows : the
first two statements hold if we take the limit, and the last with n; = N;/N
exactly equal to the filling fractions (the measures u are defined for any given
n; such that > n; = 1). The last result does not hold if # is replaced by its
limit n, unless 7 is close enough to n. To get the expansion for the fixed filling
fraction model it is essential to check that they are off critical if the n; are close

to u(S;) :

Lemma 6.4. Assume V is analytic. Fiz e > 0. There exists 6 > 0 so that if
max; [n; — py ()] <9, (U )1<i<p are off-critical in the sense that there exists
al < b in St and HP uniformly bounded below by a positive constant on S°
such that

dpi () = HP () (@ — ap) (b7 — 2)da

Proof. We first observe that n — [ fdu? is smooth for all smooth functions f.
Indeed, take two filling fractions n, m and denote in short by p™ = > n;u?. Re-
call that p™ minimizes £ on the set of probability measures with filling fractions
n. We decompose & as

=5 [ Vi()dlv =) @)+ 5 D) = 83 CRlwan, b =) (81

where V[ ; is the effective potential for the measure p". Note here that we used
that as v — p™ has zero mass to write

[l = 4ld — @) - ")) = ~D ).

We then take v a measure with filling fractions m and since g™ minimizes £
among such measures,

() < EW). (82)
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We choose v to have the same support than p™ so that [V (z)d(v—p™)(z) =0
and notice that [ VI (z)d(p™ — u™)(z) > 0. Hence, we deduce from and

that

D(u™, 1) < D*(v, ")

Finally we choose v = p" + > .(m; — nl) 1 de with B; is an interval in the
support of p' where its density is bounded below by some fixed value. For
max |m; —n;| small enough it is a probability measure. Then, it is easy to check
that

D*(u™, u") < D*(p, u") < Cllm = n%

from which the conclusion follows from .
Next, we use the Dyson-Schwinger equation with the test function f(x) =
(z —z)7* to deduce that G?(z) = [(z — x)~'dul(z) satisfies the equation

(Cmes ) = [ D@ = viEere + ()

zZ—x

where f1'(z) = — [(V'(y) — V'(2))(y — 2) " 'du?(y). Hence we deduce that

GIe) = 5 (Vi) - SoniG ) \/<Vf<z> S n G )R — dnif ()

J#i J#i

The imaginary part of G gives the density of p]' in the limit where z goes to
the real axis. Since the first term in the above right hand side is obviously real,
the latter is given by the square root term and therefore we want to show that

F(z,n) Z n;G7(2))" — 4ni fi'(2)
J#i

vanishes only at two points a', b} for z € S;. The previous point shows that F'
is Lipschitz in the filling fraction n as V is C* (since then f! is the integral of
a C' function under u?) whereas Assumption implies that at n} = uy (S;),
F vanishes at only two points and has non-vanishing derivative at these points.
This implies that the points where F'(z,n) vanishes in S; are at distance of order
at most max |n; —m;| of a;, b;. However, to guarantee that there are exactly two
such points, we use the analyticity of V' which guarantees that F(.,n) is analytic
for all n so that we can apply Rouché theorem. As F(z,n*) does not vanish
on the boundary of some compact neighborhood K of a;, for n close enough to
n*, we have |F(z,n) — F(z,n*)| < |F(z,n*)| for z € K. This guarantees by
Rouché’s theorem, since F(.,n) is analytic in neighborhood of S; as V' is, that
F(.,n) and F(.,n*) have the same number of zeroes inside K. o

To apply the method of Section [4] we can again use the Dyson-Schwinger
equations and in fact Lemma still holds true : Let f; : R — R be C}
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functions, 0 < 4 < p. Then, taking the expectation under Pﬁ’g, we deduce

EDER) [[Nav()) = G - Bl () T Van (1)

i=1

+ % Z Eliin (fofe) H Nin(f:)]
(=1 i#£L

+ %E[/ WdMN(x)dMN(y) H Nin(fi))

+0(e~N)

where the last term comes from the boundary terms which are exponentially
small by the large deviations estimates of Theorem We still denoted
My (f) = Y f(\) — N> a;u?(f) but this time the mass in each S; is fixed
so this quantity is unchanged if we change f by adding a piecewise constant
function on the S;’s. We therefore have this time to find for any sufficiently
smooth function g a function f such that there are constants C; so that

= f(a) = V Z [ ) g 4 0w sy,

By the characterization of u”, if S} = [a7,b"] denotes the support of u” inside

S¢, this question is equivalent to ﬁnd f so that on every [aj 7bj]

2 f(x) = PV/ /) H} (y)y/(y — a) (b —y)dy = g(x) + C;

This question was solved in [73] under the condition that g, f are Holder with
some positive exponent. Once one gets existence of these functions, the property
of the inverse are the same as before since inverting the operator on one S; will
correspond to the same inversion. For later use, we prove a slightly stronger
statement :

Lemma 6.5. Let 0 € [0, 1] and set for n; € (0,1),> n; = 1. Let S denote the
support of plr. We set, fori e {1,...,K}, all x € ST

Znf(z) =V /f - du +0Zn]/f d/i]( ).

