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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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Due to ∝ eφ̇, signal very sensitive to the inflaton potential

Figure 5: Power spectrum of scalar perturbations for all the models with the same parameters and color code of

Fig. 4. The upper horizontal line estimates the PBH bound, the lower one indicates the COBE normalization.
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Figure 6: Gravitational wave spectrum for all the models with the same parameters and color code of Fig. 4.

We are also showing the sensitivity curves for (from left to right): milli-second pulsar timing, eLISA, advanced

LIGO. Current bounds are denoted by solid lines, expected sensitivities of upcoming experiments by dashed

lines. See main text for details.
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inflaton perturbations and GW
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φ̇ grows during inflation (inflation ends

because φ̇ too large) ⇒ Blue GW

(small @ CMB, potentially large @ LISA)
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Highly non-Gaussian, ⟨h3⟩ ∼ ⟨h2⟩ 3/2
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• For a monomial V (φ), PBH bounds prevent GW from being observable

• Chiral GW production A+A+ → hL at interferometer scales

Cook, Sorbo ’11; Barnaby, Pajer, MP ’11; Domcke, Pieroni, Binétruy ’16

• In chaotic inflation, PBH bound (if accurate) prevents GW from being
observable.

Linde, Mooij, Pajer ’13

ΞCMB " 1.66

PBH limit

60 50 40 30 20 10
N10#11

10#9

10#7

10#5

0.001

0.1

PΖ

ΞCMB " 1.66

LISA

aLIGO

30 20

10

10#14 10#10 10#6 0.01 100

f
Hz10#18

10#15

10#12

10#9

10#6

$GW h2

N ∼ 15− ln
(

f

100Hz

)

• In chaotic inflation, PBH bound prevents GW from being observable
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PBH bounds at LISA scales do not prevent GW from being seen at LISA
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• In chaotic inflation, PBH bound (if computation of ζ is accurate)

prevents GW from being observable.

Linde, Mooij, Pajer ’13

• PBH at N ∼ 10. GW (particularly LISA) probe ̸= scales

• In relating N ≃ 10 with N ≃ 25, a given V (φ) must be assumed.

Do PBH bounds at the LISA scales prevent GW to be seen at LISA ?

Garcia-Bellido, MP, Unal ’16
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• δA ∼ eφ̇ : easy to create a bump at some given scale λ,

both in GW and δρ

Change slope by a factor 3

Garćıa-Bellido, MP, Unal ’16

If sufficiently large, at horizon re-entry,

the perturbation collapses to form a

Primordial Black Hole (PBH)
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If sufficiently large, at horizon re-entry,

the perturbation collapses to form a
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Figure 3. Diagrammatic expression for the GW induced by scalar perturbations in the Gaussian
bump model.

4 Primordial vs. Induced Gravitational Waves

We identify three distinct populations of GW associated with PBH.6

In order of their formation, they are:

1. The GW produced during inflation by the same mechanism that produces the enhanced
scalar perturbations that later become PBH at reentry. We refer to this population as
the “primordial GW”, and we denote it as hp.7

2. The GW sourced by the enhanced scalar perturbations. This gravitational production is
maximized when the scalar modes re-enter the horizon during the radiation dominated
era. We refer to this population as the “induced GW”, and we denote it as hi.

3. The GW produced by the merging of PBH binaries, since formation until today [23, 24].

In this work we study the first two populations, in the context of the Gaussian bump
model and of the rolling axion bump model introduced in the previous section.

The Gaussian bump model assumes that no significant primordial GW are produced.
The induced GW are produced by the scalar curvature modes through standard nonlinear
gravitational interactions, through a process diagrammatically shown in Figure 3. The gravi-
tational interaction is schematically of the type hζ2, where h is a tensor mode of the metric
(the GW) and ζ is the scalar curvature (in this schematic discussion we do not indicate the
tensorial indices, nor the spatial derivatives acting on ζ, which characterize the interaction).
The tensor mode sourced by this interaction obeys a differential equation that can be solved
through a Green function, G (η, η′), schematically described as

hi (η) =

∫ η

dη′ G
(
η, η′

)
ζ
(
η′
)
ζ
(
η′
)
, (4.1)

where η is (conformal) time, and where the right hand side contains also a convolution in
momenta. This leads to a contribution to the GW power spectrum, schematically as

⟨hi (η)hi (η)⟩ =
∫ η

dη′
∫ η

dη′′ G
(
η, η′

)
G
(
η, η′′

) 〈
ζ
(
η′
)
ζ
(
η′′
)〉 〈

ζ
(
η′
)
ζ
(
η′′
)〉

. (4.2)

6In addition to the signals considered here, there is also the stochastic background from the non-spherical
collapse of PBH [1]. This background can be estimated as Ωnsc, 0 = E ·β ·Ωrad,0, where E indicates the efficiency
of converting the horizon mass during formation of PBH to GW and β is the fraction of causal domains that
collapse into a PBH. Using the bound β <∼ 2 × 10−8, from Figure 1, we can estimate Ωnsc, 0 h

2 <∼ 10−12 · E ,
which is much smaller than the signals studied here, and thus is ignored.

