

xM

Phase transitions in the early Universe

- At very high temperatures and pressures, the state of matter in the Universe changes
- T_c ~ 100 MeV (1 ms) QCD
- T_c ~ 100 GeV (10 ps) Electroweak
- T_c >> 100 GeV new symmetries?
- Departures from equilibrium and homogeneity (shear stress)
- First order phase transition: relativistic condensation or `fizz' Steinhardt (1982)
- Formation of topological defects
 Kibble (1976)

Abrikosov vortices

QCD phases

- QCD: rich phase diagram
- Universe: $n_B/n_\gamma \approx 6.1 \times 10^{-10}$
- Behaviour at low chemical potential well-established by lattice QCD Borsanyi et al (2016)
- Transition from QGP to hadronic phase is a cross-over
- Departures from equilibrium very small: no GWs

Borsanyi et al 2016

Electroweak transition

- SM is not weakly coupled at high T
- Non-perturbative techniques:
- Dimensional reduction to 3D effective field theory + 3D lattice
 Kajantie, Laine, Rummukainen, Shaposhnikov (1995,6)
- SU(2)-Higgs on 4D lattice
 Czikor, Fodor, Heitger (1998)
- SM transition at m_h ≈ 125 GeV is a cross-over - a supercritical fluid

Search for 1st order transition is a search for physics beyond SM

Little bangs in the Big Bang

- 1st order transition Langer 1969 bubbles of low-T phase proceeds by nucleation of
- rapidly increases below T_c Nucleation rate/volume p(t)
- Expanding bubbles generate pressure waves in hot fluid
- Universal "fizz"

Steinhardt (1982); Hogan (1983,86); Gyulassy et al (1984); Witten (1984

Fluid kinetic energy

MH, Huber, Rummukainen, Weir (2013,5,7) Cutting, MH, Weir (2018,9)

Phases of a phase transition

- Nucleation and expansion
- Collision
- Acoustic
- Non-linear (shocks, turbulence)

$$\mathcal{T}_{nl} \sim L_f / U_f$$

 L_f – fluid flow length sc

U_f – RMS fluid velocity ale

> Turner, Weinberg, Widrow 1992; Guth, Weinberg 1983; Enqvist et al 1992; p – nucleation rate/volume β – transition rate parameter

$$au_{\rm co}=eta^-$$

'exponential' nucleation
$$p(t) = p_n e^{eta(t-t_n)}$$

$${f 4}$$
exponential' nucleation ${\cal D}(t)= p_n e^{eta(t-t_n)}$

ω

$$(t) = p_n e^{\rho(t)}$$
$$\tau_{co} = \beta^{-1}$$

xponential' nucleation
$$p(t) = p_n e^{eta(t-t)}$$

$$p(t) = p_n e^{\beta(t-t)}$$

 $\tau_{22} = \beta^{-1}$

$$p(t) = p_n e^{eta(t-t_n)}$$

'exponential' nucleation
$$p(t) = p_n e^{eta(t-t_n)}$$

Phases of a phase transition

Dynamics of an early universe phase transition

Ingredients:

Ignatius et al (1994), Kurki-Suonio, Laine (1996)

- Higgs field $-\ddot{\phi} + \nabla^2 \phi - \frac{\partial V}{\partial \phi} = \eta W (\dot{\phi} + V^i \partial_i \phi)$
- n coupling to fluid (models energy transfer, friction)
- Relativistic fluid

 $\dot{E} + \partial_i (EV^i) + P[\dot{W} + \partial_i (WV^i)] - \frac{\partial V}{\partial \phi} W(\dot{\phi} + V^i \partial_i \phi) = \eta W^2 (\dot{\phi} + V^i \partial_i \phi)^2.$ $\dot{Z}_i + \partial_j (Z_i V^j) + \partial_i P + \frac{\partial V}{\partial \phi} \partial_i \phi = -\eta W (\dot{\phi} + V^j \partial_j \phi) \partial_i \phi.$

- E energy density, Z_i momentum density, V_i velocity, W γ -factor
- Discretisation
- Metric perturbation