J#i

Then for all g € C*, k > 2, there exist constants C;,1 < j < p, so that the
equation

Epf(z) =g(z) +Cj,x € S}
has a unique solution which is Hélder for some exponent o > 0. We denote by
(E5)"1g this solution. There exists finite constant D; such that

IE5) " glles < Djllgllcs-2-
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Proof. Let us first recall the result from [73] section 90| which solves the case
0 = 1. Let Sy = [a},b}]. Because of the characterization of the equilibrium
measure, inverting =1 is equivalent to seek for f Holder such that there are K
constants (Ck)i1<k<k such that on Sy

Ky f(t) PV/ fﬁ = g(t) + Cy

for all k € {1,...,K}. Then, by [73] section 90|, if g is Holder, there exists a
unique solution and it is given by

Kigla) = f0) = T pv [ (gl Cu)
k k

where o(z) = /[[(x —a)(z —b?). The proof shows uniqueness and then
exhibits a solution. To prove uniqueness we must show that K;f = Cy has a
unique solution, namely zero. To do so one remarks that

B(z) = 1)

Uskl‘—z

is such that ¥(z) = (®(z) — Ci/2)\/(z — a})(x — bY) is holomorphic in a neigh-
borhood of S} and vanishes at a},b;l. Indeed, K, f = Cj, is equivalent to
Ot (z) + ¢ (z) = C) implies that U (z) = ¥~ (z) on the cuts. Hence

®(2) — Ci/2 = [(z — a) (= — b)]'/?0(2) (83)

with © holomorphic in a neighborhood of S}, and so ®'(z)o(#) is holomorphic
everywhere. Hence, since ® goes to zero at infinity like 1/22, P(z) = ®'(2)0(2)
is a polynomial of degree at most K — 2. We claim that this is a contradiction
with the fact that then the periods of ® vanish, see [37), Section II.1] for details.
Let us roughly sketch the idea. Indeed, because ® = u + iv is analytic outside
the cuts, if A = UAy is a set of contours surrounding the cuts and A° the part
of the imaginary plan outside A, we have by Stockes theorem

J= / ((0zu)? + (0yu)?) dady = / ud?v

A

Letting A going to S we find

/udz‘;z/u*dzﬁf/u*dv*
A S s

But by the condition ®T+®&~ = C} we see that u™+u~ = R(C),d(vT+v~) =0
and hence

J= Z%Ck/dv+—2%0k TOp) —vt(a})).
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On the other hand ®(z f P(&)/o(&)d¢ for any path avoiding the cuts and

hence converges towards finite Values on the cuts. But since ®'(§) = f((g is

analytic outside the cuts, going to zero like 1/2? at infinity,
0= [ Wi =2 [ e =20(E) - Blap)
Ak LL

Thus, v(b}) — v(a}) = 0 and we conclude that J = 0. Therefore ® vanishes,
and so does f.

Next, we consider the general case 6 € (0, 1). We show that Zj is injective on
the space of Holder functions. Again, it is sufficient to consider the homogeneous
equation

Kof(z) = (1 —0)Kof(z) + 0K, f(x) = Cy (84)

on Sy, for all k. Here Ky f(z fSk f(y)dy on S}, for all k. If Ky is injective, so
is 2 by dividing the functlon f o’n Sk by ok (x)Sk(z) = duy/dx. Recall that
Tricomi airfol equation shows that Ky is invertible, see Lemma [4.18] and we
have just seen that K7 is injective. To see that Kj is still injective for 6 € [0, 1]
we notice that we can invert K; to deduce that we seek for an Holder function
f (= K1g) and a piecewise constant function C' so that

Fla) =~ LK (Ko f - 0)