7These are not the vacuum tensor fluctuations produced during quasi-de-Sitter inflation, which are negli-
gible on these scales.
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Figure 2. PBH limits on the power spectrum of the primordial scalar perturbations, assuming that
the perturbations obey a Gaussian (solid line) vs. a χ2 (dashed line) statistics. The limits are obtained
from the right panel of Figure 1, using Eqs. (3.1). We note that the power spectrum is much more
constrained in the case of a χ2 statistics, as the perturbations in the tail of the distribution lead to a
greater amount of PBH with respect to the Gaussian case.

distributions of the perturbations at those scales. For instance, the fraction β of causal
regions collapsing onto primordial black holes is related to the power Pζ of primordial scalar
perturbations by [47, 48]

β (N) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Erfc

(
ζc√

2Pζ(N)

)
, Gaussian statistics ,

Erfc

(√
1
2 + ζc√

2Pζ(N)

)
, χ2 statistics ,

(3.1)

where ζc is the threshold for collapse and Erfc (x) ≡ 1− Erf (x) is the complementary error
function (see for instance Appendix A.2 of [16] for a detailed discussion of the above relations).
In these relations, N denotes the number of e-folds before the end of inflation at which the
density mode that eventually collapses to form a PBH left the horizon during inflation. It is
related to the PBH mass through Eq. (A.2).

A given value of β corresponds to a very different power in the two cases considered
in (3.1). The term 1/2 in the argument of the second complementary error function can be
disregarded for ζ2c ≫ Pζ , which is always satisfied to very good approximation, leading to

Pζ(χ2) ≃
2

ζ2c
P 2
ζ (G) . (3.2)

This equation relates the values of the power in the two cases that results in the same value
of β. Using Eqs. (3.1) we can translate the bounds given in Figure 1 into bounds on Pζ . The
resulting limits are shown in Figure 2. The two lines satisfy the relation (3.2) with great
accuracy.

Different inflationary mechanisms considered in the literature leading to PBH are char-
acterized by different statistics of the scalar perturbations. For instance, the perturbations
are Gaussian in the mechanism of Ref. [6], where a suitable inflaton potential provides an
enhanced scalar spectrum at some specific scale in a model of single-field inflation. In the
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Figure 9. Left panel: Bump in the primordial scalar perturbations that saturates the PBH bound
at PTA scales. Right panel: Corresponding bump in the stochastic GW background, compared with
current (“PTA”) and forthcoming (“SKA”) limits. The blue solid (resp., red dashed) curves refer to
the Gaussian bump model (resp., the rolling axion bump model, for which we chose ξ∗ = 5.59 and
δ = 0.4).

the Non-Gaussian vs. the Gaussian model, since the PBH bound on the scalar perturbations
is much more stringent in the former case (a more constrained ζ implies a more constrained
induced ζ + ζ → hi signal).

The magnitude of this GW signal is shown in the right panel of Figure 9, where it
is compared with the present PTA bounds [51–53], as well as the forecast bounds for the
forthcoming Square Kilometer Array (SKA) experiment [28, 54]. While consistent with the
current bounds, both models produce a GW signal well within the reach of SKA.

Besides the PBH limit shown in Figure 2, the spatial curvature perturbations are also
constrained by µ and y CMB distortions. Of relevance for the present discussion, see also
Ref. [3], the µ distortion is given by [55, 56]

µ ≃ −3× 10−9 + 2.3

∫ ∞

k0

dk

k
Pζ (k)

⎡

⎢⎣exp

⎛

⎜⎝−

[
k̂

1360

]2

1 +
[

k̂
260

]0.3
+ k̂

340

⎞

⎟⎠− exp

⎛

⎝−
[
k̂

32

]2
⎞

⎠

⎤

⎥⎦ , (5.2)

where k̂ = kMpc and k̂0 = 1. In this expression, the primodrial curvature power spectrum
is multiplied by a window function with its main support at wavenumbers 50 <∼ k̂ <∼ 2× 104.

Assuming NCMB = 60 at the scale k̂CMB = 0.002, this corresponds to modes that left the
horizon between approximately 45 and 50 e-folds before the end of inflation.12 The Gaussian
and χ2 distribution shown in Figure 9 lead, respectively, to the distortion µ ≃ 3.6 × 10−5

and 3× 10−8. Both values are below the current bound |µ| <∼ 10−4 from the COBE / FIRAS
experiment [57, 58]. The CMB distortion obtained in the Gaussian bump model is well within
the reach of a PIXIE-like experiment, which has an estimated sensitivity |µ| = O

(
10−7

)
[59].

