
Stochastic thermodynamics and martingale
theory for a model physical system of particles

Shamik Gupta

Ramakrishna Mission Vivekananda University, Kolkata, INDIA

Quantitative Life Sciences, ICTP, Trieste, ITALY (Regular Associate)

Collaborators:
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Model
N interacting point particles on a circle:
Confg. C ≡ {θi}

Long-ranged interparticle potential:
V(C) ≡ 1

2N

∑N
i,j=1[1− cos(θi − θj)]

Potential due to external field h:
Vext(C; h) ≡ −h

∑N
i=1 cos θi

Net potential V (C; h) = V + Vext

θ
θ = 0
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i=1 cos θi

Net potential V (C; h) = V + Vext

Dynamics: Stochastic Markovian at
temperature T = 1/β

1 Every particle in time dt attempts to
hop by amount 0 < φ < 2π:
(i) θi → θi + φ with prob. p
(ii) θi → θi − φ with prob. 1− p

2 New position accepted with
probability g(∆V (C))dt, where

g(z) = (1/2)[1− tanh(βz/2)]
3 N attempted hops ≡ 1 time step
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Fokker-Planck limit and stationary state
Fokker-Planck limit φ� 1

N →∞: motion of a single particle in a self-consistent mean field

dθ
dt = (2p − 1)φ− φ2β

2
∂〈v〉[ρ](θ;h)

∂θ + φη(t)

Gaussian, white noise: η(t) = 0, η(t)η(t ′) = δ(t − t ′)

Time evolution of the single-particle distribution

∂ρ
∂t = − ∂

∂θ

[(
(2p − 1)φ− φ2β

2
∂〈v〉[ρ](θ;h)

∂θ

)
ρ
]

+ φ2

2
∂2ρ
∂θ2

〈v〉[ρ](θ; h) ≡ −mx [ρ] cos θ −my [ρ] sin θ − h cos θ is the mean-field
potential

Self-consistent mean fields (mx [ρ],my [ρ]) ≡
∫

dθ (cos θ, sin θ)ρ(θ, t)

Exact stationary state

ρss(θ; h) = ρss(0; h)e−g(θ)

[
1 + (e−

4π(2p−1)
φ − 1)

∫ θ
0

dθ′eg(θ′)∫ 2π
0

dθ′eg(θ′)

]
;

g(θ) ≡ −2(2p − 1)θ/φ+ β〈v〉[ρss](θ; h);

ρss(0; h) fixed by normalization
∫ 2π

0
dθ ρss(θ; h) = 1
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Fokker-Planck limit and stationary state

Fokker-Planck limit φ� 1

Exact stationary state

ρss(θ; h) = ρss(0; h)e−g(θ)

[
1 + (e−

4π(2p−1)
φ − 1)

∫ θ
0

dθ′eg(θ′)∫ 2π
0

dθ′eg(θ′)

]
;

g(θ) ≡ −2(2p − 1)θ/φ+ β〈v〉[ρss](θ; h)

1 p = 1/2⇒ Equilibrium stationary state ρss ∝ exp(−β〈v〉)
2 p 6= 1/2⇒ Nonequilibrium stationary state

Numerical check: Measure mx,y in simulations
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Equilibrium initial condition: Work done by external field

Start in equilibrium at h = h0

Change field in time over duration τ � τeq;
at the α-th time step: hα = h0 + ∆h α/τ

τ � τeq ⇒ system taken arbitrarily far from equilibrium

Work done by external field:

WF ≡
∫ τ

0
∂V
∂h

dh
dt dt = − 1

τ

∑τ
α=1

∑N
i=1 cos θ

(α)
i

Reverse protocol:
system in equilibrium at hτ , then change h as hα = hτ −∆h α/τ ;

WR = 1
τ

∑τ
α=1

∑N
i=1 cos θ

(α)
i

1 {θ(α)
i }F and {θ(α)

i }R different due to initial conditions and
stochastic evolution

2 WF ∝ N and WR ∝ N
3 Different distributions for work per particle: PF(WF/N) and

PR(WR/N)
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Equilibrium initial condition: Work done by external field

φ = 0.1, h0 = 1.0, τ = 10, β = 1,∆h = 1.0

N = 50, 100, 200, 300

Crooks fluctuation theorem: PF(WF)
PR(−WF) = eβ(WF−∆F)

1 Implies Jarzynski equality 〈exp(−β(WF −∆F))〉 = 1
2 Implies that PF and PR intersect at WF = ∆F

In our case, intersection at ∆F/N, the free-energy change per
particle; can be computed from ρeq(θ; h)

Perfect match underlines the effective single-particle nature of the
N-particle dynamics for large N in the Fokker-Planck limit φ� 1
(Gupta, Dauxois, Ruffo (2016))
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Nonequilibrium initial condition: Generalizing Jarzynski

p 6= 1/2 in our model; Start with NESS at h = h0, change field over
time τ as hα = h0 + ∆h α/τ .

