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1) How can detect GWB?  
2) How can determine the type of  GWs? 
3) What is the robust sequences of  computational tools to 

detect and to determine the type of  GWB?

The main goal of  my talk:
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1) Self-similar and self-affine Processes 

2) Pulsars Timing Residuals and GWB    

3) Our Pipeline for GWB detection  

4) Research in progress 

Outline
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Part 1  
Self-similar Processes



To know more see: http://facultymembers.sbu.ac.ir/movahed/index.php/talks-a-presentations

Self-similar process

Scale dependency 
(Multifractal) ??? 

Self-similarity and  
Self-affinity 
Complexity 
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Self-similar 
Regular time series

• Suppose a time series as:

y : {y(i)} i = 1,...,N
i→ a × i

y(a × i) = aH y(i)
y(i) = x(1) + x(2) + x(3) + ...+ x(i) = iH x(1)

So-called Hurst exponent
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Classification of  time series based 
on Hurst exponent

• Correlated:           H>0.5

• Uncorrelated:        H=0.5

• Anti-correlated :    H<0.5

t
25 50 75 100

Correlated signal

Random signal

Anti-correlated signal

 0<H<1
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Scaling exponents
• Multifractal scaling exponent

• Generalized multifractal dimension  

• Autocorrelation exponent 

• Power spectrum scaling exponent

• Holder exponent 

• Singularity spectrum  

τ (q) = qh(q) −1

D(q) = τ (q)
q −1

C(s) : s−γ
C(i, j) : i−γ + j−γ − i − j −γ
⎧
⎨
⎪

⎩⎪

S(ω ) : ω−β

α = ʹτ (q)
α = h(q) + q ʹh (q)
f (α ) = q α − h(q)[ ] +1

S. HOSSEINABADI et al. PHYSICAL REVIEW E 85, 031113 (2012)

TABLE I. The p values used for construction of surfaces with
various Hurst exponents, Hi = hi(q = 2) − 1. The subindex (i ∈
[1,12]) of Hi represents the label of different sets of p values.

Hurst exponent p1 p2 p3 p4

H1 = 0.305 0.040 0.800 0.080 0.080
H2 = 0.404 0.100 0.740 0.080 0.080
H3 = 0.504 0.120 0.680 0.110 0.090
H4 = 0.608 0.190 0.610 0.130 0.070
H5 = 0.608 0.090 0.100 0.610 0.200
H6 = 0.608 0.600 0.100 0.237 0.063
H7 = 0.608 0.350 0.100 0.546 0.004
H8 = 0.706 0.210 0.550 0.130 0.110
H9 = 0.802 0.220 0.480 0.200 0.100
H10 = 0.697 0.120 0.180 0.560 0.140
H11 = 0.806 0.160 0.180 0.170 0.490
H12 = 0.906 0.410 0.200 0.210 0.180

filtering the singular multifractal measure [µ(r); Eq. (1)] in the
Fourier space as

H(r) = µ(r) ⊗ |r|−(1−H ∗), (25)

where ⊗ is the convolution operator and H ∗ ∈ (0,1) is the
order of smoothness (see the right panel of Fig. 2 and the
lower panel of Fig. 3). In this case, τf (q) reads as

τf (q) = τ (q) + qH ∗, (26)
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FIG. 5. (Color online) The multifractal spectrum of surfaces
produced by different sets of p values but with the same h(q = 2) up
to our numerical precision.

TABLE II. The most relevant exponents concerning stochastic
processes in one and two dimensions.

Exponent 1D-fGn 1D-fBm 2D-Cascade 2D-fBm

γ 2 − 2H −2H 1 − 2H −1 − 2H

β 2H − 1 2H + 1 2H 2H + 2

where τ (q) is given by Eq. (6). Using the correlation function,
C(|r|) ∼ |r|−γ , and its Fourier transform one can derive the
power spectrum scaling exponent β of the singular as well as
the smoothened synthetic multifractal surfaces. To this end,
we demand the scaling behavior for the power spectrum to be

S(k) ∼ |k|−β, (27)

where k = (kx,ky), kx = 2π
%×N

i, ky = 2π
%×N

j , and (i,j ) run
from 1 to N = L/% (the pixel of system size). Subsequently,
the power spectrum scaling exponent is given by [10]

β = 1 + 2H ∗ − log2[p2 + (1 − p)2]. (28)

To make more sense, in Table II we collected the correlation
and power spectrum exponents of stochastic processes in one
and two dimensions.

Figure 6 indicates one-dimensional profiles obtained along
a typical horizontal cut in Fig. 2 for singular and smoothened
multifractal rough surfaces. The lower panels of Fig. 6
show the power spectrums of simulated rough surfaces. The
convolution does not change the multifractality nature of
singular measure (see Fig. 7). In this plot one can see that
the synthetic smoothened surface remains multifractal.
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FIG. 6. (Color online) Upper panel: Profile of singular (left)
and smoothened (right) multifractal rough surfaces along a typical
horizontal cut in Fig. 2. Lower panel: Spectral density of mentioned
mock rough surfaces. The solid lines in the lower panel corresponds
to a power-law fitting function and symbols are given by numerical
calculation. Here we took H ∗ = 0.700.
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Hosseinabadi, S., et al., Physical Review E 85.3 (2012): 031113.
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Novelties 

1) (Irregular)-MF-DFA, MF-DMA and MF-DXA 
combined by either SVD or AD methods to 
characterize (1+1)D PRTs.

2) We have developed a systematic approach for Noise 
modeling

3) Quadrupolar signature of spatial cross-correlation
4) Searching the footprint of GWs not only for 

amplitude but also for determining the type of GWs   



MF-DXA algorithm for joint analysis 
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contribution of trends without destroying fluctuations. One of
the well-studied methods for this purpose is MF-DFA (Peng
et al. 1995; Kantelhardt et al. 2002), used in various areas, such
as economical time series (Liu et al. 1999; Vandewalle
et al. 1999; Mantegna & Stanley 2000; Ivanov et al. 2004;
Ferreira et al. 2017), river flow (Movahed & Hermanis 2008;
Hajian & Movahed 2010), sunspot fluctuations (Movahed
et al. 2006; Hu et al. 2009), cosmic microwave background
radiation (Movahed et al. 2011), music (Jennings et al. 2004;
Jafari et al. 2007), plasma fluctuations (Kimiagar et al. 2009),
identification of a defective single layer in two-dimensional
material (Shidpour & Movahed 2018), traffic jamming (Xiao-
Yan et al. 2007), image processing, medical measurements
(Soares et al. 2009, 2010), and astronomy (Zunino et al. 2014).
Cross-correlation has also been introduced and applied in some
cases (Podobnik & Stanley 2008; Podobnik et al. 2009, 2011;
Zebende 2011; Zebende et al. 2013; Kristoufek 2015; Qian
et al. 2015). The MF-DXA examining higher-order detrended
covariance was introduced by Zhou (2008). Although the
approaches in multifractal detrended analysis, such as the MF-
DFA and MF-DXA methods, diminish polynomial trends,
previous research demonstrated that sinusoidal and power-law
trends are not completely removed (Hu et al. 2001; Chen
et al. 2002). Mentioned trends make some crossovers in
fluctuation functions (Hu et al. 2001; Kantelhardt et al. 2001;
Chen et al. 2002; Nagarajan & Kavasseri 2005a, 2005b,
2005c). Several robust methods have been proposed to
eliminate crossovers produced by sinusoidal and power-law
trends: Fourier-detrended fluctuation analysis (F-DFA; Chianca
et al. 2005; Nagarajan & Kavasseri 2005b), the SVD (Golub &
Van Loan 1996; Nagarajan & Kavasseri 2005a, 2005c) and AD
methods (Hu et al. 2009), and empirical mode decomposition
(EMD; Huang et al. 1998). In this work, we implement the AD
and SVD methods to reduce the contribution of noise and
magnify the effect of GWs in our results for further cleaning
preprocessors.

