Supported by ERC through Starting Grant no. 759253

European Research Council Established by the European Commission

Neutron star mergers and kHz gravitationalwave emission

Challenges and Opportunities of High Frequency Gravitational Wave Detection

Abdus Salam International Centre for Theoretical Physics, Trieste, 14/10/2019

Andreas Bauswein

(GSI Darmstadt)

Outline

- ► Overview: NS mergers and GW170817
- ▶ Postmerger GW emission (kHz !!!) → NS radius constraints
- ► GW data analysis
- Maximum mass of NSs Collapse behavior of NS mergers
- Signatures of the QCD phase transition
- Summary and conclusions

Note: high frequency = a few kHz

$$t_{\rm dyn} = \sqrt{\frac{R^3}{G\,M}} \approx 1 \ ms$$

Disclaimer: focus on NS physics ignoring all other interesting stuff at higher frequencies

Insights from GW170817

- First unambiguously observed NS merger \rightarrow rate
- ▶ Well measured total mass 2.73 Msun, mass ratio M1/M2 between 0.7 .. 1
- Multi-messenger observations: accompanying emission in radio, IR, optical, UV, X-rays and gamma rays
- Connection between short GRBs and NS mergers strengthens / established
- ► Optical emission compatible with ejecta heated by rapid neutron-capture process → first and only confirmed r-process site !
- ► Estimated ejecta mass 0.02-0.05 Msun → mergers compatible with being main source of heavy elements
- Independent measurment of Hubble constant
- EoS constraints:

- Finite-size effects in pre-merger phase \rightarrow tidal deformability \rightarrow upper limit on NS radii (smaller than about 13.5 km) \rightarrow nuclear matter not too stiff

- Multi-messenger interpretation: bright em transient points to no direct BH formation \rightarrow lower limit on NS radii (larger than 10.5 km) \rightarrow nuclear matter not too soft

Motivation: Neutron stars and the EoS

- Nuclear many-body problem hard to solve (some approximations required)
- Nuclear interactions not precisely known, especially at higher densities
- Fundamental contituents of NSs not known: pure nuclear matter, hyperons, ..., possibly phase transition to deconfined quark matter
 - → high-density EoS not precisely known

↔ stellar structure of NSs not precisely known - density profile, radii, tidal deformability, maximum mass ??? – uniquely linked through structure eqs.

 \rightarrow relevant for nuclear/high-denisty matter physics and astrophysics of NS (NS cooling, SN explosions, NS mass distribution, mass gap, cosmology, ...)

 \rightarrow it's all about measuring stellar properties (e.g. radius) – GW particularly promising

Introductory remark

 Mass-radius relation (of non-rotating NSs) and EoS are uniquely linked through Tolman-Oppenheimer-Volkoff (TOV) equations

→ NS properties (of non-rotating stars) and EoS properties are equivalent !!! (not all displayed EoS compatible with all current constraints)

Finite-size effects during late inspiral

Inspiral

► Lambda < ~650

 \rightarrow Means that very stiff EoSs are excluded

- \rightarrow NS radii smaller than ~13.5 km
- Somewhat model-dependent
- Better constraints expected in future as sensitivity increases

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$$

Abbott et al. 2017, 2019 see also later publications by Ligo/Virgo collaboration, De et al. 2018

Inspiral

► Waveform models still not fully understood → model dependencies and degeneracies (q,S)

 \rightarrow complementary measurements desirable (note: em measurements typically very model dependent)

 \rightarrow Tidal deformability and radii scale tightly but not perfectly

- ► Finite-size effects harder to measure for more massive systems
- ▶ NS mass distribution peaks at 1.3-1.4 Msun

 \rightarrow high mass NSs / very high density EoS not accessible

 \rightarrow thermal effects not accessible (inspiral probes cold EoS)

Future: Postmerger GW emission*

(dominant frequency of postmerger phase)

 \rightarrow determine properties of EoS/NSs \rightarrow complementary to inspiral

 not detected for GW170817 – expected for current sensitivity and d=40 Mpc (Abbott et al. 2017)

Simulation: 1.35+1.35 M_{sun}

Density evolution in equatorial plane, Shen EoS

Relativistic smooth particle hydrodynamics, conformally flat spatial metric, microphsyical temperature-dependent EoS

Postmerger

Dominant postmerger oscillation frequency f_{peak}

Very characteristic (robust feature in all models) but kHz regime

Gravitational waves – EoS survey

characterize EoS by radius of nonrotating NS with 1.35 $\rm M_{sun}$

Bauswein et al. 2012

- Pure TOV/EoS property => Radius measurement via f_{peak}

Here only 1.35-1.35 Msun mergers (binary masses measurable) – similar relations exist for other fixed binary setups !!!