Wilson & Matthews (2003) Different approach: Giblin, Mertens (2013)

 $\ddot{h}_{ij} - \nabla^2 h_{ij} = 16\pi G T_{ij}^{\rm TT}$

Garcia-Bellido, Figueroa, Sastre (2008)

GWs from first order phase transitions

- Parameters of transition:
- $T_n =$ Temperature at nucleation
- $-\beta$ = transition rate (= d log p / dt)
- $v_w =$ Bubble wall speed
- α = ("Potential energy")/("Heat energy")
- Derived parameters:
- R_* = mean bubble separation $=(8\pi)^{1/3} {
 m v}_W/eta$
- K = fluid kinetic energy fraction (depends on α , v_w) Espinosa et al 2010
- Aim: GW power spectrum

$$\frac{d\Omega_{\rm gw}}{d\ln f} = \frac{1}{\rho_{\rm tot}} \frac{d\rho_{\rm gw}}{d\ln f} = \frac{8\pi^2}{3H^2} f^3 S_h(f)$$

GWs from phase transitions

- shear stress fluctuations Gravitational waves generated by $\dot{h}_{ij} \sim G \int dt' \cos[k(t-t')] T_{ij}^{TT}(k,t')$ $\Omega_{
 m GW} \sim rac{1}{G
 ho} \left\langle \left| \dot{h}_{ij}(t) \right|^2
 ight
 angle$
- Shear stress ~ kinetic energy
- Kinetic energy from potential energy

 $h \sim \tau(G\rho)K$

 $T_{ij} \sim \rho U_i U_j$

- $K(\alpha, v_w)$ = fluid kinetic energy fraction

Timescales
$$au_{
m v}$$
 and $au_{
m c}$ $\Omega_{
m gw}\sim rac{7v^{T}c}{G
ho}(G
ho)^{2}K^{2}$

- τ_v duration of stresses from fluid velocity

–
$$au_{
m c}$$
 coherence time of stress fluctuations $\ \Omega_{
m gw} \sim (H_n au_v) (H_n au_c) K^2$

$$\Omega_{\mathrm{gw},0} \sim \Omega_{\mathrm{rad},0} (H_n \tau_v) (H_* \tau_c) K^2$$

Estimating GW power

- Recall GW energy fraction:
- τ_v duration of stresses
- τ_c coherence time
- Numerical simulations:
- $\tau_c \sim R_*$ (bubble separation)
- Analytical estimate:
- $-\tau_v = \min(H_n^{-1}, R_*/U_f)$
- N.B. $K = (4/3)U_{f^2}$

K

- *U*_f (weighted) RMS velocity
- Pure acoustic (H_nR_{*} >> U_f)

$$egin{aligned} \Omega_{
m gw} &\simeq (H_{
m n}R_{*}) \mathcal{K}^{2} ilde{\Omega}_{
m gw} \ ilde{\Omega}_{
m gw} &\sim 10^{-2} \end{aligned}$$

$$\Omega_{\rm gw} \sim (H_{\rm n} au_{
m v}) (H_{\rm n} au_{
m c}) K^2$$

K (kinetic energy fraction) from self-similar hydro solution

LISA CWG party line 2016

- Three contributions to total power:
- Scalar field

Ð

Acoustic

ac

Turbulent

ť

$$\Omega_{gw} = \Omega_{gw}^{\phi} + \Omega_{gw}^{ac} + \Omega_{gw}^{tu}$$

- Scalar field: bubble wall collisions
- relevant only for runaway walls
- "envelope approximation"
- Kosowsky, Turner 1992
- Huber, Konstandin 2008
- Acoustic production:
- M.H. et al 2013, 2015, 2017, 2019
- **Turbulent production:**
- Caprini, Durrer, Servant 2009

