EXPERIMENTAL UPPER LIMITS ON (ULTRA) HIGH-FREQUENCY GRAVITATIONAL WAVES AND PROSPECTS FOR MORE: MAGNETIC CONVERSION DETECTORS AND CORRELATED INTERFEROMETRY

Hartmut Grote, Cardiff University

ICTP workshop, Trieste

14/10/2019

Work in collaboration with: Aldo Ejlli, Mike Cruise, Damian Ejlli, and Giampaolo Pisano

Joseph Weber: Pioneer of GW detection

1969: Sensitivity ~10 million times less that IFO's today.

John A. Wheeler

He [Weber] threw himself with religious fervor at the gravitational waves and pursued them for the rest of his career. Sometimes I wonder if I didn't fill him with too much enthusiasm for this monumental task.

Michelson Interferometer

Michelson, with additions...

Michelson-Morley experiment: Accuracy: 10^-8 m (10^-9 relative)

10m arm-length

Advanced Interferometer: 3-4 km arm-length Accuracy: 10^-19 m (3 x 10^-23 relative), 100Hz BW

Michelson, with additions...

Michelson-Morley experiment: Accuracy: 10^-8 m (10^-9 relative)

10m arm-length

Advanced Interferometer: 3-4 km arm-length Accuracy: 10^-19 m (3 x 10^-23 relative), 100Hz BW

Other Interferometers

Illustration: Josh Field

Other Interferometers

Illustration: Josh Field

Japanese synchronous recycling interferometer (100 MHz)

Fermilab 'holometer' interferometer (1-13 MHz)

Interferometry gets harder at high frequencies

- $h = dL / L \rightarrow loss of strain (h) due to smaller L$
- Small L → small beam sizes → harder to operate high power to reduce shot noise

The (inverse) Gertsenshtein effect

Gravitational-waves propagating in magnetic fields convert into photons.
 (G. A. Lupanov JETP 25, 76 (1967), Gertsenshtein, Sov. Phys., JETP 14, 84 (1962))

Similarity: Axion search using laboratory static magnetic fields

- Axions are generated in the magnetic field coupled to two photons.
- Axions, in the second region of the magnetic field, decay into photons.

ALPS (Any-Like Particle Search) DESY Germany

- Magnet provided form HERA particle accelerator working at liquid helium (4 K).
- Magnetic field: B=5 T.
- Length: *L*=2×4.3 m.
- Photodetector @ $\lambda = 532$ nm PIXIS CCD.
- Data acquisition 2009-2010.
- They excluded detection of any physical signal
 @ 95% confidence interval.

OSQAR (Optical Search of QED, Axion and photon Regeneration) CERN Switzerland

- Magnets provided from spare LHC particle accelerator working @ superfluid helium (2 K).
- Magnetic field Field: B = 9 T.
- Magnet length: L = 14.3 m.
- Photodetector @ 532 nm.
- Data acquisition 2014-2015.
- Excluded detection of physical signal @ 95% confidence interval.

CAST (CERN Axion Solar Telescope) CERN Switzerland

- Magnet provided from spare LHC particle accelerator working @ superfluid helium (2 K).
- Magnetic field: 9 Tesla.
- Length: 9 m.
- X-Ray detector @ 3 nm.
- Data acquisition 2013-2015.
- Excluded detection of physical signal @ 95% confidence interval.

GWs upper limits: ALPS, OSQAR, CAST

Detectors

- Cannot be pointed deliberately to the emitting sources, except CAST
- GWs upper limits at Ultra-High-Frequencies (UHF): optical 5x10¹⁴ Hz and X-ray 10¹⁸ Hz

Suited sources

- Cosmological sources: stochastic, isotropic, stationary, and Gaussian gravitational-waves.
- UHF GWs candidates: Primordial black holes (PHB), thermal GWs from the Sun.

Parameters necessary to compute the characteristic amplitude

$$h_c^{\min}(0,\omega) \simeq \sqrt{\frac{4 N_{\exp}}{A B^2 L^2 \epsilon_{\gamma}(\omega) \Delta \omega}} \simeq 1.6 \times 10^{-16} \sqrt{\left(\frac{N_{\exp}}{1 \text{ Hz}}\right) \left(\frac{1 \text{ m}^2}{A}\right) \left(\frac{1 \text{ T}}{B}\right)^2 \left(\frac{1 \text{ m}}{L}\right)^2 \left(\frac{1 \text{ Hz}}{\Delta f}\right) \left(\frac{1 \text{ Hz}}{\epsilon_{\gamma}(\omega)}\right)}$$

- detected number of photons per second,
- cross-section of the detector,
- magnetic field amplitude,
- distance extension of the magnetic field,
- frequency of the detector
- quantum efficiency of the detector

	$\epsilon_\gamma(\omega)$	$N_{\rm exp}$ (mHz)	$A (\mathrm{m}^2)$	B (T)	L (m)	Δf (Hz)
ALPS I	see Fig 2	0.61	0.5×10^{-3}	5	9	9×10^{14}
OSQAR I	see Fig 2	1.76	0.5×10^{-3}	9	14.3	5×10^{14}
OSQAR II	see Fig 2	1.14	0.5×10^{-3}	9	14.3	1×10^{15}
CAST	see Fig 2	0.15	2.9×10^{-3}	9	9.26	1×10^{18}

UHF GW characteristic amplitude upper limits

ArXiv 1908:00232

STRAIN UPPER LIMITS

STRAIN UPPER LIMITS

Primordial black hole evaporation and upper limits

- PBH evaporation: predicted stochastic isotropic UHF GWs background
- Sun: thermal activity in core generates UHF GWs.

