On the distribution of Hecke eigenvalues for Hilbert modular forms

Roberto Miatello

Let F be a totally real field of degree d, \mathcal{O}_F its ring of integers, I an ideal in \mathcal{O}_F and $\Gamma_0(I) \subset GL_2(\mathbb{R})^d$ the Hecke congruence subgroup of $GL_2(\mathbb{R})^d$. For \mathfrak{p} a prime ideal in \mathcal{O}_F , let $T_{\mathfrak{p}}$ be the Hecke operator acting on cusp forms $\varpi = \otimes_{j=1}^d \varpi_j$ in $L^2(\Gamma_0(I) \setminus GL_2(\mathbb{R})^d)$ and let C_j be the Casimir operator on the j^{th} -factor, for $1 \leq j \leq d$. Let $\lambda_{\mathfrak{p},\varpi}$ and λ_{ϖ_j} be the respective sets of eigenvalues of these operators. In joint work with Angel Villanueva we study the distribution of these eigenvalues in regions Ω_t of the eigenvalue parameter space, as $t \to \infty$, showing that, under a natural condition on \mathfrak{p} , the eigenvalues of $T_{\mathfrak{p}}$ (resp. of C_j) are distributed according to the Sato-Tate measure (resp. according to the Plancherel measure).