Hatano-Sasa:

Y ≡
∫ τ

0
dt dh(t)

dt

∂Φ
∂h (C(t); h(t)); Φ(C; h) ≡ − ln ρss(C; h)

Generalizing Jarzynski: 〈exp(−Y )〉 = 1

1 In equilibrium,

ρss(C; h) = exp [−β(V (C; h)−F(h))]

gives Φ(C; h) = β(V (C; h)−F(h))

2 Y =
∫ τ

0
dt dh

dt

(
β ∂V (C;h)

∂h − β ∂F(h)
∂h

)
= β(W −∆F)

3 〈exp(−Y )〉 = 1⇒ 〈exp(−βW )〉 = exp(−β∆F) (Jarzynski)



Nonequilibrium initial condition: Generalizing Jarzynski

p 6= 1/2 in our model; Start with NESS at h = h0, change field over
time τ as hα = h0 + ∆h α/τ .

Hatano-Sasa:

Y ≡
∫ τ

0
dt dh(t)

dt

∂Φ
∂h (C(t); h(t)); Φ(C; h) ≡ − ln ρss(C; h)

Generalizing Jarzynski: 〈exp(−Y )〉 = 1

1 In equilibrium,

ρss(C; h) = exp [−β(V (C; h)−F(h))]

gives Φ(C; h) = β(V (C; h)−F(h))

2 Y =
∫ τ

0
dt dh

dt

(
β ∂V (C;h)

∂h − β ∂F(h)
∂h

)
= β(W −∆F)

3 〈exp(−Y )〉 = 1⇒ 〈exp(−βW )〉 = exp(−β∆F) (Jarzynski)



Nonequilibrium initial condition: Generalizing Jarzynski

p 6= 1/2 in our model; Start with NESS at h = h0, change field over
time τ as hα = h0 + ∆h α/τ .

Hatano-Sasa:

Y ≡
∫ τ

0
dt dh(t)

dt

∂Φ
∂h (C(t); h(t)); Φ(C; h) ≡ − ln ρss(C; h)

Generalizing Jarzynski: 〈exp(−Y )〉 = 1

1 In equilibrium,

ρss(C; h) = exp [−β(V (C; h)−F(h))]

gives Φ(C; h) = β(V (C; h)−F(h))

2 Y =
∫ τ

0
dt dh

dt

(
β ∂V (C;h)

∂h − β ∂F(h)
∂h

)
= β(W −∆F)

3 〈exp(−Y )〉 = 1⇒ 〈exp(−βW )〉 = exp(−β∆F) (Jarzynski)



Nonequilibrium initial condition: Generalizing Jarzynski

p 6= 1/2 in our model; Start with NESS at h = h0, change field over
time τ as hα = h0 + ∆h α/τ .

Hatano-Sasa:

Y ≡
∫ τ

0
dt dh(t)

dt

∂Φ
∂h (C(t); h(t)); Φ(C; h) ≡ − ln ρss(C; h)

Generalizing Jarzynski: 〈exp(−Y )〉 = 1

1 In equilibrium,

ρss(C; h) = exp [−β(V (C; h)−F(h))]

gives Φ(C; h) = β(V (C; h)−F(h))

2 Y =
∫ τ

0
dt dh

dt

(
β ∂V (C;h)

∂h − β ∂F(h)
∂h

)
= β(W −∆F)

3 〈exp(−Y )〉 = 1⇒ 〈exp(−βW )〉 = exp(−β∆F) (Jarzynski)



Nonequilibrium initial condition: Generalizing Jarzynski

p 6= 1/2 in our model; Start with NESS at h = h0, change field over
time τ as hα = h0 + ∆h α/τ .