The rolling axion model leads instead to a value below this sensitivity, and only slightly
greater than the scale invariant case (a scale invariant spectrum corresponding to that of
Figure 9, with no bump, leads to µ ∼ 10−8).

We also see from the figure that the Gaussian bump model results in a much greater
GW signal than the rolling axion bump model, and that the Gaussian bump case shown in

12On the other hand, y-distortions are mostly sensitive to modes 1 <∼ k̂ <∼ 50, which roughly corresponds to
50 <∼ N <∼ 54. These scales are significantly larger than those considered in this work.

– 13 –

Ξ" #4.99 N" #27.6

Gauss

Χ2

PBH Limits

45 40 35 30 25 2010%11

10%9

10%7

10%5

0.001

0.1

45 40 35 30 25 20

N

P Ζ

PTA
SKA

LISA
Gauss!Ind"

Χ2!Prim"
10"6 10"4 0.01 110"14

10"12

10"10

10"8

f#Hz
#
G
W
h2

Figure 11. Left panel: Bump in the primordial scalar perturbations that saturates the PBH bound
at LISA scales. Right panel: Corresponding bump in the stochastic GW background. The blue solid
(resp., red dashed) curves refer to the Gaussian bump model (resp., the rolling axion bump model).

the Gaussian model (in which PGW ∝ P 2
ζ ). Therefore, for all values of ζc = O (0.05− 1), the

GW produced by these models will be testable at PTA-SKA frequencies.
We conclude that a significant dark matter component in the form of PBH with masses

in the range M ∼ 1−100M⊙ is compatible with the current PTA bounds for the rolling axion
bump model, and barely compatible or excluded for the Gaussian bump model, depending on
the precise peak PBH mass and on the value of the threshold parameter ζc. The forthcoming
improvement of several orders of magnitude on the PTA bounds from the SKA experiment
will allow to conclusively probe both models. In Section 6 we discuss how this conclusion is
modified by a nontrivial evolution (via accretion and merging) of the PBH distribution after
their formation.

5.2 GW at LISA scales

Here we study the implications of LISA measurements on the PBH physics. The LISA
experiment will be most sensitive at frequencies f ∼ few mHz, see Ref. [25]. This corresponds
to modes that left the horizon about N ∼ 25 e-folds before the end of inflation. From
Eq. (A.2), we see that scalar overdensities produced at N ∼ 25 collapse into primordial
black holes of mass M ≃ few× 10−12M⊙. Therefore, LISA measurements can provide useful
information on PBH of such small masses.

Analogously to the previous subsection, in the left panel of Figure 11 we show a bump
in the primordial curvature perturbations that saturates the present PBH bounds, given by
neutron star capture [65]. The curves shown in the Figure correspond to a present PBH
dark matter fraction equal to one (this mass range was also recently considered in Ref. [66]).
In the right panel of Figure 11 we show the corresponding bump in the GW spectrum, as
compared with the forecasted LISA sensitivity curve “N2A2M5L6” 13 given in Ref. [25].

As seen from the right panel, the GW signal from the Gaussian model (resp., from the
rolling axion model) is about five orders of magnitude (resp., three orders of magnitude)
stronger than the best sensitivity curve of LISA. As discussed in the previous subsection,
the GW signal can be decreased, while keeping the same amount of PBH, if the threshold
for formation ζc is lowered with respect to the value ζc = 1 assumed in Figure 11. We find

13This is the sensitivity curve, among those considered in Ref. [25], that is expected to be the closest to the
final LISA configuration. We thank Chiara Caprini for discussions.
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FIG. 3. Sensitivity curves for O1, combined O1+O2, and de-
sign sensitivity. A power law stochastic background which
lies tangent to one of these curves is detectable with 2σ sig-
nificance. We have used the Advanced LIGO design sensitiv-
ity given in [94], which incorporates improved measurements
of coating thermal noise. Design sensitivity assumes that
the LIGO noise curve is determined by fundamental noise
sources only. The purple line is the median total stochas-
tic background, combining BBH and BNS, using the model
described in [58] with updated mass distributions and rates
from [54, 89], and the gray box is the Poisson error region.
The dotted gray line is the sum of the upper limit for the
BBH+BNS backgrounds with the upper limit on the NSBH
background.

Virgo at design sensitivity for 2 years, with 50% network
duty cycle. By design sensitivity, we refer to a noise
curve which is determined by fundamental noise sources.
We use the Advanced LIGO design sensitivity projection
given in [94], which incorporates improved measurements
of coating thermal noise relative to the one assumed in
[57]. This updated curve introduces additional broad-
band noise at low frequencies relative to previous esti-
mates. As a result, the updated design-sensitivity PI
curve is less sensitive than the one shown in [57].