Case 2: runaway

 $h^2 \Omega_{\rm GW}({\rm f})$

Gravitational waves ... Mark Hindmarsh

xM

Developments 2: sound shell mode

- shells $v_q(t_i)$ weighted addition of sound Gaussian velocity field from MH 2017; MH, Hijazi 2019
- Two length scales:
- Bubble spacing R_* Shell width $R_* \frac{|V_w c_s|}{v}$ v_{W}
- Double broken power law
- $P_{gw} \sim k^9, k^1, k^{-3}$
- Amplitude:
- Detonations: good (< 10%)
- I Deflagrations: overestimated

Developments 3: bulk flow models

- Based on envelope approximation
- Model overlapping energy shells in real space
- Disagrees with sound shell model at low k

Developments 4: non-linearities

- Longitudinal v
- Kinetic energy suppression
- Transverse v
- Vorticity production

Cutting, MH, Weir 2019

Non-linearity timescale

$$au_{
m nl}\sim L_f/ar{U}_f$$

- Shock development
- Further vorticity production
- Decay of flows

T, n = 1000, dx = dy = 1.0, dt = 0.01, v = 0.05

J Dahl, U Helsinki

Gravitational waves Mark Hindma	• MHD simulation Roper pol et al 2019	high k GW power spectrum $k^{-5/3}$ g Ω — Mixed acoustic-turbulent $k^{-8/3}$ In	– Pure rotational flow:	velocity autocorrelation time	 Kraichnan sweeping model: 	Blue: Niksa, Schlederer, Sigl 2018	Green: Gogoberidze, Kahniashvili, Kosowsky 2007 Black: Caprini, Durrer, Servant 2008 Ω_{gw} n	Modelling	Developments 5: tu
$R_*^{-1} \ln k$		$k^{3?}$ k^{1} $k^{-8/3}$	MHD turbulence (non-helical)	R_*^{-1} ln k	k^{3} k^{3}		k^2 $k^{-5/3}$	Pure rotational flow	Jrbulence

Sound shell model

- shells $v_q(t_i)$ weighted addition of sound Gaussian velocity field from MH 2017, MH, Hijazi (in prep 2019)
- Two length scales:
- Bubble spacing R_* Shell width $R_* \frac{|V_W c_s|}{v}$ V_W
- Double broken power law
- $P_{gw} \sim k^9, k^1, k^{-3}$
- Amplitude:
- **Bubble separation**
- (Kinetic energy)²

- bubble power spectra Velocity power spectrum is weighted sum of 1-
- Weighting by bubble lifetime distribution^{S(t')} $S(t' + L/2v_w) S(t' + L/v_w)$

 $R(t' + L/v_{\rm w}) = L$

 $\alpha_{\rm h}=0.05~v_{\rm W}=0.92$ Gravitational waves ... Mark Hindmarsh

 10^{0}

101

 10^{2}

 10^{3}

 kR_*

Sound shell model vs. simulations P_v

- Solid: self-similar sound shell
- Dash: evolving sound shell at peak collision time
- Simultaneous nucleation

MH et al in prep 2019

Sound shell model vs. simulations P_{gw}

- Solid: self-similar sound shell
- Dash: evolving sound shell at peak collision time
- Simultaneous nucleation

GW PS in sound shell mode

MH, Hijazi 2019

$$\Omega_{gw}^{ac}(f) = F_{gw,0}(H_n R_*) A_M M\left(\frac{f}{f_{p,0}}\right) \qquad A_M \simeq K^2 \tilde{\Omega}_{gw}$$

Double broken power law

$$M(s) = s^9 \left(\frac{r_p^4 + 1}{r_p^4 + s^4}\right)^2 \left(\frac{5}{5 - m + ms^2}\right)^{5/2}, \quad s = f/f_{p,0}$$

$$m = (9r_p^4 + 1)/(r_p^4 + 1)$$

Radiation energy density redshift

$$F_{
m gw,0}\simeq 3.6 imes 10^{-5}$$

- $f_{p.0} \simeq 2.6 \, z_p (H_n R_*)^{-1} (T_n/100 \, \text{GeV}) \, \mu \text{Hz}$ Peak trequency incom.
- Simulations: $z_p = O(10)$