2.1. Multifractal-based Analysis

Finding scaling exponents in the context of autocorrelation and
cross-correlation analysis has many inaccuracies due to nonstatio-
narity, noise, and undesired trends. To resolve the mentioned
difficulties, a well-known method based on decomposing the
original signal into its positive and negative fluctuation compo-
nents has been proposed by Jun et al. (2006). Motivated by such a
decomposition method, Podobnik et al. introduced the cross-
correlation between two nonstationary fluctuations by means of the
DFA method (Podobnik & Stanley 2008). A modification of
detrended cross-correlation analysis (DCCA) known as MF-DXA
was invented by Zhou (2008). The pipeline of MF-DXA is
considered as follows (Podobnik & Stanley 2008; Zhou 2008).4

(1) We consider two typical PTR series, named PTRa and
PTRb, located at n̂a and n̂b with respect to the line of sight,
respectively, as the input data sets to study their mutual
multifractal property:

= ¼( ) ( ) ( )i i i NPTR , PTR , 1, , . 1a b

The pulsar timing observations are almost unevenly sampled
data sets. We need equidistant sampling series. A trivial but not
essentially optimum way is to interpolate between two
successive data. Different methods to reconstruct regular series

will be explained in Section 2.2. Therefore, here we assume
that the input data are regular and ready for further tasks.
Moreover, the observed data have variable error bars, and, to
take into account heteroskedasticity, we use error-propagation
formalism in all statistical analysis, such as averaging, fitting,
and computing fluctuation functions throughout this paper.
(2) To magnify the hidden self-similarity property, we make

profile series according to

å= - á ñ = ¼à
=

à à( ) [ ( ) ] ( )X j i j NPTR PTR , 1, , . 2
i

j

1

Here the subscript à can be replaced by “a” or “b.”
(3a) The above profile series must be divided into Ns=

int(N/s) nonoverlapping segments of length s. The range of
nonoverlapping window values is Î [ ]N N N,s s s

min max . To take
into account the remaining unused part of the data from the
opposite end of the data, the enumeration must be repeated
from the mentioned part. In this case, we will have 2Ns
segments. In the framework of the MF-DCCA method, we
should compute the following fluctuation function in each
segment as follows,
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where ν=Ns+1, K, 2Ns and
n

à
˜ ( )( )X i is a weighted fitting

polynomial function in the νth segment with an arbitrary order
describing the local trend for data with variable error bars.
Usually a linear function for modeling local trends is
considered (Bunde et al. 2000). The MF-DCCAm denotes that
the order of the polynomial function used in the MF-DCCA is
“m.” Throughout this paper, we take m=1 unless stated
otherwise. To reduce the statistical uncertainties in the
computed fluctuation functions, we set s>m+2 (Kantelhardt
et al. 2002). On the other hand, this method becomes unreliable
for very large window sizes, i.e., >s N

4
. There is a

discontinuity for fitting a polynomial at the boundary of each
partition in the MF-DCCA method; to resolve this discrepancy,
MF-DMA has been introduced (Alessio et al. 2002; Carbone
et al. 2004; Arianos & Carbone 2007; Gu & Zhou 2010; Shao
et al. 2015). Accordingly, instead of doing item (3a), we carry
out the following procedure.
(3b) For each moving window with size s, we calculate the

moving average function,

å= -
~

à
=-

à( ) ( ) ( )X j
s

X j k
1

, 5
k s

s

1

2

where q= -⌊( ) ⌋s s 11 and q= - -⌈( )( )⌉s s 1 12 . The sym-
bol ⌊ ⌋a represents the largest integer value not greater than a
and⌈ ⌉a is devoted to the smallest integer value not smaller than
a. In the above equation, θ plays a crucial role. The θ=0
refers to the backward moving average, while θ=1 is the4 If both signals are identical, we have the MF-DFA/MF-DMA method.
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where ν=Ns+1, K, 2Ns and
n

à
˜ ( )( )X i is a weighted fitting

polynomial function in the νth segment with an arbitrary order
describing the local trend for data with variable error bars.
Usually a linear function for modeling local trends is
considered (Bunde et al. 2000). The MF-DCCAm denotes that
the order of the polynomial function used in the MF-DCCA is
“m.” Throughout this paper, we take m=1 unless stated
otherwise. To reduce the statistical uncertainties in the
computed fluctuation functions, we set s>m+2 (Kantelhardt
et al. 2002). On the other hand, this method becomes unreliable
for very large window sizes, i.e., >s N

4
. There is a

discontinuity for fitting a polynomial at the boundary of each
partition in the MF-DCCA method; to resolve this discrepancy,
MF-DMA has been introduced (Alessio et al. 2002; Carbone
et al. 2004; Arianos & Carbone 2007; Gu & Zhou 2010; Shao
et al. 2015). Accordingly, instead of doing item (3a), we carry
out the following procedure.
(3b) For each moving window with size s, we calculate the

moving average function,
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where q= -⌊( ) ⌋s s 11 and q= - -⌈( )( )⌉s s 1 12 . The sym-
bol ⌊ ⌋a represents the largest integer value not greater than a
and⌈ ⌉a is devoted to the smallest integer value not smaller than
a. In the above equation, θ plays a crucial role. The θ=0
refers to the backward moving average, while θ=1 is the4 If both signals are identical, we have the MF-DFA/MF-DMA method.
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the well-studied methods for this purpose is MF-DFA (Peng
et al. 1995; Kantelhardt et al. 2002), used in various areas, such
as economical time series (Liu et al. 1999; Vandewalle
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polynomial function in the νth segment with an arbitrary order
describing the local trend for data with variable error bars.
Usually a linear function for modeling local trends is
considered (Bunde et al. 2000). The MF-DCCAm denotes that
the order of the polynomial function used in the MF-DCCA is
“m.” Throughout this paper, we take m=1 unless stated
otherwise. To reduce the statistical uncertainties in the
computed fluctuation functions, we set s>m+2 (Kantelhardt
et al. 2002). On the other hand, this method becomes unreliable
for very large window sizes, i.e., >s N
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. There is a
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partition in the MF-DCCA method; to resolve this discrepancy,
MF-DMA has been introduced (Alessio et al. 2002; Carbone
et al. 2004; Arianos & Carbone 2007; Gu & Zhou 2010; Shao
et al. 2015). Accordingly, instead of doing item (3a), we carry
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so-called forward moving average; finally, θ=0.5 is related to
the centered moving average (Xu et al. 2005; Gu & Zhou 2010).
Therefore, detrended data are constructed by subtracting the
calculated moving average function from the cumulative series,
X◊, as

e = -
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where s−s1�i�N−s1. Now e àX (i) values are divided into
Ns=int[N/s] nonoverlapping windows with the same size of
s, and we calculate the fluctuation function:
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(4) Using Equations (3) and (4) for the MF-DCCA (MF-
DFA) method (Peng et al. 1992, 1994; Buldyrev et al. 1995;
Kantelhardt et al. 2002; Shao et al. 2012) and Equation (7) for
the MF-DMA algorithm, the corresponding qth-order fluctua-
tion function can be computed by:
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(5) The scaling behavior of the fluctuation function
according to
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gives the cross-correlation exponent h×(q). The q-parameter
enables us to quantify the contribution of different values of
fluctuation functions in Equations (8) and (9). The small
fluctuations play a major role in summation for q<1, while
large fluctuations become dominant for q�1. We emphasize
that for heteroskedastic data, the summation in Equations (8)
and (9) should incorporate variable error bars, and weighted
fitting polynomials must be considered. It turns out that for
a=b, the usual generalized Hurst exponent, h(q), is retrieved.
In this case we have
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and s = á ñPTR2 2 for zero mean data. Any q-dependency of h(q)
confirms that the underlying data set is a multifractal process. For
the class of the nonstationary series (corresponding to a fractional
Brownian motion; fBm), the exponent derived by using MF-DFA
is h(q=2)>1. Therefore, in this case, the Hurst exponent is
given by H=h(q=2)−1. In the stationary case, h(q=2)<1
(corresponding to a fractional Gaussian noise; fGn) and H=h

(q=2). For completely stationary random data, H=0.5, while
for a persistent data set, 0.5<H<1.0. For an anticorrelated data
set, H<0.5 (Ossadnik et al. 1994; Peng et al. 1994; Taqqu et al.
1995). When the Hurst exponent is determined, the scaling
exponents of autocorrelation for an fGn process read as
� t t t= á + ñ ~ g-( ) ( ) ( )x t x t for τ?0 with γ=2−2H,
while for a fBm signal, we have � = á ñ ~ +g-( ) ( ) ( )t t x t x t t,i j i j i