Implications for cosmic string models — Cosmic
strings [95, 96] are linear topological defects which are
expected to be generically produced within the context
of Grand Unified Theories [97]. The dynamics of a cos-
mic string network is driven by the formation of loops
and the emission of gravitational waves [98, 99]. One
may therefore use the stochastic background in order to
constrain the parameters of a cosmic string network.

We will focus on Nambu-Goto strings [100, 101], for
which the string thickness is zero and the intercommu-
tation probability equals unity. Gravitational waves will
allow us to constrain the string tension Gµ/c2, where
µ denotes the mass per unit length. This dimension-
less parameter is the single quantity that characterizes a
Nambu-Goto string network.

We will consider two analytic models of cosmic string
loop distributions [102, 103]. The former [102] gives the

distribution of string loops of given size at fixed time,
under the assumption that the momentum dependence
of the loop production function is weak. The latter [103]
is based on a different numerical simulation [104], and
gives the distribution of non-self intersecting loops at a
given time [105].
The corresponding limits found by combining O1 and

O2 data are Gµ/c2 ≤ 1.1 × 10−6 for the model of [102]
and Gµ/c2 ≤ 2.1 × 10−14 for the model of [103]. The
Advanced LIGO constraints are stronger for the model
of [103] because the predicted spectrum is larger at 100
Hz for that model. This can be compared with the pulsar
timing limits, Gµ/c2 ≤ 1.6 × 10−11 and Gµ/c2 ≤ 6.2 ×
10−12, respectively [106].
Test of General Relativity— Alternative theories of

gravity generically predict the presence of vector or scalar
gravitational-wave polarizations in addition to the stan-
dard tensor polarizations allowed in general relativity.
Detection of the stochastic background would allow for
direct measurement of its polarization content, enabling
new tests of general relativity [60, 61].
When allowing for the presence of alternative

gravitational-wave polarizations, the expectation value
of the cross-correlation statistic becomes

⟨Ĉ(f)⟩ =
∑

A

βA(f)Ω
A
GW(f) =

∑

A

βA(f)Ω
A
ref

(
f

fref

)αA

,

(9)
where βA = γA(f)/γT (f), and A labels the polarization,
A = {T, V, S}. The functions γT (f), γV (f), and γS(f)
are the overlap reduction functions for tensor, vector, and
scalar polarizations [60]. Because these overlap reduction
functions are distinct, the spectral shape of Ĉ(f) enables
us to infer the polarization content of the stochastic back-
ground. While we use the notation ΩA

GW(f) in analogy
with the GR case, in a general modification of gravity,
the quantities ΩT

GW(f), ΩV
GW(f), and ΩS

GW(f) are best
understood as a measurement of the two-point correla-
tion statistics of different components of the stochastic
background rather than energy densities [107].
Following Refs. [60, 61], we compute two Bayesian

odds: odds Os
n for the presence of a stochastic signal

of any polarization(s) versus Gaussian noise, and odds
Ongr

gr between a hypothesis allowing for vector and scalar
modes and a hypothesis restricting to standard tensor
polarizations. Using the combined O1 and O2 measure-
ments, we find logOs

n = −0.64 and logOngr
gr = −0.45,

consistent with Gaussian noise. Given the non-detection
of any generic stochastic background, we use Eq. (9) to
place improved upper limits on the tensor, vector, and
scalar background amplitudes, after marginalizing over
all three spectral indices, using the priors described in
the Technical Supplement. These limits are shown in
Table III, again for both choices of amplitude prior.
Estimate of correlated magnetic noise— Coherent

noise between gravitational-wave interferometers may be
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Figure 5: The location of all existing detectors on Earth, together with a hypothetical LIGO-
India detector in Maharashtra, and an hypothetical optimal-for-chiral-SGWB detector in Perth.
We also show the antipodes of the LIGO-Livingston detector (green dot), which is not far from
the Perth detector. We note that the Figure shows the point of view of an observer at a specific
location in space, who sees less than half of the Earth. Lighter lines (red dots) are used to indicate
continents (interferometers) that are not seen by this observer.

which gives a distance

s = |x⃗p − x⃗L| ≃ 1.96R ⇒ κ ≃ f

24Hz
. (63)

Therefore the two detectors are nearly opposite, as can be seen in Fig. 5.
We now place the arm ûP at the angle α from the north direction towards east (from the

point of view of an observer at P), while v̂P is at the angle π
2 + α. We then have

ûP = cosα (−0.230, 0.476, 0.848) + sinα (−0.899,−0.436, 0) ,

v̂P = − sinα (−0.230, 0.476, 0.849) + cosα (−0.899,−0.436, 0) . (64)

The difference in the overlap function ∆M for the L-P pair gives

∆M =
κ
(
1− 0.31κ2

)
cosκ+

(
−1 + 0.64κ2

)
sinκ

κ4
[−0.22 cos (2α) + 1.5 sin (2α)] .

