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Quantum fluctuations,

Thermal fluctuations coherence, entanglement ...
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Stochastic Thermodynamics Quantum Thermodynamics

Fundamental and practical questions:

* How heat, work and entropy are defined ?
How to define effective “trajectories” ?

Can quantum effects modify

thermodynamic behavior? N
) Ra-éiali,y (1mm§

Influence of quantum measurements?
How small can thermal machines be? [J. RoBnagel, et al. Science (2016)]
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Superposition principle:

Superposition and coherence

If |a) and |b) are possible states of a quantum system == |1)) = c4|a) + cp|b) too
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Quantum superposition:
both “left” and “right” slits
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Classical particles:
either “left” or “right” slits

Modern which-path experiment with
stochastically arriving phthalocyanine (PcH2)
molecules (one at a time)

[T. Juffmann et al. Nat. Nano (2012)]
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z = |0)

Classical mixtures vs. superposition states:

Example: Two-level system (qubit): {|0),|1)}

1) = cos(8/2)]0) + e sin(6/2)[1)

P density operator (matrix)

* Compare the following two states:

- &= 1)
Pclass :p0|0><0| +p1|1><1| —> Polass = [OO pl]

state of the system is either {|0), |1)} with probs. {po, p1}

Psup = ‘¢> <¢‘ with |w> — \/p_0|0> + \/p_1|1> ——»  Pclass = [ ,—]]j(())pl “ Z?pll

state of the system is |q),) I.€. both {10, |1)} COHERENCES
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o Quantum fluctuation theorems

Fluctuation Theorems in quantum systems

* Thermal fluctuations + Quantum fluctuations

 Thermodynamic quantities are defined through (projective) quantum measurements
which allow us to define “trajectories” using the measurement outcomes.

H()\J , H()\f>
| j f: 1 f
Ai — Af Wm,n — Evfn o E;z
{En, )} {Eps [4m) }

e Useful for work Fluctuation Theorems for isolated driven quantum systems

Open quantum systems?
Scheme needs to be extended to the environment - Environmental monitoring

Usually the environment is assumed to be a thermal reservoir

More general environments such as finite-size and/or engineered quantum reservoirs ?

Reviews: M. Campisi et al. Rev. Mod. Phys. (2011) ; M. Esposito et al. Rev. Mod. Phys. (2009)
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System interacts “sequentially” with the environment:

(a)
P . , F;_n
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* Trajectories now comprise all the measurements in system and environmental ancillas:

v = {’I’L, (,uh V1)7 (,u2, VQ), ceey (/LN, VN)7m}

 The continuous limit can be obtained if the following limit exist:

QYN ND
N—soco dt—0 1img G

— L = fini
dt—0 dt 1(pe) finite
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Quantum-jump trajectories:

prrar = E(pr) =Y M;p,M]
J

Measurements backaction can be recasted as: Probability during any dt:
Moy(dt) =1—dt(iH + Z LI L;/2) smooth evolution > B(t)=1—dt Z(LLLkﬁ
k k

My, (dt) = VdtLy, quantum jump of type k e Pu(t) =dt(L} L)

Example: Optical cavity

trajectory (ay average (p)

Photo-detector 0 ] 2
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Evolution under environmental monitoring

Assuming an initial pure state and keeping the
record of the outcomes:

Stochastic Schrodinger equation (Langevin-like)

Introducing Poisson increments d N (t) 0)

' L'L)), —L'L
dly), = dt (;H+Z< : ‘“”2 : k>w>t+Zde(t> LT’”" —T|[¥)
k k (L L)+

Smooth evolution (No jump) Jump of type k

The average evolution is a Lindblad master equation (Fokker-Planck-like):

?