Let us consider this equation for z € Si and put f = K g. By the formula for
KT L and Ky ! we deduce that we seek for constants d, D and a function ¢ so
that on Sy, :

sV [ S et =15 E STy [ oy,

Here, we used a formula for K ! where o}, was replaced by cr,;1 : this alternative
formula is due to Parseval formula [85, (2) p.174], see (16) and (18) in [85].
Note here that both side vanish at the end points of S by the choices of the
constants. As a consequence

Uktx) /S g(y)+dkak<y) dy+ 9 1 Z /S :Lng (v)dy

r—y

is analytic in a neighborhood of Si.We next integrate over a contour Cy around
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S} to deduce that

+d 1 dz +d
/ IO e yay = L / o (y)dy
Sk Sk z

T—y 2i e ?

i e al [ e,
- 0 2mi /ck -1 o(2) Z/S (y)dy

] e Y=z
1-6 [ or(y) g(y) + Dx
- o(y)dy
0 )5, oty -y "V
1—6 g(y) + Dy,

- - d
0 s, a—y or(y)dy

where we used that oy /o is analytic in a neighborhood of Si, as well as the
terms coming from the other cuts. Hence we seek for g satisfying

1 +d
5 Py =0
Sk

r—y
for some constant dj. Tricomi airfol equation shows that this equation has a
unique solution which is when g+dj, is a multiple of 1/(0)?. By our smoothness
assumption on g, we deduce that g+dj, must vanish. This implies that f = K lg
vanishes by Tricomi. Hence, we conclude that Ky, and therefore Zf is injective
on the space of Holder continuous functions.
To show that Zf is surjective, it is enough to show that it is surjective when

composed with the inverse of the single cut operators 2" = (E",... E"), that

is that

Lof(x) :=n; f(zx)+0Rf (x =>n / duJ (y),z € S; = [, b7]
JFi

is surjective. But R is a kernel operator and in fact it is Hilbert-Schmidt in
L?(o~¢dz) for any € > 0 (here o(z) = [[1/(z — a?)(b? — z)). Indeed, on z € S;,
R is a sum of terms of the form

ED Y, L1 1 KA "
[ = [ g </ <yt>f’]“)‘”> W)

by Remark Even though we have a principal value inside the (smooth)
integral we can apply Fubini and notice that

1 1 1 1 1
PV/ du?ly) = PV/ + do;(y
c—nw-nsw™Y = = ey tu—p W
1
= 1-——0;)
where we used that ¢ belongs to .S; but not  to compute the Hilbert transport
of o; at t and z. Hence, the above term yields

/(E;-")‘lf(y) n f@) 1

du” (y) = ())dt A
r—y :uj(y) Sj O'J(t) x_to-](x)) 73565
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from which it follows that R is a Hilbert-Schmidt operator in L?(o~¢dx). Hence,
R is a compact operator in L?(o0~¢dx). But Ly is injective in this space. Indeed,
for f € L?(0“dx), Lgf = 0 implies that f = On; ' Rf is analytic. Writing back
h = (E")~1f, we deduce that =jh = 0 with h Hélder, hence h must vanish by
the previous consideration. Hence Ly is injective. Therefore, by the Fredholm
alternative, Ly is surjective. Hence Ly is a bijection on L?*(oc~¢dwz). But note
that the above identity shows that R maps L?(c~¢) onto analytic functions,
therefore K ' maps Hélder functions with exponent a onto Hélder functions
with exponent . We thus conclude that Zjj = Ly o E" is invertible onto the
space of Holder functions. We also see that the inverse has the announced

property since for = € [a7, b}]

(Z5) 'g(x) == g—hl, h(z)=0) n; / :337

where h is C*°. The announced bound follows readily from the bound on one
cut as on LF we have

(=) @) = @) (-0 / 7 gz w)
£k

is such that

IE5)~" 71 oo+ HI(E5) T fllo) -

o < esllf- ez/ EV g lless <l

(#£k

<

As E7 is invertible with bounded inverse we can apply exactly the same
strategy as in the one cut case to prove the central limit theorem :

Theorem 6.6. Assume V is analytic and the previous hypotheses hold true.
Then there exists € > 0 so that for max|n; — ,u([ai,bi])\ < ¢, for any f C*
with k > 11, the random variable My (f) := EZV 1 () = Nu(f) converges in

law under Pﬁ’ towards a Gaussian variable with mean mv(f) and covariance
Cw(f, 1), whzch are defined as in Theoremu 4. 27 but with p™ instead of u and
=" instead of =.