Graviton to photon mixing and future laboratory axion experiments ALPS II, JURA, IAXO

Graviton to photon conversion in resonant Fabry-Perot cavity, ALPS II and JURA

$$\begin{array}{c}
 CARDIFF\\
 UNIVERSITY\\
 PRIFYSGOL\\
 CAERDYP
 \\$$

$$h_c^{\min}(0,\omega^*) \simeq 2.8 \times 10^{-16} \sqrt{\left(\frac{1}{\mathcal{F}}\right) \left(\frac{N_{\text{dark}}}{1 \text{ Hz}}\right) \left(\frac{1 \text{ m}^2}{A}\right) \left(\frac{1 \text{ T}}{B}\right)^2 \left(\frac{1 \text{ m}}{L}\right)^2 \left(\frac{1 \text{ Hz}}{\Delta f}\right) \left(\frac{1}{\epsilon_{\gamma}(\omega)}\right)}$$

Graviton to photon mixing and future laboratory axion experiments ALPS II, JURA, IAXO

Graviton to photon mixing and future laboratory axion experiments ALPS II, JURA, IAXO

Graviton to photon mixing and future laboratory axion experiments ALPS II, JURA, IAXO

	<u>م</u>	N _{dark} (Hz)	A (m ²)	<i>B</i> (T)	<i>L</i> (m)	F			
ALPS IIc	0.75	10 ⁻⁶	10 ⁻³ 10 ⁻³	5.3	120	40 000			
JURA	1	10 ⁻⁶	10 ⁻³ 1 0 ⁻³	13	960	100 000			
IAXO	1	↑ 10 ⁻⁴	1 1	2.5	25	-			

Prospects

A Hertz experiment?

Weber's / Sinsky's idea: GW generator and matched detector

Maybe possible for EM-GW / GW-EM conversion experiments?

Phys. Scr. 90 (2015) 074059 (7pp)

Physica Scripta

Gravitational Hertz experiment with electromagnetic radiation in a strong magnetic field

N I Kolosnitsyn¹ and V N Rudenko^{2,3,4}

¹Smidt Earth Physics Institute of Russian Academy of Science (RAS), str. B-Gruzinskaya 10, Moscow 119810, Russia

² Sternberg Astronomical Institute of Lomonosov Moscow State University (MSU), Universitetskii pr. 13, Moscow 119234, Russia
³ Letitute of Nuclear Data and Control of Loting Objective Objective State University (MSU), Universitetskii pr. 13,

³ Institute of Nuclear Researches RAS, str. 60-Letiya Oktyabrya 7a, Moscow 117312, Russia

E-mail: kolosnitsynn@mail.ru and valentin.rudenko@gmail.com

Received 3 November 2014, revised 13 February 2015 Accepted for publication 23 April 2015 Published 1 July 2015

Abstract

A brief review of the principal ideas in respect of high frequency gravitational radiation generated and detected in laboratory conditions is presented. Interaction of electromagnetic and gravitational waves in a strong magnetic field is considered as a more promising variant of the laboratory GW-Hertz experiment. The formulae of the direct and inverse Gertsenshtein– Zeldovich effect are derived. Numerical estimates are given and a discussion of the possibility of observation of these effects in a laboratory is carried out.

JURA could get close to detecting its generated gravitational waves

Interferometry up to ~100MHz

A case for co-located interferometry for cross-correlation studies

CAD Layout: A. Ejlli

Cardiff co-located interferometers

Multi-purpose facility for correlated interferometry:

- Technology development (squeezing and entangled squeezing for correlated interferometry)
- Quantization of space-time
- Dark matter searches
- High-frequency gravitational waves (1 100 MHz)

Conclusions

- We set upper limits on stochastic UHF GWs using data of laboratory axion search experiments.
- The upgraded ALPS II, JURA, and IAXO are potential infrastructure for the stochastic UHF GWs detection.
- UHF GWs of PBH evaporation are an investigation at the very early universe and observation at the Planck Scale.

Questions

- Should we be discouredged by being many orders of magnitude away from meaningful sensitivities?
- What do you think about the value of a Hertz experiment?
- Could funding be motivated for magnetic conversion detectors (as dedicated facilities or at least modifications of existing facilities)?