(65)

We then have for:

antipodes , αbest =
π

4
⇒ ∆M = 1.5

κ
(
−1 + κ2/3

)
cosκ+

(
1− 2κ2/3

)
sinκ

κ4

with κ =
f

23.5Hz
,

21

One more motivation for an Australian detector !

Antipodes
LL-P

0 100 200 300 400

-0.15

-0.10

-0.05

0.00

0.05

f [Hz]

Δ
ℳ

Figure 6: The function ∆M, sensitive to parity violation (difference of the overlap functions of
opposite chirality, see eq. (59)) of two ideal detectors at the antipodes, and of LIGO-Livingston
with a detector at Perth, Australia. By expanding the κ dependent part of eq. (59) for large κ, we
find that the zeros of this function occur at the frequencies f ≃ π

d

(
1
2 + n

)
, where d is the diameter

of the Earth and n is an integer number. By comparing with the figure, one can see that this
relation works well already at n = 1.

L− P , αbest = 2.43 ⇒ ∆M = 1.56
κ
(
−1 + 0.31κ2

)
cosκ+

(
1− 0.64κ2

)
sinκ

κ4

with κ =
f

24Hz
. (66)

At small frequencies κ ≪ 1 this yields

∆Mantipodes(αbest) ≃ − f

177Hz
, ∆ML−P(αbest) ≃ − f

191Hz
. (67)

Consequently, an additional GW detector close to Perth, Australia, rotated clockwise by 2.43
radiants from the local north direction, is essentially an optimal choice to measure parity with a
network of ground-based detectors.

The expressions (58) and (67) can be employed to determine the SNR of detecting a net polar-
ization in the SGWB. Assuming e.g a flat (i.e. frequency-independent) spectrum, the difference in
the frequency dependence of the response functions M+ and M− can be utilized to distinguish a
chiral from a non-chiral SGWB. This analysis was performed in Ref. [27] for the existing detectors
LIGO, VIRGO and KAGRA, finding e.g that maximal chirality can be detected or excluded in
a flat SGWB for an amplitude of ΩGW ! 10−8. It would be interesting to extend this analysis
to include an antipodal detector with the optimal orientation αbest, but this is beyond the scope
of the present paper.

4.2 SNR for the Einstein Telescope

The Einstein Telescope is a proposal for a ground-based interferometer with a triangular shape
with arm length L = 10 km. It will be an observatory of the third generation aiming to reach
a sensitivity for GW signals emitted by astrophysical and cosmological sources about a factor
of ten better than the currently operating ground based detectors. It will be formed by three
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Domcke, Garćıa-Bellido, MP, Pieroni
Ricciardone, Sorbo, Tasinato ’19

Isotropy in any case broken by peculiar motion of

the solar system. Assumption, vd ≃ 10−3 as CMB

SNRLISA ≃
vd

10−3

ΩGW,R −ΩGW,L

4 · 10−11

√
T

3 years
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(
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) 2π2

k3
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(
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Measurement at LISA: X,Y, Z ≡ time delays at the vertices
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F . We see that indeed this quantity presents a nontriv-
ial scale dependence, and therefore the correlators of the
anisotropies will be different at different frequencies.
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FIG. 1: Quantity F as a function of the frequency f = q/2π
of the GW signal for the model of axion inflation described in
the text.

Future work. We plan to extend the results presented
here, to analyze several additional physical effects, includ-
ing the effects of neutrinos on the GW amplitude [38],
the possible direct dependence of ΓI on n̂, tests of non-
standard expansion in the early universe, possible mixed
bispectra among the three contributions to Γ that we have
discussed, and the feasibility of measuring the frequency
dependence of the 2-point function and the bispectra at
GW interferometers.
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Very large GW signal @LISA

in models of PBH-DM.

Is is isotropic ? Is it Gaussian?
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Figure 1. Feynman diagram for the disconnected terms in the energy density two-point function.
The double lines identify the energy density field, the straight lines identify the gravitational waves
and the wiggle lines identify the curvature field.

on small scales, Pζs (k) = As k∗ δ (k − k∗), this expression then becomes 5

ΩGW(k, η) =
1

a2H2η2
A2

s

15552

k2

k2∗

[
4k2∗
k2

− 1

]2
θ (2k∗ − k) I2

(
k∗
k
,
k∗
k

)
(2.7)

where θ is the Heaviside step function, and

I2

(
k∗
k
,
k∗
k

)
≡ I2

c

(
k∗
k
,
k∗
k

)
+ I2

s

(
k∗
k
,
k∗
k

)

=
729

16

(
k

k∗

)12(
3− 2k2∗

k2

)4
⎧
⎨

⎩

[
4

(
2− 3

k2

k2∗

)−1

− log

(∣∣∣∣1−
4k2∗
3k2

∣∣∣∣

)]2

+ π2θ

(
2k∗√
3k

− 1

)⎫⎬

⎭ .