We can also obtain the expansion for the partition function

Theorem 6.7. Assume V is analytic and the previous hypotheses hold true.
Then there exists € > 0 so that for max|n; — u([a;, b)) < €, n; = N;/N, we
have

N
o (e
+N2EMV) + NFM (V) + F3(V) +o(1) (85)

N2\ _ ~0 1
(ﬁKN)!Zﬁ’V) = CYNIn N + C}In(N)
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with CY = g, C’é =—(K-1)/2+ 73+B/122+2/ﬁ and for n; >0, n; =1,

(V) = —€&(uy)
Fr(V) = (g - 1)/1n(d:7V)dﬂ@ - gn Inn; + fi

where f1 depends only on the boundary points of the support. F}(V) is a con-
tinuous function of n. Above the error term is uniform on n in a neighborhood
of n*.

Proof. The proof is again by interpolation. We first remove the interaction
between cuts by introducing for 6 € [0, 1]

dpﬁl%‘/ Ay Ay) = H N220 [In|z—y|d(ip —pp) (@) d(in —pmp) y)Hdpﬁ’ is

N,np

,(BGV
ZNq h#h!

where Pf,:;f fis the B ensemble on S;, with potential given by the effective
potential. We still have a similar large deviation principle for the ,&hN under
Pﬁ, fLV and the minimizer of the rate function is always ,uﬁ. Hence we are
always in a off critical situation. Moreover, we can write the Dyson-Schwinger
equations for this model : it is easy to see that the master operator is Zf of
Lemma [6.5] which we have proved to be invertible. Therefore, we deduce that
the covariance and the mean of linear statistics are in a small neighborhood of
C{o,’” and m‘e/’”. It is not hard to see that this convergence is uniform in 6.
Hence, we can proceed and compute

B,V

N,n ~ n
w2 = v [ (Z 5 [ Infe (Y — ) e - uh/><y>) i
N7 h<h’

Indeed, using the Fourier transform of the logarithm we have
W2 ( [ inle = yld — i@ - i)

= [ (o [ ema - i [emat - o ) a

where the above RHS is close to
0,7, it. _—i 7
[CP™ (e, e ™) + [m§™ () 2]

Hence, decoupling the cuts in this way only provides a term of order one in the
partition function. It is not hard to see that it will be a continuous function of
the filling fraction (as the inverse of Z is uniformly continuous in n). Finally
we can use the expansion of the one cut case of Theorem to expand Z f\(,”%’v
to conclude. o
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6.2 Central limit theorem for the full model

To tackle the model with random filling fraction, we need to estimate the ratio
of the partition functions according to (78)). Recall that nf = p([a;, b;]). We
can now extend the definition of the partition function to non-rational values of
the filling fractions by using Theorem Then we have

Theorem 6.8. Under the previous hypotheses, for max|n; — nf| < €, there
exists a positive definite form Q and a vector v such that

N,n
(Nn)!--- (Nnjg)! Zsv

D =
(n) (Nl (Nn)! 200

= eXp{—%Q(N(n —n"))(1+0(e)) + (N(n—n%),v) +o(1)},

where Zé\f"?*/(]\fn”f)! < (Nnjo)! is defined thanks to the expansion of when-
ever n*N takes non-integer values (note here the right hand side makes sense
for any filling fraction n). O(e) is bounded by Ce uniformly in N. We have
Q = —D?F}(V)|n=n+ and v; = 0y, FI*(V)|n=n+. As a consequence, since the
probability that the filling fractions 7 are equal to n is proportional to D(n),
we deduce that the distribution of N(fi —n*) — Q™ v is equivalent to a centered
discrete Gaussian variable with values in —Nn* —Q~'v+7Z and covariance Q1.

Note here that Nn* is not integer in general so that N (7 —n*) — Q™ 'v does
not live in a fixed space : this is why the distribution of N (A —n*) — Qv does
not converge in general. As a corollary of the previous theorem, we immediatly
have that

Corollary 6.9. Let f be C'1. Then

Epy, [65 /00N = oxp( SOV (f, £) + ()

5 PN (= 11) + (N — ).+ i ()
> exp{—3Q(N(n—n%)) + (N(n —n),v)}

(140(1))

n

We notice that we have a usual central limit theorem as soon as 9y, 4™ |=n~ (f)
vanishes (in which case the second term vanishes), but otherwise the discrete
Gaussian variations of the filling fractions enter into the game. This term comes
from the difference Nu(f) — Nu™(f).