- -g g- -∣ ∣t t tj i j for - �∣ ∣t t 0i j with γ=−2H. The associated
power spectrum is S( f )∼f−β with β=2H−1 and β=
2H+1 for the fGn and fBm processes, respectively. The relation
between the generalized Hurst exponent and the scaling exponent
of the partition function known as the multifractal scaling exponent
based on the standard multifractal formalism becomes (Kantelhardt
et al. 2002)

x = -( ) ( ) ( )q qh q 1. 13

For a monofractal data set, ξ(q) is a linear function (Kantelhardt
et al. 2002). The generalized multifractal dimension is also
given by
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where D(q=0)=Df is the fractal dimension of the time series
and D(q=1) is related to the so-called entropy of the
underlying system (Halsey et al. 1986). A more complete
quantitative measure of multifractality is the singularity
spectrum and indicates how the box probability of standard
multifractal formalism behaves at small scales. It is defined by
the Legendre transformation of ξ(q) as (Feder 2013)

a a x= -( ) ( ) ( )f q q , 15

and the Hölder exponent is α≡dξ(q)/dq. In the case of
multifractality, a spectrum of the Hölder exponent is obtained
instead of a single exponent. The domain of the Hölder
spectrum, a a aÎ [ ],min max , becomes (Muzy et al. 1994;
Arneodo et al. 1995)
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Subsequently, the width Δα≡αmax−αmin is a reliable
measure for quantifying the multifractal nature of the underlying
data. The higher value of Δα is associated with the higher
multifractal nature reflecting the complexity of the signal. As
other complexity measures, one can point to the q-order
Lyapunov exponent (Eckmann & Procaccia 1986) and the
Lempel–Ziv complexity (Lempel & Ziv 1976). Inspired by the
common cross-correlation definition, relying on Equation (7),
we define the new cross-correlation function (Zebende 2011;
Zebende et al. 2013),
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so-called forward moving average; finally, θ=0.5 is related to
the centered moving average (Xu et al. 2005; Gu & Zhou 2010).
Therefore, detrended data are constructed by subtracting the
calculated moving average function from the cumulative series,
X◊, as

e = -
~

à àà( ) ( ) ( ) ( )i X i X i , 6X

where s−s1�i�N−s1. Now e àX (i) values are divided into
Ns=int[N/s] nonoverlapping windows with the same size of
s, and we calculate the fluctuation function:
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(4) Using Equations (3) and (4) for the MF-DCCA (MF-
DFA) method (Peng et al. 1992, 1994; Buldyrev et al. 1995;
Kantelhardt et al. 2002; Shao et al. 2012) and Equation (7) for
the MF-DMA algorithm, the corresponding qth-order fluctua-
tion function can be computed by:
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according to
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gives the cross-correlation exponent h×(q). The q-parameter
enables us to quantify the contribution of different values of
fluctuation functions in Equations (8) and (9). The small
fluctuations play a major role in summation for q<1, while
large fluctuations become dominant for q�1. We emphasize
that for heteroskedastic data, the summation in Equations (8)
and (9) should incorporate variable error bars, and weighted
fitting polynomials must be considered. It turns out that for
a=b, the usual generalized Hurst exponent, h(q), is retrieved.
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and s = á ñPTR2 2 for zero mean data. Any q-dependency of h(q)
confirms that the underlying data set is a multifractal process. For
the class of the nonstationary series (corresponding to a fractional
Brownian motion; fBm), the exponent derived by using MF-DFA
is h(q=2)>1. Therefore, in this case, the Hurst exponent is
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(corresponding to a fractional Gaussian noise; fGn) and H=h
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for a persistent data set, 0.5<H<1.0. For an anticorrelated data
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1995). When the Hurst exponent is determined, the scaling
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2H+1 for the fGn and fBm processes, respectively. The relation
between the generalized Hurst exponent and the scaling exponent
of the partition function known as the multifractal scaling exponent
based on the standard multifractal formalism becomes (Kantelhardt
et al. 2002)
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For a monofractal data set, ξ(q) is a linear function (Kantelhardt
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where D(q=0)=Df is the fractal dimension of the time series
and D(q=1) is related to the so-called entropy of the
underlying system (Halsey et al. 1986). A more complete
quantitative measure of multifractality is the singularity
spectrum and indicates how the box probability of standard
multifractal formalism behaves at small scales. It is defined by
the Legendre transformation of ξ(q) as (Feder 2013)
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and the Hölder exponent is α≡dξ(q)/dq. In the case of
multifractality, a spectrum of the Hölder exponent is obtained
instead of a single exponent. The domain of the Hölder
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data. The higher value of Δα is associated with the higher
multifractal nature reflecting the complexity of the signal. As
other complexity measures, one can point to the q-order
Lyapunov exponent (Eckmann & Procaccia 1986) and the
Lempel–Ziv complexity (Lempel & Ziv 1976). Inspired by the
common cross-correlation definition, relying on Equation (7),
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so-called forward moving average; finally, θ=0.5 is related to
the centered moving average (Xu et al. 2005; Gu & Zhou 2010).
Therefore, detrended data are constructed by subtracting the
calculated moving average function from the cumulative series,
X◊, as
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(4) Using Equations (3) and (4) for the MF-DCCA (MF-
DFA) method (Peng et al. 1992, 1994; Buldyrev et al. 1995;
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(5) The scaling behavior of the fluctuation function
according to
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gives the cross-correlation exponent h×(q). The q-parameter
enables us to quantify the contribution of different values of
fluctuation functions in Equations (8) and (9). The small
fluctuations play a major role in summation for q<1, while
large fluctuations become dominant for q�1. We emphasize
that for heteroskedastic data, the summation in Equations (8)
and (9) should incorporate variable error bars, and weighted
fitting polynomials must be considered. It turns out that for
a=b, the usual generalized Hurst exponent, h(q), is retrieved.
In this case we have
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and s = á ñPTR2 2 for zero mean data. Any q-dependency of h(q)
confirms that the underlying data set is a multifractal process. For
the class of the nonstationary series (corresponding to a fractional
Brownian motion; fBm), the exponent derived by using MF-DFA
is h(q=2)>1. Therefore, in this case, the Hurst exponent is
given by H=h(q=2)−1. In the stationary case, h(q=2)<1
(corresponding to a fractional Gaussian noise; fGn) and H=h

(q=2). For completely stationary random data, H=0.5, while
for a persistent data set, 0.5<H<1.0. For an anticorrelated data
set, H<0.5 (Ossadnik et al. 1994; Peng et al. 1994; Taqqu et al.
1995). When the Hurst exponent is determined, the scaling
exponents of autocorrelation for an fGn process read as
� t t t= á + ñ ~ g-( ) ( ) ( )x t x t for τ?0 with γ=2−2H,
while for a fBm signal, we have � = á ñ ~ +g-( ) ( ) ( )t t x t x t t,i j i j i

- -g g- -∣ ∣t t tj i j for - �∣ ∣t t 0i j with γ=−2H. The associated
power spectrum is S( f )∼f−β with β=2H−1 and β=
2H+1 for the fGn and fBm processes, respectively. The relation
between the generalized Hurst exponent and the scaling exponent
of the partition function known as the multifractal scaling exponent
based on the standard multifractal formalism becomes (Kantelhardt
et al. 2002)

x = -( ) ( ) ( )q qh q 1. 13

For a monofractal data set, ξ(q) is a linear function (Kantelhardt
et al. 2002). The generalized multifractal dimension is also
given by

x
=

-
=

-
-

( ) ( ) ( ) ( )D q
q

q
qh q

q1
1

1
, 14

where D(q=0)=Df is the fractal dimension of the time series
and D(q=1) is related to the so-called entropy of the
underlying system (Halsey et al. 1986). A more complete
quantitative measure of multifractality is the singularity
spectrum and indicates how the box probability of standard
multifractal formalism behaves at small scales. It is defined by
the Legendre transformation of ξ(q) as (Feder 2013)

a a x= -( ) ( ) ( )f q q , 15

and the Hölder exponent is α≡dξ(q)/dq. In the case of
multifractality, a spectrum of the Hölder exponent is obtained
instead of a single exponent. The domain of the Hölder
spectrum, a a aÎ [ ],min max , becomes (Muzy et al. 1994;
Arneodo et al. 1995)

a
x

a
x

=
¶
¶

=
¶
¶l+¥ l-¥

( ) ( ) ( )q
q

q
q

lim , lim . 16
q q

min max

Subsequently, the width Δα≡αmax−αmin is a reliable
measure for quantifying the multifractal nature of the underlying
data. The higher value of Δα is associated with the higher
multifractal nature reflecting the complexity of the signal. As
other complexity measures, one can point to the q-order
Lyapunov exponent (Eckmann & Procaccia 1986) and the
Lempel–Ziv complexity (Lempel & Ziv 1976). Inspired by the
common cross-correlation definition, relying on Equation (7),
we define the new cross-correlation function (Zebende 2011;
Zebende et al. 2013),
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so-called forward moving average; finally, θ=0.5 is related to
the centered moving average (Xu et al. 2005; Gu & Zhou 2010).
Therefore, detrended data are constructed by subtracting the
calculated moving average function from the cumulative series,
X◊, as

e = -
~

à àà( ) ( ) ( ) ( )i X i X i , 6X

where s−s1�i�N−s1. Now e àX (i) values are divided into
Ns=int[N/s] nonoverlapping windows with the same size of
s, and we calculate the fluctuation function:
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(4) Using Equations (3) and (4) for the MF-DCCA (MF-
DFA) method (Peng et al. 1992, 1994; Buldyrev et al. 1995;
Kantelhardt et al. 2002; Shao et al. 2012) and Equation (7) for
the MF-DMA algorithm, the corresponding qth-order fluctua-
tion function can be computed by:
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(5) The scaling behavior of the fluctuation function
according to