(2.8)

We note that the result (2.7) for the one-point expectation value of the GW energy density is
independent of position. This follows from statistical homogeneity of the FLRW background
universe (at the technical level, it is due to the fact that the contraction of the four ζ operators
in Eq. (2.2) forces k⃗1 + k⃗2 = 0). However, one does not expect that the sourced GW are
perfectly homogeneous across the universe. As a consequence, the SGWB reaching us from
different directions will present some angular anisotropies.

To quantify the level of these anisotropies on needs to compute the two-point function
⟨ρGW (x⃗) ρGW (y⃗)⟩. This correlator depends one space only through its dependence on |x⃗− y⃗|
as a consequence of statistical isotropy and homogeneity.

In computing
〈
ρ2GW

〉
we need to evaluate the correlator

〈
ζ8
〉
. The resulting contractions

are given in Eq. (B.2). The first line of that equation represents the case in which all the ζs
emerging from the same ρ are contracted among each other. This gives rise to the disconnect
diagram shown in Figure 1, which is evaluated to

⟨ρGW (x⃗) ρGW (y⃗)⟩
∣∣∣
disconnected

= ⟨ρGW⟩2 , (2.9)

which is homogeneous.
The other lines of Eq. (B.2) are represented by the different topologies of connected

diagrams shown in Figure 5. As we show in Appendix B these contributions are completely
negligible at the distances |x⃗ − y⃗| of our interests. Our goal is to compute the large scale
anisotropies in the GW energies arriving on Earth. The angular anisotropies (unless we go
to extremely large multipoles ℓ) are obtained by comparing the energy density from points

5This expression is valid during radiation domination; we see that it is costant, and independent of the
normalization of the scale factor.
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1

Figure 1. Feynman diagram for the disconnected terms in the energy density two-point function.
The double lines identify the energy density field, the straight lines identify the gravitational waves
and the wiggle lines identify the curvature field.
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We note that the result (2.7) for the one-point expectation value of the GW energy density is
independent of position. This follows from statistical homogeneity of the FLRW background
universe (at the technical level, it is due to the fact that the contraction of the four ζ operators
in Eq. (2.2) forces k⃗1 + k⃗2 = 0). However, one does not expect that the sourced GW are
perfectly homogeneous across the universe. As a consequence, the SGWB reaching us from
different directions will present some angular anisotropies.

To quantify the level of these anisotropies on needs to compute the two-point function
⟨ρGW (x⃗) ρGW (y⃗)⟩. This correlator depends one space only through its dependence on |x⃗− y⃗|
as a consequence of statistical isotropy and homogeneity.

In computing
〈
ρ2GW

〉
we need to evaluate the correlator

〈
ζ8
〉
. The resulting contractions

are given in Eq. (B.2). The first line of that equation represents the case in which all the ζs
emerging from the same ρ are contracted among each other. This gives rise to the disconnect
diagram shown in Figure 1, which is evaluated to

⟨ρGW (x⃗) ρGW (y⃗)⟩
∣∣∣
disconnected

= ⟨ρGW⟩2 , (2.9)

which is homogeneous.
The other lines of Eq. (B.2) are represented by the different topologies of connected

diagrams shown in Figure 5. As we show in Appendix B these contributions are completely
negligible at the distances |x⃗ − y⃗| of our interests. Our goal is to compute the large scale
anisotropies in the GW energies arriving on Earth. The angular anisotropies (unless we go
to extremely large multipoles ℓ) are obtained by comparing the energy density from points

5This expression is valid during radiation domination; we see that it is costant, and independent of the
normalization of the scale factor.
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1

Figure 1. Feynman diagram for the disconnected terms in the energy density two-point function.
The double lines identify the energy density field, the straight lines identify the gravitational waves
and the wiggle lines identify the curvature field.
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We note that the result (2.7) for the one-point expectation value of the GW energy density is
independent of position. This follows from statistical homogeneity of the FLRW background
universe (at the technical level, it is due to the fact that the contraction of the four ζ operators
in Eq. (2.2) forces k⃗1 + k⃗2 = 0). However, one does not expect that the sourced GW are
perfectly homogeneous across the universe. As a consequence, the SGWB reaching us from
different directions will present some angular anisotropies.