Flow lifetime uncertainty

Non-linearities important after

$$au_{
m nl}\sim L_f/ar{U}_f$$

- Also effective flow lifetime
- Estimate: multiply PS by

$$\min(1, H_n au_{nl})$$

GW power parametric estimate

$$\Omega_{\rm gw} \sim (H_{\rm n}R_*)^2 K^{3/2}$$

 Estimate SNR for LISA in terms of *U*_f, *H*_n*R**

Gravitational waves ... Mark Hindmarsh

0.0

Summary

- Good understanding of GWs from near-linear flows.
- $\alpha \sim 0.1, v_{w} > 0.4$
- Dominant source is sound
- Total power estimate:

$$\begin{split} &\Omega_{gw,0}\simeq F_{gw,0} \min\left(1,\frac{H_nR_*}{\sqrt{K}}\right)(H_nR_*)K^2\tilde{\Omega}_{gw}\\ &\text{Standard cosmology:}\\ &F_{gw,0}=3.6\times 10^{-5}\left(\frac{100}{g_{eff}}\right)^{\frac{1}{3}}\tilde{\Omega}_{gw}=O(10^{-2})\\ &\text{Naïve extrapolation:}\\ &\text{an upper bound on GWs from PTs:} \end{split}$$

Connection to fundamental theory

- Scalar effective potential $V(\phi, T)$ $T_{n'} \alpha, \beta, g_{eff}$ (equilibrium)
- Scalar-fluid coupling $\eta(\phi, T, v_w)$ -

Future challenges

- Stronger transitions lead to non-linear evolution, dynamics not understood
- Longitudinal/compression modes
- Kinetic energy suppression
- Shocks, wave turbulence
- Transverse/rotational modes
- Vorticity generation
- Turbulence

- MHD turbulence

Roper pol et al 2019 Turbulence less efficient at producing GWs? Gravitational waves ... Mark Hindmarsh

Cutting, MH, Weir 2019

Gravitational wave trequencies

- Shear stress at time t generate waves with minimum frequency $f \approx 1/t$ (Hubble rate)
- Redshifted to a frequency now: $f_0 = (a(t)/a(t_0))f$
- **Redshifted Hubble rates:**

Event	Time/s	Temp/GeV	f₀/Hz
QCD transition	10 ⁻³	0.1	10-8
EW transition	10 ⁻¹¹	100	10 ⁻⁵
·J	10 ⁻²⁵	10 ⁹	100
End of inflation	≥ 10 ⁻³⁶	≤ 10 ¹⁶	≤ 10 ⁸

- Peak frequencies: $f_{p.0} \simeq 26(H_nR_*)^{-1}(T_n/100 \text{ GeV}) \mu\text{Hz}$ $10^1 \lesssim (H_{
 m n} R_*)^{-1} \lesssim 10^5$
- Typical range:

High frequency GWs from PTs?

- Peak frequencies: $f_{p.0} \simeq 26(H_nR_*)^{-1}(T_n/100 \text{ GeV}) \mu\text{Hz}$
- Typical range: $10^1 \lesssim (H_{ extsf{n}} R_*)^{-1} \lesssim 10^5$
- Highest possible phase transition temperature?
- Inflation (absence of GWs): $T_{
 m n} \lesssim 10^{15} \, {
 m GeV}$
- **Corresponding frequencies:** $10^{8}\,{
 m Hz} \lesssim f_{p,0} \lesssim 10^{12}\,{
 m Hz}$
- Higher frequency means smaller strain

$$h_c \simeq 0.4 \sqrt{\Omega_{
m gw}} imes 10^{-20} \, (f/100 \, {
m Hz})^{-1}$$

No (known) astrophysical foregrounds

Conclusions

- GWs probe physics at very high energy
- LISA will probe physics of Higgs transition from 2034
- Measure/constrain phase transition parameters
- Towards accurate calculations of GW power spectrum from parameters
- Some understanding of acoustic production, probably dominant

D Weir

- Non-linear evolution (turbulence, shocks) not well understood
- Applies to 1st order PTs at all scales