Hatano-Sasa:

Y ≡
∫ τ

0
dt dh(t)

dt

∂Φ
∂h (C(t); h(t)); Φ(C; h) ≡ − ln ρss(C; h)

Generalizing Jarzynski: 〈exp(−Y )〉 = 1

1 In equilibrium,

ρss(C; h) = exp [−β(V (C; h)−F(h))]

gives Φ(C; h) = β(V (C; h)−F(h))

2 Y =
∫ τ

0
dt dh

dt

(
β ∂V (C;h)

∂h − β ∂F(h)
∂h

)
= β(W −∆F)

3 〈exp(−Y )〉 = 1⇒ 〈exp(−βW )〉 = exp(−β∆F) (Jarzynski)



Nonequilibrium initial condition: Generalizing Jarzynski

p 6= 1/2 in our model; Start with NESS at h = h0, change field over
time τ as hα = h0 + ∆h α/τ .

Hatano-Sasa:

Y ≡
∫ τ

0
dt dh(t)

dt

∂Φ
∂h (C(t); h(t)); Φ(C; h) ≡ − ln ρss(C; h)

Generalizing Jarzynski: 〈exp(−Y )〉 = 1

1 In equilibrium,

ρss(C; h) = exp [−β(V (C; h)−F(h))]

gives Φ(C; h) = β(V (C; h)−F(h))

2 Y =
∫ τ

0
dt dh

dt

(
β ∂V (C;h)

∂h − β ∂F(h)
∂h

)
= β(W −∆F)

3 〈exp(−Y )〉 = 1⇒ 〈exp(−βW )〉 = exp(−β∆F) (Jarzynski)



Nonequilibrium initial condition: Generalizing Jarzynski
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time τ as hα = h0 + ∆h α/τ .

Hatano-Sasa:

Y ≡
∫ τ

0
dt dh(t)

dt

∂Φ
∂h (θ(t); h(t)); Φ(θ; h) ≡ − ln ρss(θ; h)

Generalizing Jarzynski: 〈exp(−Y )〉 = 1

In our case,

Yi ≈
∑τ

α=1 ln

(
ρss(θ

(α)
i

;hα−1)

ρss(θ
(α)
i

;hα)

)
p = 0.55,N = 500, φ = 0.1, h0 =

1.0,∆h = 0.15, τ = 15

Combined use of N-particle dynamics and exact single-particle
stationary state distribution

Results further highlight the effective mean-field nature of the
N-particle dynamics for large N.

(Gupta, Dauxois, Ruffo (2016))



Nonequilibrium initial condition: Generalizing Jarzynski

p 6= 1/2 in our model; Start with NESS at h = h0, change field over
time τ as hα = h0 + ∆h α/τ .

Hatano-Sasa:

Y ≡
∫ τ

0
dt dh(t)

dt

∂Φ
∂h (θ(t); h(t)); Φ(θ; h) ≡ − ln ρss(θ; h)

Generalizing Jarzynski: 〈exp(−Y )〉 = 1

In our case,

Yi ≈
∑τ

α=1 ln

(
ρss(θ

(α)
i

;hα−1)

ρss(θ
(α)
i

;hα)

)
p = 0.55,N = 500, φ = 0.1, h0 =

1.0,∆h = 0.15, τ = 15

Combined use of N-particle dynamics and exact single-particle
stationary state distribution

Results further highlight the effective mean-field nature of the
N-particle dynamics for large N.

(Gupta, Dauxois, Ruffo (2016))



Nonequilibrium initial condition: Generalizing Jarzynski

p 6= 1/2 in our model; Start with NESS at h = h0, change field over
time τ as hα = h0 + ∆h α/τ .

Hatano-Sasa:

Y ≡
∫ τ

0
dt dh(t)

dt

∂Φ
∂h (θ(t); h(t)); Φ(θ; h) ≡ − ln ρss(θ; h)

Generalizing Jarzynski: 〈exp(−Y )〉 = 1

In our case,

Yi ≈
∑τ

α=1 ln

(
ρss(θ

(α)
i

;hα−1)

ρss(θ
(α)
i

;hα)

)
p = 0.55,N = 500, φ = 0.1, h0 =

1.0,∆h = 0.15, τ = 15

Combined use of N-particle dynamics and exact single-particle
stationary state distribution

Results further highlight the effective mean-field nature of the
N-particle dynamics for large N.

(Gupta, Dauxois, Ruffo (2016))



Nonequilibrium initial condition: Generalizing Jarzynski

p 6= 1/2 in our model; Start with NESS at h = h0, change field over
time τ as hα = h0 + ∆h α/τ .