� ~´ ´( ) ( )( )q s s, 10h q

gives the cross-correlation exponent h×(q). The q-parameter
enables us to quantify the contribution of different values of
fluctuation functions in Equations (8) and (9). The small
fluctuations play a major role in summation for q<1, while
large fluctuations become dominant for q�1. We emphasize
that for heteroskedastic data, the summation in Equations (8)
and (9) should incorporate variable error bars, and weighted
fitting polynomials must be considered. It turns out that for
a=b, the usual generalized Hurst exponent, h(q), is retrieved.
In this case we have
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and s = á ñPTR2 2 for zero mean data. Any q-dependency of h(q)
confirms that the underlying data set is a multifractal process. For
the class of the nonstationary series (corresponding to a fractional
Brownian motion; fBm), the exponent derived by using MF-DFA
is h(q=2)>1. Therefore, in this case, the Hurst exponent is
given by H=h(q=2)−1. In the stationary case, h(q=2)<1
(corresponding to a fractional Gaussian noise; fGn) and H=h

(q=2). For completely stationary random data, H=0.5, while
for a persistent data set, 0.5<H<1.0. For an anticorrelated data
set, H<0.5 (Ossadnik et al. 1994; Peng et al. 1994; Taqqu et al.
1995). When the Hurst exponent is determined, the scaling
exponents of autocorrelation for an fGn process read as
� t t t= á + ñ ~ g-( ) ( ) ( )x t x t for τ?0 with γ=2−2H,
while for a fBm signal, we have � = á ñ ~ +g-( ) ( ) ( )t t x t x t t,i j i j i

- -g g- -∣ ∣t t tj i j for - �∣ ∣t t 0i j with γ=−2H. The associated
power spectrum is S( f )∼f−β with β=2H−1 and β=
2H+1 for the fGn and fBm processes, respectively. The relation
between the generalized Hurst exponent and the scaling exponent
of the partition function known as the multifractal scaling exponent
based on the standard multifractal formalism becomes (Kantelhardt
et al. 2002)

x = -( ) ( ) ( )q qh q 1. 13

For a monofractal data set, ξ(q) is a linear function (Kantelhardt
et al. 2002). The generalized multifractal dimension is also
given by
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where D(q=0)=Df is the fractal dimension of the time series
and D(q=1) is related to the so-called entropy of the
underlying system (Halsey et al. 1986). A more complete
quantitative measure of multifractality is the singularity
spectrum and indicates how the box probability of standard
multifractal formalism behaves at small scales. It is defined by
the Legendre transformation of ξ(q) as (Feder 2013)

a a x= -( ) ( ) ( )f q q , 15

and the Hölder exponent is α≡dξ(q)/dq. In the case of
multifractality, a spectrum of the Hölder exponent is obtained
instead of a single exponent. The domain of the Hölder
spectrum, a a aÎ [ ],min max , becomes (Muzy et al. 1994;
Arneodo et al. 1995)
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Subsequently, the width Δα≡αmax−αmin is a reliable
measure for quantifying the multifractal nature of the underlying
data. The higher value of Δα is associated with the higher
multifractal nature reflecting the complexity of the signal. As
other complexity measures, one can point to the q-order
Lyapunov exponent (Eckmann & Procaccia 1986) and the
Lempel–Ziv complexity (Lempel & Ziv 1976). Inspired by the
common cross-correlation definition, relying on Equation (7),
we define the new cross-correlation function (Zebende 2011;
Zebende et al. 2013),
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so-called forward moving average; finally, θ=0.5 is related to
the centered moving average (Xu et al. 2005; Gu & Zhou 2010).
Therefore, detrended data are constructed by subtracting the
calculated moving average function from the cumulative series,
X◊, as

e = -
~

à àà( ) ( ) ( ) ( )i X i X i , 6X

where s−s1�i�N−s1. Now e àX (i) values are divided into
Ns=int[N/s] nonoverlapping windows with the same size of
s, and we calculate the fluctuation function:
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(4) Using Equations (3) and (4) for the MF-DCCA (MF-
DFA) method (Peng et al. 1992, 1994; Buldyrev et al. 1995;
Kantelhardt et al. 2002; Shao et al. 2012) and Equation (7) for
the MF-DMA algorithm, the corresponding qth-order fluctua-
tion function can be computed by:

� �å n=
n

´
=

´

⎛
⎝⎜

⎞
⎠⎟( ) ∣ ( ) ∣ ( )q s

N
s,

1
2

, . 8
s

N
q

q

1

2
2

1
s

For q=0, we have

� �å n=
n

´
=

´

⎛
⎝⎜

⎞
⎠⎟( ) ∣ ( ) ∣ ( )s

N
s0, exp

1
4

ln , . 9
s

N

1

2 s

(5) The scaling behavior of the fluctuation function
according to

� ~´ ´( ) ( )( )q s s, 10h q

gives the cross-correlation exponent h×(q). The q-parameter
enables us to quantify the contribution of different values of
fluctuation functions in Equations (8) and (9). The small
fluctuations play a major role in summation for q<1, while
large fluctuations become dominant for q�1. We emphasize
that for heteroskedastic data, the summation in Equations (8)
and (9) should incorporate variable error bars, and weighted
fitting polynomials must be considered. It turns out that for
a=b, the usual generalized Hurst exponent, h(q), is retrieved.
In this case we have
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and s = á ñPTR2 2 for zero mean data. Any q-dependency of h(q)
confirms that the underlying data set is a multifractal process. For
the class of the nonstationary series (corresponding to a fractional
Brownian motion; fBm), the exponent derived by using MF-DFA
is h(q=2)>1. Therefore, in this case, the Hurst exponent is
given by H=h(q=2)−1. In the stationary case, h(q=2)<1
(corresponding to a fractional Gaussian noise; fGn) and H=h

(q=2). For completely stationary random data, H=0.5, while
for a persistent data set, 0.5<H<1.0. For an anticorrelated data
set, H<0.5 (Ossadnik et al. 1994; Peng et al. 1994; Taqqu et al.
1995). When the Hurst exponent is determined, the scaling
exponents of autocorrelation for an fGn process read as
� t t t= á + ñ ~ g-( ) ( ) ( )x t x t for τ?0 with γ=2−2H,
while for a fBm signal, we have � = á ñ ~ +g-( ) ( ) ( )t t x t x t t,i j i j i

- -g g- -∣ ∣t t tj i j for - �∣ ∣t t 0i j with γ=−2H. The associated
power spectrum is S( f )∼f−β with β=2H−1 and β=
2H+1 for the fGn and fBm processes, respectively. The relation
between the generalized Hurst exponent and the scaling exponent
of the partition function known as the multifractal scaling exponent
based on the standard multifractal formalism becomes (Kantelhardt
et al. 2002)

x = -( ) ( ) ( )q qh q 1. 13

For a monofractal data set, ξ(q) is a linear function (Kantelhardt
et al. 2002). The generalized multifractal dimension is also
given by
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where D(q=0)=Df is the fractal dimension of the time series
and D(q=1) is related to the so-called entropy of the
underlying system (Halsey et al. 1986). A more complete
quantitative measure of multifractality is the singularity
spectrum and indicates how the box probability of standard
multifractal formalism behaves at small scales. It is defined by
the Legendre transformation of ξ(q) as (Feder 2013)

a a x= -( ) ( ) ( )f q q , 15

and the Hölder exponent is α≡dξ(q)/dq. In the case of
multifractality, a spectrum of the Hölder exponent is obtained
instead of a single exponent. The domain of the Hölder
spectrum, a a aÎ [ ],min max , becomes (Muzy et al. 1994;
Arneodo et al. 1995)
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Subsequently, the width Δα≡αmax−αmin is a reliable
measure for quantifying the multifractal nature of the underlying
data. The higher value of Δα is associated with the higher
multifractal nature reflecting the complexity of the signal. As
other complexity measures, one can point to the q-order
Lyapunov exponent (Eckmann & Procaccia 1986) and the
Lempel–Ziv complexity (Lempel & Ziv 1976). Inspired by the
common cross-correlation definition, relying on Equation (7),
we define the new cross-correlation function (Zebende 2011;
Zebende et al. 2013),
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Irregular Data
Regular Data

here Q = ∣ ˆ ˆ ∣n narccos .ab a b . Averaging on all available pairs
separated by Θ leads to

òs
p

sQ = W Q´ ´¯ ( ) ( ) ( )d
1

4
. 18ab

The s̄́ introduced by Equation (18) based on fluctuation
functions computed in the context of detrended cross-correlation
contains the quadrupolar signature if PTRs are modified by the
GWB signal. Therefore, this is a new criterion that enables us to
assess the footprint of GWs more precisely.