~ 40 different NS EoSs

Gravitational waves – EoS survey

characterize EoS by radius of nonrotating NS with 1.6 $\rm M_{sun}$

Bauswein et al. 2012

Pure TOV/EoS property => Radius measurement via f_{peak}

Smaller scatter in empirical relation (< 200 m) \rightarrow smaller error in radius measurement Note: R of 1.6 M_{sun} NS scales with f_{peak} from 1.35-1.35 M_{sun} mergers (density regimes comparable)

GW data analysis: Clark et al 2014, Clark et al 2016, Chatziioannou et al 2017, Bose et al. 2018, Yang et al 2017, $\dots \rightarrow$ detectable at a few 10 Mpc

Binary mass variations

Different total binary masses (symmetric)

Fixed chirp mass (asymmetric 1.2-1.5 M_{sun} binaries and symmetric 1.34-1.34 M_{sun} binaries)

Data analysis: see e.g. Clark et al. 2016 (PCA), Clark et al. 2014 (burst search), Chatziioannou et al 2017 \rightarrow f_{peak} precisely measurable !!!

Bauswein et al. 2012, 2016

GW data analysis for postmerger

Data analysis

Principal Component analysis

Excluding recovered waveform from catalogue

Instrument	$\mathrm{SNR}_{\mathrm{full}}$	$D_{\rm hor}$ [Mpc]	Ndet [jear-1]
aLIGO	$2.99_{2.37}^{3.86}$	$29.89_{23.76}^{38.57}$	$0.01_{0.01}^{0.03}$
A+	$7.89^{10.16}_{6.25}$	$78.89_{62.52}^{101.67}$	0.130_{-10}^{-20}
LV	$14.06^{18.13}_{11.16}$	$140.56^{181.29}_{111.60}$	$0.41_{0.21}^{0.88}$
ET-D	$26.65_{20.81}^{34.28}$	$266.52_{208.06}^{342.80}$	$2.81_{1.33}^{5.98}$
CE	$41.50_{32.99}^{53.52}$	$414.62_{329.88}^{535.221}$	$10.59_{5.33}^{22.78}$

Clark et al. 2016, see also Clark et al 2014, Chatziioannou et al 2017, Bose et al. 2018

Outdated!!!

→ possible at Ad. LIGO's design sensitivity

Model-agnostic data analysis

Based on wavelets (BayesWave)

Chatziioannou et al. (2017), Torres-Riva et al (2019)

Typical GW spectrum – secondary peaks

Two/three secondary peaks identfied

- coupling between radial and quadrupolar mode
- transient tidal bulges

Secondary peaks

- ► Ns remnant is a rapidly rotating massive NS many different oscillation modes excited
- Probe different regimes of the EoS / remnant
 - \rightarrow to date only some understood linked to dynamical features
 - \rightarrow access dynamics of merger \rightarrow relevant multi-messenger interpretation

 \rightarrow Although harder to measure: postmerger contains much richer information (compared to inspiral)

- \rightarrow future: GW asteroseismology exploit every measurable mode
- \rightarrow kHz detectors highly important for NS and high-density matter physics !!