To quantify the level of these anisotropies on needs to compute the two-point function
⟨ρGW (x⃗) ρGW (y⃗)⟩. This correlator depends one space only through its dependence on |x⃗− y⃗|
as a consequence of statistical isotropy and homogeneity.

In computing
〈
ρ2GW

〉
we need to evaluate the correlator

〈
ζ8
〉
. The resulting contractions

are given in Eq. (B.2). The first line of that equation represents the case in which all the ζs
emerging from the same ρ are contracted among each other. This gives rise to the disconnect
diagram shown in Figure 1, which is evaluated to

⟨ρGW (x⃗) ρGW (y⃗)⟩
∣∣∣
disconnected

= ⟨ρGW⟩2 , (2.9)

which is homogeneous.
The other lines of Eq. (B.2) are represented by the different topologies of connected

diagrams shown in Figure 5. As we show in Appendix B these contributions are completely
negligible at the distances |x⃗ − y⃗| of our interests. Our goal is to compute the large scale
anisotropies in the GW energies arriving on Earth. The angular anisotropies (unless we go
to extremely large multipoles ℓ) are obtained by comparing the energy density from points

5This expression is valid during radiation domination; we see that it is costant, and independent of the
normalization of the scale factor.

– 5 –

Anisotropies & non-G at the production - GW in models with PBH

Bartolo et al, to appear

Very large GW signal @LISA

in models of PBH-DM.

Is is isotropic ? Is it Gaussian?

ζ + ζ → h

ρGW ∼
〈
ḣ2
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Cℓ,in (f)

4π
=

∫
dk

k
Pin (f, k) j2ℓ (k t0)

f ∼ mHz observed GW frequency

k ∼ H0 ∼ (10billion yrs)−1 scale of anisotropies

Power in initial condition. Can depend on f - different from CMB, where

Cℓ do not depend on f (initial thermal state)

Cℓ,S + Cℓ,T

4π
=

∫
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k

[
Pζ (k) Tscalar + Ph (k) Ttensor

]

Probe of large-scale

(scalar and tensor) anisotropies

Bispectrum from from 2nd order interactions. Already a first order, due

to propagation, induced by the non-Gaussianity of ζL. At large scales
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Figure 4. Contour plot of
√

ℓ(ℓ+ 1)Ĉℓ(k∗)/2π in the region permitted by the constraints of
Planck on fPBH and fNL for the choice of a Dirac delta and gaussian power spectrum of the short
modes, respectively. The peak frequency has been chosen to correspond to MPBH = 10−12M⊙. The
dot-dashed lines identify the corresponding GWs abundance.

generation of GWs at second-order in perturbation theory. In particular, it turns out that for
PBHs of masses around 10−12M⊙, which can still play the role of dark matter in its totality,
the frequency of the GWs is located in the mHz range where the LISA mission happens to
have the maximum sensitivity. In the positive case of a detection of the SGWB, the next
step will be to identify the source and therefore any characterisation of the background will
be extremely useful. In this sense, its anisotropies will bring important information.

In this paper we have studied in detail the strength of the GW anisotropies associated
to the production of the PBHs. There are two contributions to the anisotropy, the first one
is created at the generation epoch and the second one is due to the propagation effects from
the time of production down to the detection time. In order to have the first source on large
scales a non-vanishing local non-Gaussianity must be present in the curvature perturbation in
order to create a cross-talk between the PBH short wavelengths and the large scales at which
the anisotropies are tested. At the same time, the amount of primordial non-Gaussianity is
constrained by not generating a too large isocurvature perturbations in the case in which
PBHs compose a sizeable fraction of the dark matter.

Our results are summarised in Fig. 4 out of which we conclude that the typical anisotropies
are of the order of ζL ∼ 10−4. Correspondingly, the reduced bispectrum is of the order of
ζ2L ∼ 10−8. Our findings show also that, if the PBHs compose a large fraction of the dark
matter, the SGWB must be highly isotropic and Gaussian, up to propagation effects. A
large amount of anisotropy and non-Gaussianity would imply, within our mechanism, a PBH
population well below the measured dark matter abundance.

The next step is of course understanding if such small anisotropies can be detected by
the current and future experiments and, if so, at which angular resolution [61]. In particular,
for a SGWB of cosmological origin only anisotropies at low multipoles, ℓ ! 10, can be
resolved. To resolve the angular features of the SGWB at larger multipoles, a gravitational
wave telescope characterised by a ∼ AU effective baseline seems to represent the best option
[61].
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Figure 11. Left panel: Bump in the primordial scalar perturbations that saturates the PBH bound
at LISA scales. Right panel: Corresponding bump in the stochastic GW background. The blue solid
(resp., red dashed) curves refer to the Gaussian bump model (resp., the rolling axion bump model).

the Gaussian model (in which PGW ∝ P 2
ζ ). Therefore, for all values of ζc = O (0.05− 1), the

GW produced by these models will be testable at PTA-SKA frequencies.
We conclude that a significant dark matter component in the form of PBH with masses

in the range M ∼ 1−100M⊙ is compatible with the current PTA bounds for the rolling axion
bump model, and barely compatible or excluded for the Gaussian bump model, depending on
the precise peak PBH mass and on the value of the threshold parameter ζc. The forthcoming
improvement of several orders of magnitude on the PTA bounds from the SKA experiment
will allow to conclusively probe both models. In Section 6 we discuss how this conclusion is
modified by a nontrivial evolution (via accretion and merging) of the PBH distribution after
their formation.