Now we turn to the spatial cross-correlation function for
PTRs taking into account stationarity as

� Q = á ñ(́ ) ( ˆ ) ( ˆ ) ( )t n t nPTR , PTR , . 19ab a a b b t

In the presence of an isotropic GWB, averaging the cross-
correlation on all available pairs separated by Θ leads to

� �Q = á Q ñ ~ G Q´ ´( ) ( ) ( ) ( ). 20ab pairs

The G Q( ) is given by the Hellings and Downs equation
(Hellings & Downs 1983; Jenet et al. 2005),
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, 21

where ψ≡[1−cos(Θ)]/2. We should notice that the Hellings
and Downs curve is only a function of the angular separation
between pulsar pairs separated by Θ, and it is independent of
the frequency (Romano & Cornish 2017).

The new cross-correlation coefficient defined by Equation (18)
is related to the traditional cross-correlation �´ in a complex way,
the relation is not analytically tractable without any approximation,
and we will evaluate it numerically in the next section. However,
according to Equation (7), the mapping between �´ and σ× does
not change the sign of σ×. Thus, the quadrupolar signature of the
Hellings and Downs function is preserved. It is worth mentioning
that, besides the probable GW signal superimposed in the PTRs,
the following fluctuations can be existed in the recorded data: the
correlated red (fractal) noise; clock errors, which are the same in all
pulsars (i.e., monopolar); and ephemeris errors (which are dipolar).
There are no known noise sources other than GWs that are
quadrupolar (Tiburzi et al. 2015).

Applying MF-DXA on PTRs determines the value of the
temporal scaling exponent, h×. We expect to find constant
h×(q) with respect to different separation angles (Θ) for an
isotropic GWB, while for the other local source of GWs, the
h×(q) depends on Θab in an arbitrary manner.

2.2. Dealing with Irregularly Sampled Data

The pulsar timing observations are unevenly sampled; i.e., they
are not a set of equidistant sampling values, and the underlying
series is nonuniform, requiring some sort of interpolation
technique. The Lomb–Scargle periodogram proposed a least-
squares pipeline to resolve this problem (Lomb 1976; Scargle
1982). Radon transformations have also been used for irregular
sampling analysis (Ronen et al. 1991; Duijndam & Schonewille
1999; Duijndam et al. 1999; see also Gulati & Ferguson 2009 and
references therein). Extrapolation of irregularly recorded data onto
a regular grid was introduced by Ferguson (2006). For constructing
Fourier expansion, nonuniform discrete Fourier transform was
introduced by Gulati & Ferguson (2009) and Anholm et al. (2009).
A trivial but not necessarily optimum method with less

computational burden is to interpolate between two successive
data points in a recorded series. A more robust method is to apply
kernel functions on the irregular data, as see also (Monaghan &
Lattanzio 1985)

/ò= ¢ ¢ - ¢( ) ( ) ( ) ( )t dt t t tPTR PTR , 22reg irre

where PTRreg and PTRirre are regular and nonuniform sampled
data, respectively. Here/ is a normalized window function. A
typical functional form for this window function can be
Gaussian. In general, the choice of the window function, / ,
depends on the smoothness, accuracy requirements, and
computation efficiency (Monaghan & Lattanzio 1985).
Here we propose a new approach to find robust scaling

properties for irregular sampled data. If there is no a priori
information for the smoothing procedure, we suggest applying
a Gaussian kernel to the data followed by a linear interpolation
to regularize data sets. Subsequently, we can construct the
profile using such regular data (Equation (2)). To reduce the
contribution of artificial data points produced in this interpola-
tion, we introduce the irregular MF-DXA method. In this new
algorithm, we modify the fluctuation function procedure given
by Equations (3) and (4) for identical PTRs as
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In the above equation, only the data points recorded during
observation in each segment with size s will be considered for
further computations. Therefore, the number of data in the νth
window with size s is represented by sν

′ (s), which in general is
not equal to s. Now Equation (8) becomes a weighted average,
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where �s n( )s q, ,2 is the variance of � n[ ( )]s, q2 2. We similarly
replace the averaging procedure in any relevant parts with the
weighted averaging.
Recently, Ma et al. (2010) showed that the global scaling

exponents of long-correlated signals remain unchanged for up
to 90% of data loss, while for anticorrelated series, even less
than 10% of data loss creates a significant modification in the
original scaling exponents. This research shows that one can
compute the scaling exponents for long-range correlated
irregularly sampled data points if one regularizes the data set
through linear interpolation and then applies DFA. But for an
anticorrelated signal, the DFA method does not lead to
reasonable results. Our new proposal demonstrates that for
synthetic series with known Hurst exponents, our modification
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where ψ≡[1−cos(Θ)]/2. We should notice that the Hellings
and Downs curve is only a function of the angular separation
between pulsar pairs separated by Θ, and it is independent of
the frequency (Romano & Cornish 2017).

The new cross-correlation coefficient defined by Equation (18)
is related to the traditional cross-correlation �´ in a complex way,
the relation is not analytically tractable without any approximation,
and we will evaluate it numerically in the next section. However,
according to Equation (7), the mapping between �´ and σ× does
not change the sign of σ×. Thus, the quadrupolar signature of the
Hellings and Downs function is preserved. It is worth mentioning
that, besides the probable GW signal superimposed in the PTRs,
the following fluctuations can be existed in the recorded data: the
correlated red (fractal) noise; clock errors, which are the same in all
pulsars (i.e., monopolar); and ephemeris errors (which are dipolar).
There are no known noise sources other than GWs that are
quadrupolar (Tiburzi et al. 2015).

Applying MF-DXA on PTRs determines the value of the
temporal scaling exponent, h×. We expect to find constant
h×(q) with respect to different separation angles (Θ) for an
isotropic GWB, while for the other local source of GWs, the
h×(q) depends on Θab in an arbitrary manner.
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so-called forward moving average; finally, θ=0.5 is related to
the centered moving average (Xu et al. 2005; Gu & Zhou 2010).
Therefore, detrended data are constructed by subtracting the
calculated moving average function from the cumulative series,
X◊, as
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where s−s1�i�N−s1. Now e àX (i) values are divided into
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s, and we calculate the fluctuation function:
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(4) Using Equations (3) and (4) for the MF-DCCA (MF-
DFA) method (Peng et al. 1992, 1994; Buldyrev et al. 1995;
Kantelhardt et al. 2002; Shao et al. 2012) and Equation (7) for
the MF-DMA algorithm, the corresponding qth-order fluctua-
tion function can be computed by:
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(5) The scaling behavior of the fluctuation function
according to

� ~´ ´( ) ( )( )q s s, 10h q

gives the cross-correlation exponent h×(q). The q-parameter
enables us to quantify the contribution of different values of
fluctuation functions in Equations (8) and (9). The small
fluctuations play a major role in summation for q<1, while
large fluctuations become dominant for q�1. We emphasize
that for heteroskedastic data, the summation in Equations (8)
and (9) should incorporate variable error bars, and weighted
fitting polynomials must be considered. It turns out that for
a=b, the usual generalized Hurst exponent, h(q), is retrieved.
In this case we have
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and s = á ñPTR2 2 for zero mean data. Any q-dependency of h(q)
confirms that the underlying data set is a multifractal process. For
the class of the nonstationary series (corresponding to a fractional
Brownian motion; fBm), the exponent derived by using MF-DFA
is h(q=2)>1. Therefore, in this case, the Hurst exponent is
given by H=h(q=2)−1. In the stationary case, h(q=2)<1
(corresponding to a fractional Gaussian noise; fGn) and H=h