Maximum mass of NSs and collapse behavior of NS mergers

Maximum mass of NSs

- Mmax^{*} relevant for
 - astrophysics (supernovae, mass gap, ...)
 - nuclear physics (probes very high-density regime)
- Pulsar measurements accurate, but can only provide lower bound (current limit ~2 Msun)
- Other ideas to infer Mmax pretty model dependent

* maximum mass of nonrotating NSs (uniquely linked to EoS); fast rotation increases mass that can be supported against collapse (but depends on J)

 $\longrightarrow M_{
m thres} = (3.45 \pm 0.05) \ M_{\odot}$ (for this particular EoS)

Collapse behavior: Prompt vs. delayed (/no) BH formation

<u>Relevant for:</u> EoS constraints through M_{max} measurement, Conditions for short GRBs, Mass ejection, Electromagnetic counterparts powered by thermal emission, NS radius constraints !!!

Collapse behavior

EoS dependent - somehow M_{max} should play a role

Threshold binary mass

- Empirical relation from simulations with different M_{tot} and EoS
- ► Fits (to good accuracy):

$$M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{\rm max}) = \left(-3.38 \frac{GM_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) M_{\rm max}$$

$$M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{1.6}) = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

Future: Maximum mass

Empirical relation

$$M_{\rm thres} = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

- Sooner or later we'll know R_{1.6} (e.g. from postmerger) and M_{thres} (from several events through presense/absence of postmerger GW emission or em counterpart)
 - => direct inversion to get precise estimate of M_{max}
 - \rightarrow unique opportunity to robustly (!) measure M_{max}
 - \rightarrow also important for interpretation of em emission (kilonovae, GRBs, ...)

(see also current estimates e.g. by Margalit & Metzger, Rezzolla et al, Ruiz & Shapiro, Shibata et al., ...)

Signature of QCD phase transition

Phase diagram of matter

Does the phase transition to quark-gluon plasma occur (already) in neutron stars or only at higher densities ?

Remark

► Not just an academic question, but significant theoretical and experimental efforts !!

e.g. CBM experiment at FAIR (Darmstadt)

EoS with 1st-order phase transition to quark matter

Bauswein et al. 2019

- EoS from Wroclaw group (Fischer, Bastian, Blaschke; see Fischer et al. 2018, Bastian et al 2018) – as one example for an EoS with strong 1st-order phase transition to deconfined quarks
- Phase transition from nuclear matter to deconfined quark matter \rightarrow kink in massradius relation

Phase transition

- ► Even strong phase transitions leave relatively weak impact on tidal deformability
 - \rightarrow Difficult to measure transition in mergers through inspiral:
 - + Lambda very small, high mass star probably less frequent

1.35-1.35 Msun - DD2F-SF-1

Merger simulations

► GW spectrum 1.35-1.35 Msun

But: a high frequency on its own may not yet be characteristic for a phase transition

- \rightarrow unambiguous signature
- $(\rightarrow$ show that all purely baryonic EoS behave differently)

Signature of 1st order phase transition

- Tidal deformability measurable from inspiral to within 100-200 (Adv. Ligo design)
- Postmerger frequency measurable to within a few 10 Hz @ a few 10 Mpc (either Adv. Ligo or upgrade: e.g Clark et al. 2016, Chatzioannou et al 2017, Bose et al 2018, Torres-Rivas et al 2019)
- ▶ Important: "all" purely hadronic EoSs (including hyperonic EoS) follow fpeak-Lambda relation \rightarrow deviation characteristic for strong 1st order phase transition

Discussion

- Consistency with fpeak-Lambda relation points to
 - purely baryonic EoS

in the tested (!) density regime \rightarrow lower limit on transition density

- fpeak also determines maximum density in postmerger remnant
- postmerger GW emission provides complimentary information to inspiral
 - \rightarrow probes higher density regime

Summary and conclusions

- Postmerger contains rich information on properties of high-density EoS / NSs
- Dominat postmerger GW frequency scales with NS radii
 - \rightarrow robust and accurate radius measurements (especially of high-mass NSs)
 - \rightarrow complementary to inspiral (regarding methods and information)
- ► Long-term goal: GW asteroseismology understand full content of spectrum → probe different regimes of EoS
- Dynamics of remnant \rightarrow multi-messenger interpretation, critical for em emission
- kHz emission crucial to determine Mmax (hard otherwise) \rightarrow very high density regime
- ► GW data analysis methods available and continuously improved
- Identify or exclude presence of QCD phase transition

 \rightarrow unique and very important science in the kHz range (not only for astrophysics)