5.2 GW at LISA scales

Here we study the implications of LISA measurements on the PBH physics. The LISA
experiment will be most sensitive at frequencies f ∼ few mHz, see Ref. [25]. This corresponds
to modes that left the horizon about N ∼ 25 e-folds before the end of inflation. From
Eq. (A.2), we see that scalar overdensities produced at N ∼ 25 collapse into primordial
black holes of mass M ≃ few× 10−12M⊙. Therefore, LISA measurements can provide useful
information on PBH of such small masses.

Analogously to the previous subsection, in the left panel of Figure 11 we show a bump
in the primordial curvature perturbations that saturates the present PBH bounds, given by
neutron star capture [65]. The curves shown in the Figure correspond to a present PBH
dark matter fraction equal to one (this mass range was also recently considered in Ref. [66]).
In the right panel of Figure 11 we show the corresponding bump in the GW spectrum, as
compared with the forecasted LISA sensitivity curve “N2A2M5L6” 13 given in Ref. [25].

As seen from the right panel, the GW signal from the Gaussian model (resp., from the
rolling axion model) is about five orders of magnitude (resp., three orders of magnitude)
stronger than the best sensitivity curve of LISA. As discussed in the previous subsection,
the GW signal can be decreased, while keeping the same amount of PBH, if the threshold
for formation ζc is lowered with respect to the value ζc = 1 assumed in Figure 11. We find

13This is the sensitivity curve, among those considered in Ref. [25], that is expected to be the closest to the
final LISA configuration. We thank Chiara Caprini for discussions.

– 15 –

Conclusions

• Signal from inflation only if blue

• Probe of PBH (possibly, PBH DM)

• SGWB characterization

2.5×10-4

5.×10-4

7.5×10-4

1.×10-3

1.25×10-3

Figure 4. Contour plot of
√

ℓ(ℓ+ 1)Ĉℓ(k∗)/2π in the region permitted by the constraints of
Planck on fPBH and fNL for the choice of a Dirac delta and gaussian power spectrum of the short
modes, respectively. The peak frequency has been chosen to correspond to MPBH = 10−12M⊙. The
dot-dashed lines identify the corresponding GWs abundance.

generation of GWs at second-order in perturbation theory. In particular, it turns out that for
PBHs of masses around 10−12M⊙, which can still play the role of dark matter in its totality,
the frequency of the GWs is located in the mHz range where the LISA mission happens to
have the maximum sensitivity. In the positive case of a detection of the SGWB, the next
step will be to identify the source and therefore any characterisation of the background will
be extremely useful. In this sense, its anisotropies will bring important information.

In this paper we have studied in detail the strength of the GW anisotropies associated
to the production of the PBHs. There are two contributions to the anisotropy, the first one
is created at the generation epoch and the second one is due to the propagation effects from
the time of production down to the detection time. In order to have the first source on large
scales a non-vanishing local non-Gaussianity must be present in the curvature perturbation in
order to create a cross-talk between the PBH short wavelengths and the large scales at which
the anisotropies are tested. At the same time, the amount of primordial non-Gaussianity is
constrained by not generating a too large isocurvature perturbations in the case in which
PBHs compose a sizeable fraction of the dark matter.

Our results are summarised in Fig. 4 out of which we conclude that the typical anisotropies
are of the order of ζL ∼ 10−4. Correspondingly, the reduced bispectrum is of the order of
ζ2L ∼ 10−8. Our findings show also that, if the PBHs compose a large fraction of the dark
matter, the SGWB must be highly isotropic and Gaussian, up to propagation effects. A
large amount of anisotropy and non-Gaussianity would imply, within our mechanism, a PBH
population well below the measured dark matter abundance.

The next step is of course understanding if such small anisotropies can be detected by
the current and future experiments and, if so, at which angular resolution [61]. In particular,
for a SGWB of cosmological origin only anisotropies at low multipoles, ℓ ! 10, can be
resolved. To resolve the angular features of the SGWB at larger multipoles, a gravitational
wave telescope characterised by a ∼ AU effective baseline seems to represent the best option
[61].
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