Hatano-Sasa:

Y ≡
∫ τ

0
dt dh(t)

dt

∂Φ
∂h (θ(t); h(t)); Φ(θ; h) ≡ − ln ρss(θ; h)

Generalizing Jarzynski: 〈exp(−Y )〉 = 1

In our case,

Yi ≈
∑τ

α=1 ln

(
ρss(θ

(α)
i

;hα−1)

ρss(θ
(α)
i

;hα)

)
p = 0.55,N = 500, φ = 0.1, h0 =

1.0,∆h = 0.15, τ = 15

Combined use of N-particle dynamics and exact single-particle
stationary state distribution

Results further highlight the effective mean-field nature of the
N-particle dynamics for large N.

(Gupta, Dauxois, Ruffo (2016))



Nonequilibrium initial condition: Generalizing Jarzynski

p 6= 1/2 in our model; Start with NESS at h = h0, change field over
time τ as hα = h0 + ∆h α/τ .

Hatano-Sasa:

Y ≡
∫ τ

0
dt dh(t)

dt

∂Φ
∂h (θ(t); h(t)); Φ(θ; h) ≡ − ln ρss(θ; h)

Generalizing Jarzynski: 〈exp(−Y )〉 = 1

In our case,

Yi ≈
∑τ

α=1 ln

(
ρss(θ

(α)
i

;hα−1)

ρss(θ
(α)
i

;hα)

)
p = 0.55,N = 500, φ = 0.1, h0 =

1.0,∆h = 0.15, τ = 15

Combined use of N-particle dynamics and exact single-particle
stationary state distribution

Results further highlight the effective mean-field nature of the
N-particle dynamics for large N.

(Gupta, Dauxois, Ruffo (2016))



Housekeeping heat
Motion of a particle in a mean-field:

dθ
dt = F (θ; h) + η(t)

F (θ; h) ≡ (2p − 1)φ− φ2β
2

∂〈v〉[ρ](θ;h)
∂θ

Gaussian, white noise: η(t) = 0, η(t)η(t ′) = 2Dδ(t − t ′); D = φ2

2

If h were time independent ⇒ stationary state ρss(θ; h);
Correspondingly a current in the phase space:

jss(θ) = F (θ; h)ρss(θ; h)︸ ︷︷ ︸
Drift

−D
∂ρss(θ; h)

∂θ︸ ︷︷ ︸
Diffusion

Current identically zero if the stationary state is in equilibrium
(p = 1/2)

Current ⇒ a velocity and hence a “Force” in the phase space

f (θ; h) ≡ jss(θ)/ρss(θ; h)

But h varies in time and so does the instantaneous force f

Work done by f (θ; h) in time t =
∫ t

0
dt ′ θ̇(t ′)f (θ(t ′); h(t ′));

Dissipated into the environment as the Housekeeping Heat
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Housekeeping heat

Housekeeping heat:

−Qhk
t =

∫ t

0
dt ′ θ̇(t ′)

(
F (θ(t ′); h(t ′))− D ∂ ln ρss(θ(t′);h(t′))

dθ

)

Qhk
t = 0 if p = 1/2 (equilibrium case)

Won the particle

=
∫ t

0
dt ′ θ̇(t ′)

(
∂〈v〉
∂h + (2p − 1)φ

)
= ∆〈v〉+

∫ t

0
dt ′ θ̇(t ′)(F (θ(t ′); h(t ′))

−Qt ≡
∫ t

0
dt ′ θ̇(t ′)F (θ(t ′); h(t ′)) is the heat given by the particle to

the environment

Then (−Qhk
t )− (−Qt) = −D

∫ t

0
dt ′ θ̇(t ′)∂ ln ρss(θ(t′);h(t′))

∂θ = Qex
t ,

the excess heat

What we show:
〈eβQhk

t |θ[0,τ ]〉 = eβQ
hk
τ for any t ≥ τ

In a general Markovian nonequilibrium process under arbitrary
time-dependent driving, the exponentiated housekeeping heat is a
martingale (Chétrite, Gupta, Neri, Roldán (2018))
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Housekeeping heat

Qhk
t = −

∫ t

0
dt ′ θ̇(t ′)

(
F (θ(t ′); h(t ′))− D ∂ ln ρss(θ(t′);h(t′))

dθ
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Take-home messages

Implementing concepts of stochastic thermodynamics gives valuable
insights into the nature of the stationary state

Applying Martingale theory yields universal results that restrict
nature of physical processes, e.g., heat exchanges with the
environment

What next ?? Experimental tests, Application to quantum
systems,...