) 1
pr = Li(pr) = h[H’ pt] + zk; (LkPLZ; — §{L2Lkapt})

STEADY STATE: T — Z 7k |mE ) (| —» micro-states

Ly (77) =0 [ —a populations/probabilities of micro-states
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* Trajectories: Initial and final measurements (system) + jumps and times (environment):

V0,4 = {n(0), 726, n(t)} with environmental record RE = {(k1,t1), (ka,t2), ..., (ks,tj)}

 Entropy production: Sy?tem gmlri(;%?,mem
entropy
P(’V{O t}) T,
Astor(t) =log | =—— =log| — |+ ) Asp”
P(V{O,t}) Tm % J

e Local detailed-balance

Agen o4 e.g. for a thermal bath:
* For Lindblad operators coming in pairs: L, =c¢€ Sk [, ASS™Y — —BAE,.
J J

 For any self-adjoint Lindblad operator [, = LL = AsyV =0

* Fluctuation theorems: (6_A8t°t(t)>fy =1 = (Aswt(t))y =0

[G. Manzano, J.M. Horowitz, and J.M.R. Parrondo, PRX (2018);
J.M. Horowitz and J. M. R. Parrondo, NJP (2013); J.M. Horowitz, PRE (2012)]
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 Does classical martingale theory for entropy production apply to quantum thermo?

_Astot (’T)

<€—A8tot(t)‘fy{0,7_}> = e fOI‘ O S T St

average conditioned on trajectory at past times [I. Neri, E. Rold4n, and F. Jiilicher, PRX (2017)]

* Quantum generalization becomes problematic !

* Entropy production needs
measurements on the system.

e Sometimes it is not well defined at
intermediate times

Entropy production, ASie
=

_.__,-"'"# 1_ TT
ol | y
[ | i * How to make meaningful conditions on
past times ?
0 t
v Time |1".1)
|¢>t In a superposition of eigenstates (of the steady state) \
[EP would depend on an eventual measurement]
\J tra) lms)

|¢>t In a eigenstate (microstate) of the steady state [well defined without measurements]  Classical Markov
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* Quantum fluctuations spoil the Martingale property!

<€—Astot (t) ‘,7[0 T]> — e—Astot (T)+Asunc(7) for 0<7<¢

« The extra term measures the entropic value of the uncertainty in |1):

Asune(t) = —log ( n®) ) which fulfills: | (e=2%une(® |y ) =1

() ()
() = Zm (t)|m:)|* is the “average probability” when measuring |4(t))
« Decomposition of the stochastic EP:
P AStot (t) — ASunc (t) + ASmar (t)

. Aspar(t) “classicalization” of EP and

is an exponential martingale 1.21 R 1 S
e {ASL(t) R i B g
— Asmar(t) _ o~ Asmar(7) g { g :
(e V{0,71) = e 2. A i
- ]
| . S 0.0] AW L
* Both terms fulfill fluctuation theorems: ) — b gt
L ] A'L:"Il.:'l-'ll."
_ _ 0.4
(™ Asmar()y = 1 (emAsmet)y =1 6 5 10 15 20

time
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* Stopping-time fluctuation theorem

<€_A5mar(T)> =1 — <A8tot (T)> Z <ASunC(T)> » g:fﬂ:]eerggg\slglve

T stochastic stopping-time
El] ]_:| b] 1.2]

1.0

E?(ample: 2-Iev¢| system E 0.8 W ; e 0k IM’”“_F
with orthogonal jumps 3 g § os mIJ o
4 - B
.. |_. 0.4 ED.-‘-!-
Minimum between - 2 U § ool bt —o—
first-passage time ¥ i : 0.2 & ASune ()
with 1 or 2 thresholds : ) . M1
and a fixed maximum t - l{;\ E ot s Y o°
X & v Number of trajectories
* Finite-time infimum inequality: 1.0 1o =
208 jﬁﬁf;rr
0.8] 8 oglmr—

= e _r” .:‘"

Pr (infTE[O,t]ASmar(T) < 6) < 6_5

Modified infimum law:

. Tmax
(infrepo,Ast0t(T)) = —1 —

min

Probability density

max and min eigenvalues of the steady state
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Main conclusions

* Stochastic thermodynamics can be extended to the quantum realm by properly
defining “trajectories”, trough quantum measurements.

* The quantum jump trajectory formalism can be employed to asses the
thermodynamics of open quantum systems beyond thermal reservoirs.

* For nonequilibrium steady states, the entropy production is not always an
exponential Martingale due to quantum fluctuations.

* A quantum martingale theory can be however developed by performing
a quantum-classical split of the entropy production.

* We obtain quantum corrections in several results for stopping times and finite-time
infimum, whose consequences are still to be fully understood.
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THANK YOU

for your attention

FOR MORE INFORMATION:

G. Manzano., R. Fazio, and E. Roldén, arXiv: 1903.02925 (2019); [accepted in PRL]
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