(q=2). For completely stationary random data, H=0.5, while
for a persistent data set, 0.5<H<1.0. For an anticorrelated data
set, H<0.5 (Ossadnik et al. 1994; Peng et al. 1994; Taqqu et al.
1995). When the Hurst exponent is determined, the scaling
exponents of autocorrelation for an fGn process read as
� t t t= á + ñ ~ g-( ) ( ) ( )x t x t for τ?0 with γ=2−2H,
while for a fBm signal, we have � = á ñ ~ +g-( ) ( ) ( )t t x t x t t,i j i j i

- -g g- -∣ ∣t t tj i j for - �∣ ∣t t 0i j with γ=−2H. The associated
power spectrum is S( f )∼f−β with β=2H−1 and β=
2H+1 for the fGn and fBm processes, respectively. The relation
between the generalized Hurst exponent and the scaling exponent
of the partition function known as the multifractal scaling exponent
based on the standard multifractal formalism becomes (Kantelhardt
et al. 2002)

x = -( ) ( ) ( )q qh q 1. 13

For a monofractal data set, ξ(q) is a linear function (Kantelhardt
et al. 2002). The generalized multifractal dimension is also
given by
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where D(q=0)=Df is the fractal dimension of the time series
and D(q=1) is related to the so-called entropy of the
underlying system (Halsey et al. 1986). A more complete
quantitative measure of multifractality is the singularity
spectrum and indicates how the box probability of standard
multifractal formalism behaves at small scales. It is defined by
the Legendre transformation of ξ(q) as (Feder 2013)
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and the Hölder exponent is α≡dξ(q)/dq. In the case of
multifractality, a spectrum of the Hölder exponent is obtained
instead of a single exponent. The domain of the Hölder
spectrum, a a aÎ [ ],min max , becomes (Muzy et al. 1994;
Arneodo et al. 1995)
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Subsequently, the width Δα≡αmax−αmin is a reliable
measure for quantifying the multifractal nature of the underlying
data. The higher value of Δα is associated with the higher
multifractal nature reflecting the complexity of the signal. As
other complexity measures, one can point to the q-order
Lyapunov exponent (Eckmann & Procaccia 1986) and the
Lempel–Ziv complexity (Lempel & Ziv 1976). Inspired by the
common cross-correlation definition, relying on Equation (7),
we define the new cross-correlation function (Zebende 2011;
Zebende et al. 2013),

�

� �
å

å

å å
s

n

n n
Q º n

n n

´
= ´

= =

⎛

⎝

⎜⎜⎜ ⎡⎣ ⎤⎦⎡⎣ ⎤⎦

⎞

⎠

⎟⎟⎟( )
( )

( ) ( )
( )

s

s s

,

, ,
; 17ab s

N

N
a

N
b

1
2

1
2

1
2

s

s s

4

The Astrophysical Journal, 864:162 (18pp), 2018 September 10 Eghdami, Panahi, & Movahed

Regularization



Trend and Noise models

the range of � Î - -[ ]10 , 10yr
16 14 considered in this research.

Our results are consistent with other reports (Shannon et al.
2015).

6. Summary and Conclusion

The PTR is a good indicator to examine relevant physical
phenomena from the interior of pulsars, as well as cosmolo-
gical events. In spite of high stability in some types of pulsars,
PTRs are classified as stochastic processes due to superimposed
unknown trends and noises. The GWs produced by either
primordial or late events affect the PTRs. Therefore,

quantifying the fluctuations of PTRs can be a proper measure
for GW detection.
In this paper, for the first time, we utilized a multifractal

approach in order to examine the statistical properties of
synthetic and observed PTRs affected by trends and noises. In
the presence of trends and unknown noises, only robust
methods are able to recover the correct multifractal nature of
the underlying series. In this research, we used MF-DFA, MF-
DMA, and MF-DXA modified by the preprocessors, so-called
AD or SVD algorithms. The pulsar timing observations are
unevenly sampled data sets. To mitigate this property, we
modified some internal parts of the multifractal analysis and
proposed the irregular MF-DXA method and examined its
accuracy. Our results demonstrated that computed scaling
exponents for anticorrelated and long-range-correlated irregular
signals are consistent with the expectations.
We used synthetic PTRs simulated by the TEMPO2 pulsar

timing package. A template proposed by Hobbs et al. (2009)
was used to take into account the contribution of GWs. We
simulated 1000 synthetic PTRs, and the MF-DFA, MF-DMA,
and MF-DXA methods were implemented on the simulated
series. Our results demonstrated that the ensemble average of
the Hurst exponent of the simulated data is á ñ = oH 0.51 0.02,

Figure 9. Implementing of AD (upper panel) and SVD (lower panel) on the
PTR of PSR J1603–7202. In each panel, the top plot corresponds to the
observed data (red line) and trend (black line), while the bottom represents
the residual data corresponding to clean data.

Figure 10. Log–log plot of fluctuation function � ( )s2 as a function of s when
we apply AD and SVD as preprocesses on PSR J1857+0943. The upper panel
is for DFA, while the lower panel is for backward DMA.
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Pulsar’s Timing residual

Residual is difference between measured pulse’s time of arrival and 
expected time of arrival:
Residual=Observed ToA-Computed ToA or vise versa 

corresponding to presenting a scaling behavior must be
satisfied, as represented by Equations (10) and (11). In some
cases, there exist one or more crossovers corresponding to
different correlation behaviors of the pattern in various scales
(Hu et al. 2001; Kantelhardt et al. 2001; Chen et al. 2002;
Nagarajan & Kavasseri 2005a, 2005b, 2005c). The MF-DFA
and MF-DXA methods cannot remove the effect of all
undesired parts of the underlying signal; therefore, we
implement complementary tasks to properly recover the scaling
behavior of fluctuation functions and obtain the reliable scaling
exponents. There are some preprocessing methods for denois-
ing in the literature; for instance, the EMD method (Huang
et al. 1998), the Fourier-detrended (Fourier-based filtering)
method (Chianca et al. 2005; Nagarajan & Kavasseri 2005b),
the SVD method (Golub & Van Loan 1996; Nagarajan &
Kavasseri 2005a, 2005c), and the AD algorithm (Hu et al.
2009). In this paper, we utilize the SVD method and AD
algorithm. The main part of the SVD method can be described
in the following steps (Nagarajan & Kavasseri 2005a, 2005c;
Hajian & Movahed 2010).

(I) Construct a matrix whose elements are PTRs in the
following order,
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where d is the embedding dimension, τ is the time delay, and
1�i�d. Considering a time series of size N, the maximum
value of the embedding dimension d is equal to d�N−
(d−1)τ+1 (Nagarajan & Kavasseri 2005b, 2005c; Shang
et al. 2009).

(II) Decompose the matrix G to left ( ´Ud d) and right
( t t- - ´ - -( ( ) ) ( ( ) )VN d N d1 1 ) orthogonal matrices,

G = ( )†USV , 26

where t´ - -( ( ) )Sd N d 1 is a diagonal matrix and its elements are
the desired singular values. If we are interested in examining
the fluctuations with high frequency, we should remove
dominant wavelengths. In this case, for removing trends
containing p-dominant wavelengths, we set the 2p+1 largest
eigenvalues of matrix S to zero; therefore, long periods or short
frequencies are eliminated. In other words, the p dominant
eigenvalues and associated eigenvectors correspond to long-
wavelength (short-frequency part) subspace, while d−p
eigenvalues and the corresponding eigen-decomposed vectors
represent short-wavelength (high-frequency part) subspace.

In this paper, we look for the footprint of GWs superimposed
on the PTR signals. As shown in Figure 1, the GW part
behaves as a dominant trend in PTRs; consequently, we
essentially need to do denoising using the SVD method to
magnify the contribution of superimposed GWs. To this end,
we should remove small eigenvalues corresponding to a low-
pass filter. In this paper, we eliminate the high-frequency part
of the signal by keeping the 2p+1 largest eigenvalues of the
matrix S.