As is easy to see, the last thing we need to show to prove these results is
that

Lemma 6.10. Assume V analytic, off-critical. Then
o n— u(f) is Ct and CL(f, f), m%(f) are continuous in n,
e n— F*(V) is C*~" in a neighborhood of n*,

o Q= —D?F}V)|n=n~ is definite positive.
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Let us remark that this indeed implies Corollary [6.9] and Theorem [6.8] since
by Theorem [6.7| we have for |n; — nf| <e

N,n
(Nnjl-- - (Nni)! Zgy

NHEG(V) = g (V)} + N(F(V) = F* (V)

HEPW) = B (V) +o(1)
= QNG — "), N(n = n)(1 +0()
+anF1n(V)‘n=n* (N(n - n*))

where we noticed that 9, F} (V) vanishes at n* since n* minimizes F}* and Q
is definite positive. Hence we obtain the announced estimate on the partition
function. About Corollary we have by and by conditionning on filling
fractions

EPN

E,V[

~F {eNm—n*,anu"(f)u:n*>]EPM [eZ f(m—Nu’"L(f)]] (1+ o(1))
B,V

(XSO =Nuv (D] = | {eN(uﬁ(f)*u"*(f))EPN’ﬁ[62 FO) =N ()]
B,V

So we only need to prove Lemma [6.10}

Proof. n — p™ is twice continuously differentiable. We have already seen in
the proof of Lemma that n — p™ is Lipschitz for the distance D for n in a
neighborhood of n*. This implies that v, = e~ *(u"T* — u") is tight (for the
distance D and hence the weak topology). Let us consider a limit point v and its
Stieltjes transform G, (z) = [(z—xz) 'dv(z). Along this subsequence, the proof
of Lemma also shows that e~ (a?"" —a?) has a limit (and similarly for b",
as well as H]"). Hence, we see that v is absolutely continuous with respect to
Lebesgue measure, with density blowing up at most like a square root at the
boundary. By in Theorem we deduce that

G, (E +1i0) + G, (E —i0) =0

for all E inside the support of u™. This implies that /T[(z — a?)(bI' — 2)G,(z)
has no discontinuities in the cut, hence is analytic. Finally, G, goes to zero at
infinity like 1/22 so that /T[(z — a?)(b — 2)G,(z) is a polynomial of degree
at most p — 2. Its coefficients are uniquely determined by the p — 1 equations

fixing the filling fractions since for a contour C}* around [al, b7]

Gun(2)dz =n; = G,(2)dz = K; .
cr cr

There is a unique solution to such equations. As it is linear in k, it is given by

G,(z) = Z Kiw;' (2) (86)
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where w'(2) = P*(2)/\/T1(z — a?) (b} — z) satisfy
/ wi'(2)dz = 6; ; (87)
cr

and P are polynomials of degree smaller or equal than p — 2. Hence G, is
uniquely determined as well as v, we conclude that n — p™ is differentiable,
as well as a,b'. The latter implies that n — w] is as well differentiable and
hence n—G» is twice continuously differentiable. In turn, we conclude that
al’, b, H]" are twice continuously differentiable with respect to n, and therefore
so is the density of p™.

CyE(f, £),mi(f) are continuous in n. From the continuity of du™/dx we
deduce that =™ is continuous, and since =" has uniformly bounded inverse
(provided we take sufficiently smooth functions), we deduce that (")~ is con-
tinuous in n, from which the continuity of C{;(f, f), m{,(f) follows for smooth
enough f.

n — FMV) is C*7% i = 0,1,2. For i = 1, by the formulas of Theorem
it is a straightforward consequence of the fact that du™/dz is continuously
differentiable and its differential is integrable. It amounts to show that the
inverse of the operators Zj are continuous in n, but again this is due to the
continuity of the endpoints and the explicit formulas we have.

D2F}(V) is well defined and definite negative at n = n*. Set

n+tn _ ,n
— lim & o
t—0 t

1%

n (88)

By the formula for J in terms of the effective potential

*

By = B (V) = (I = T)
_ _g (DQ[MH*%‘JI’M"*} — // e?}(w)d(un*+tﬁ - /v‘n*)(m))

where we used that at n = n* the constants in the effective potential are all equal
and that > n; = 0. Since VZ}} vanishes on Ula;, b;] as well as its derivative and
the derivatives of € — (1, are smooth and supported in Ulai, b;], we deduce
that F9n+tn is a C2 function of ¢ and its Hessian is :

B Mimg = 5 D2, v7) (59)
where v* = atu"*"'”’\t:o. D?F, vanishes only when v* vanishes, which implies

n =0 by , since no non trivial combination of the w] can vanish uniformly
by . Therefore, the Hessian is definite negative. o
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