Finally, the new eigenvalues matrix, S̃, is determined.
According to the filtered matrix, G =˜ ˜ †USV , the cleaned time

series is constructed by

= G~
+ - ˜ ( )PTR . 27i j ij1

Figure 1. The upper panel corresponds to a pure simulated timing residual. The
middle panel shows a synthetic pure timing residual induced by the GWB with
a dimensionless amplitude of� = -10yr

15. Here we take ζ=−2/3. The lower
panel shows the observed PTRs of PSR J0437–4715 from the PPTA project.
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PSR J0437-4715

١٧ ͳنوترون ستاره های .١ فصل

مͳ کنیم[١٩]: ͳمعرف را مͳ شود انجام ١ns حدود در خطایی با ͳزمان پسماند به رسیدن برای TEMPO٢

∆t = ∆c +∆A +∆E⊙ +∆R⊙ +∆S⊙ −D/f٢ +∆V P +∆B. (١ . ٢١)

:∆c ساعت تصحیح .١
۵۴ͳمحل رصدخانه ای ساعت های بوسیله ی مͳ شود اندازه گیری تلس΋وپ ها توسط که ͳرسیدن زمان
قابل طور به سال) چند تا ماه (چند ͳطولان ͳزمان مقیاس های در ساعت ها این شده اند. فراهم
ساعت ها همه ی نتیجه در نیستند. همزمان دیΎر و مͳ کنند پیدا اختلاف ی΋دیΎر با ملاحظه ای

شوند. هم زمان سماوی۵۵ مرج΄ سامانه ی با باید

:∆A ج̂و̷ی انتشار تاخیر .٢
جˆوی۵۶ انتشار تاخیر است. متفاوت خلاء در نور سرعت با جو̷ در رادیویی امواج گروه سرعت
نشود اصلاح که ͳصورت در و مͳ افتد اتفاق تروپوسفر۵٩ و یونوسفر۵٨ در موج انکسار۵٧ اثر بر

کند. ایجاد ͳزمان پسماند در ١٫۵ns حدود در خطایی مͳ تواند

:∆E اینشتین تاخیر .٣
ͳناش ͳگرانش سرخ به انتقال همچنین و رصدخانه و حرکت حال در تپ اخترِ بین زمان۶٠ اتساع

است. مشهور اینشتین تاخیر به دوتایی سامانه های و سیاره ها خورشید، از

:∆R⊙ رˇم̃ر تاخیر .۴
زمین مدار در ͳترومغناطیس΋ال موج که است (Έکلاسی) ͳغیرنسبیت ͳزمان مدت رˇم̃ر۶١ تاخیر
فاصله ی تغییر و خورشید دور به زمین حرکت دلیل به تاخیر این برسد. تلس΋وپ به تا مͳ کند سفر

مͳ آید. بوجود تپ اختر و رصدخانه بین

:∆S⊙ شاپیرو تاخیر .۵
به رسیدن برای موج مسیر و مͳ شود ایجاد انحنا فضا‐زمان در ستاره ها و سیاره ها جرم اثر در

۵۴
۵۵
۵۶
۵٧
۵٨
۵٩
۶٠
۶١
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Synthetic Datasets 

corresponding to presenting a scaling behavior must be
satisfied, as represented by Equations (10) and (11). In some
cases, there exist one or more crossovers corresponding to
different correlation behaviors of the pattern in various scales
(Hu et al. 2001; Kantelhardt et al. 2001; Chen et al. 2002;
Nagarajan & Kavasseri 2005a, 2005b, 2005c). The MF-DFA
and MF-DXA methods cannot remove the effect of all
undesired parts of the underlying signal; therefore, we
implement complementary tasks to properly recover the scaling
behavior of fluctuation functions and obtain the reliable scaling
exponents. There are some preprocessing methods for denois-
ing in the literature; for instance, the EMD method (Huang
et al. 1998), the Fourier-detrended (Fourier-based filtering)
method (Chianca et al. 2005; Nagarajan & Kavasseri 2005b),
the SVD method (Golub & Van Loan 1996; Nagarajan &
Kavasseri 2005a, 2005c), and the AD algorithm (Hu et al.
2009). In this paper, we utilize the SVD method and AD
algorithm. The main part of the SVD method can be described
in the following steps (Nagarajan & Kavasseri 2005a, 2005c;
Hajian & Movahed 2010).

(I) Construct a matrix whose elements are PTRs in the
following order,

G º

t t

t t
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where d is the embedding dimension, τ is the time delay, and
1�i�d. Considering a time series of size N, the maximum
value of the embedding dimension d is equal to d�N−
(d−1)τ+1 (Nagarajan & Kavasseri 2005b, 2005c; Shang
et al. 2009).

(II) Decompose the matrix G to left ( ´Ud d) and right
( t t- - ´ - -( ( ) ) ( ( ) )VN d N d1 1 ) orthogonal matrices,

G = ( )†USV , 26

where t´ - -( ( ) )Sd N d 1 is a diagonal matrix and its elements are
the desired singular values. If we are interested in examining
the fluctuations with high frequency, we should remove
dominant wavelengths. In this case, for removing trends
containing p-dominant wavelengths, we set the 2p+1 largest
eigenvalues of matrix S to zero; therefore, long periods or short
frequencies are eliminated. In other words, the p dominant
eigenvalues and associated eigenvectors correspond to long-
wavelength (short-frequency part) subspace, while d−p
eigenvalues and the corresponding eigen-decomposed vectors
represent short-wavelength (high-frequency part) subspace.

In this paper, we look for the footprint of GWs superimposed
on the PTR signals. As shown in Figure 1, the GW part
behaves as a dominant trend in PTRs; consequently, we
essentially need to do denoising using the SVD method to
magnify the contribution of superimposed GWs. To this end,
we should remove small eigenvalues corresponding to a low-
pass filter. In this paper, we eliminate the high-frequency part
of the signal by keeping the 2p+1 largest eigenvalues of the
matrix S.

Finally, the new eigenvalues matrix, S̃, is determined.
According to the filtered matrix, G =˜ ˜ †USV , the cleaned time

series is constructed by

= G~
+ - ˜ ( )PTR . 27i j ij1

Figure 1. The upper panel corresponds to a pure simulated timing residual. The
middle panel shows a synthetic pure timing residual induced by the GWB with
a dimensionless amplitude of� = -10yr

15. Here we take ζ=−2/3. The lower
panel shows the observed PTRs of PSR J0437–4715 from the PPTA project.
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eigenvalues of matrix S to zero; therefore, long periods or short
frequencies are eliminated. In other words, the p dominant
eigenvalues and associated eigenvectors correspond to long-
wavelength (short-frequency part) subspace, while d−p
eigenvalues and the corresponding eigen-decomposed vectors
represent short-wavelength (high-frequency part) subspace.

In this paper, we look for the footprint of GWs superimposed
on the PTR signals. As shown in Figure 1, the GW part
behaves as a dominant trend in PTRs; consequently, we
essentially need to do denoising using the SVD method to
magnify the contribution of superimposed GWs. To this end,
we should remove small eigenvalues corresponding to a low-
pass filter. In this paper, we eliminate the high-frequency part
of the signal by keeping the 2p+1 largest eigenvalues of the
matrix S.

Finally, the new eigenvalues matrix, S̃, is determined.
According to the filtered matrix, G =˜ ˜ †USV , the cleaned time

series is constructed by

= G~
+ - ˜ ( )PTR . 27i j ij1

Figure 1. The upper panel corresponds to a pure simulated timing residual. The
middle panel shows a synthetic pure timing residual induced by the GWB with
a dimensionless amplitude of� = -10yr

15. Here we take ζ=−2/3. The lower
panel shows the observed PTRs of PSR J0437–4715 from the PPTA project.
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Generalized form of  Hellings & Downs (1983)
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and the Hölder exponent is ↵ ⌘ d⇠(q)/dq. In the case
of multifractality, a spectrum of Hölder exponent is ob-
tained instead of a single exponent. The domain of
Hölder spectrum, ↵ 2 [↵

min

,↵
max

], becomes (Muzy et
al. 1994; Arneodo et al. 1995):
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min

= lim
q!+1
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, ↵

max
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q!�1

@⇠(q)

@q
(16)

Subsequently, the width �↵ ⌘ ↵
max

� ↵
min

is a reliable
measure for quantifying multifractal nature of the un-
derlying data. The higher value of �↵ is associated with
the higher multifractal nature reflecting the complexity
of the signal. As other complexity measures, one can
point to q-order Lyapunov exponent (Eckmann & Pro-
caccia 1986), Lempel-Ziv complexity (LZC) (Lempel &
Ziv 1976).
Inspired by common cross-correlation definition, rely-

ing on Eq. (7), we define new cross-correlation function
(Zebende 2011; Zebende et al. 2013):
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For �⇥(⇥ab) = +1, a prefect cross-correlation can be rec-
ognized, �⇥(⇥ab) = �1 indicates anti-cross-correlation,
while in the case of no cross-correlation between under-
lying series, we find �⇥(⇥ab) = 0. Averaging on all avail-
able pairs separated by ⇥ leads to:

�̄⇥(⇥) =
1

4⇡

Z
d⌦�⇥(⇥ab) (18)

The �̄⇥ introduced in Eq. (18) based on fluctuations
functions computed in the context of detrended cross-
correlation contains the quadrupolar signature if PTRs
modified by GWB signal. Therefore this is a new crite-
rion enables us to assess footprint of GWs more precisely.
Now we turn to the spatial-temporal cross-correlation
function for PTRs taking into account stationarity as:

C⇥(⌧,⇥ab)= hPTRa(t, n̂a)PTRb(t+ ⌧, n̂b)it, (19)

here ⇥ab = arccos |n̂a.n̂b|. To clarify the spatial and
temporal parts of cross-correlation function, we suppose
that the modified PTRa and PTRb by isotropic GWB
are represented by PTRa(t) = PTRpure

a (t)+BaRGWB

(t)
and PTRb(t) = PTRpure

b (t) + BbRGWB

(t), respectively.
The PTRpure

⇧ is the pure fluctuations of a typical PTR
in the absence of any gravitational waves and R

GWB

is
common for pulsars. The Bi is angle factor of ith pulsar
represented by

Bi ⌘ �1

2
cos(2�i)(1� cos(✓i)) (20)

The ✓i is the angle of ith pulsar to the GWB propagation
direction and �i is the angle between the projection of
the pulsar position on the (x � y) plane and the GWB
principle polarization vector (Hellings & Downs 1983).
Computing spatial-temporal cross-correlation (Eq. (19))

yields:

C⇥(⌧,⇥ab)= hPTRa(t)PTRb(t+ ⌧)it
= hPTRpure

a (t)PTRpure

b (t+ ⌧)it
+BbhPTRpure

a (t)R
GWB

(t+ ⌧)it
+BahRGWB

(t)PTRpure

b (t+ ⌧)it
+BaBbhRGWB

(t)R
GWB

(t+ ⌧)it (21)

The first three terms are uncorrelated while the only
meaningful term is coming from GWB auto-correlation.
Taking into account statistical isotropy and stationary
regime, by averaging on all available pairs separated by
⇥, leads to:

C⇥(⌧,⇥)= h C⇥(⌧,⇥ab)ipairs ⇠ �(⇥)⇥ ⌧�⇥ (22)

where �⇥ = 2 � 2H⇥ = 2 � 2h⇥(q = 2). The �(⇥) is
given by (Hellings & Downs 1983; Jenet et al. 2005):

�(⇥) =
3

2
 ln( )�  

4
+

1

2
, (23)

where  ⌘ [1� cos(⇥)]/2. We should notice that, the
Hellings and Downs curve is only a function of angular
separation between pulsar pairs separated by ⇥ and it is
independent of the frequency (Romano & Cornish 2017).
Therefore, by applying MF-DXA, one can deduce the
value of temporal scaling exponent coming from GWB
signal. For the GWB, we expect to find constant h⇥(q)
with respect to di↵erent separation angle (⇥), while for
other local source of GWs, the h⇥(q) depends on ⇥ab
with arbitrary manner. The new cross-correlation coef-
ficient defined by Eq. (18) contains the angle factors of
pulsars in complicated functional form and we evaluate
its behavior numerically for simulation in the next sec-
tion.

2.2. Dealing with irregularly sampled data

The pulsar timing observations are unevenly sampled,
i.e. it is not a set of equidistant sampling values and the
underlying series is nonuniform requiring some sort of in-
terpolation techniques. The Lomb-Scargle periodogram
proposed a least-squares pipeline to resolve this prob-
lem (Lomb 1976; Scargle 1982). Radon transformations
have also been used for irregular sampling analysis (Ro-
nen et al. 1991; Duijndam & Schonewille 1999; Duijndam
et al. 1999) (see also (Gulati & Ferguson 2009) and ref-
erences therein). Extrapolation of irregularly recorded
data onto a regular grid has been introduced by Ferguson
(2006). For constructing Fourier expansion, nonuniform
discrete Fourier transform has been introduced by Gu-
lati & Ferguson (2009); Anholm et al. (2009). A trivial
but not necessarily optimum method with less compu-
tational burden is to interpolate between two successive
data points in recorded series. A more robust method
is to apply kernel functions on the irregular data as (see
also (Monaghan & Lattanzio 1985)):

PTRreg(t) =

Z
dt0PTRirre(t

0)W(t� t0) (24)

where PTRreg and PTRirre are regular and nonuniform
sampled data, respectively. W is a normalized window
function. A typical functional form for this window func-
tion can be Gaussian. In general, the choice of the win-
dow function, W, depends on the smoothness, accuracy
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is a reliable
measure for quantifying multifractal nature of the un-
derlying data. The higher value of �↵ is associated with
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For �⇥(⇥ab) = +1, a prefect cross-correlation can be rec-
ognized, �⇥(⇥ab) = �1 indicates anti-cross-correlation,
while in the case of no cross-correlation between under-
lying series, we find �⇥(⇥ab) = 0. Averaging on all avail-
able pairs separated by ⇥ leads to:

�̄⇥(⇥) =
1
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Z
d⌦�⇥(⇥ab) (18)

The �̄⇥ introduced in Eq. (18) based on fluctuations
functions computed in the context of detrended cross-
correlation contains the quadrupolar signature if PTRs
modified by GWB signal. Therefore this is a new crite-
rion enables us to assess footprint of GWs more precisely.
Now we turn to the spatial-temporal cross-correlation
function for PTRs taking into account stationarity as:

C⇥(⌧,⇥ab)= hPTRa(t, n̂a)PTRb(t+ ⌧, n̂b)it, (19)

here ⇥ab = arccos |n̂a.n̂b|. To clarify the spatial and
temporal parts of cross-correlation function, we suppose
that the modified PTRa and PTRb by isotropic GWB
are represented by PTRa(t) = PTRpure

a (t)+BaRGWB

(t)
and PTRb(t) = PTRpure

b (t) + BbRGWB

(t), respectively.
The PTRpure

⇧ is the pure fluctuations of a typical PTR
in the absence of any gravitational waves and R

GWB

is
common for pulsars. The Bi is angle factor of ith pulsar
represented by

Bi ⌘ �1

2
cos(2�i)(1� cos(✓i)) (20)

The ✓i is the angle of ith pulsar to the GWB propagation
direction and �i is the angle between the projection of
the pulsar position on the (x � y) plane and the GWB
principle polarization vector (Hellings & Downs 1983).
Computing spatial-temporal cross-correlation (Eq. (19))

yields:

C⇥(⌧,⇥ab)= hPTRa(t)PTRb(t+ ⌧)it
= hPTRpure

a (t)PTRpure

b (t+ ⌧)it
+BbhPTRpure

a (t)R
GWB

(t+ ⌧)it
+BahRGWB

(t)PTRpure

b (t+ ⌧)it
+BaBbhRGWB

(t)R
GWB

(t+ ⌧)it (21)

The first three terms are uncorrelated while the only
meaningful term is coming from GWB auto-correlation.
Taking into account statistical isotropy and stationary
regime, by averaging on all available pairs separated by
⇥, leads to:

C⇥(⌧,⇥)= h C⇥(⌧,⇥ab)ipairs ⇠ �(⇥)⇥ ⌧�⇥ (22)

where �⇥ = 2 � 2H⇥ = 2 � 2h⇥(q = 2). The �(⇥) is
given by (Hellings & Downs 1983; Jenet et al. 2005):
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where  ⌘ [1� cos(⇥)]/2. We should notice that, the
Hellings and Downs curve is only a function of angular
separation between pulsar pairs separated by ⇥ and it is
independent of the frequency (Romano & Cornish 2017).
Therefore, by applying MF-DXA, one can deduce the
value of temporal scaling exponent coming from GWB
signal. For the GWB, we expect to find constant h⇥(q)
with respect to di↵erent separation angle (⇥), while for
other local source of GWs, the h⇥(q) depends on ⇥ab
with arbitrary manner. The new cross-correlation coef-
ficient defined by Eq. (18) contains the angle factors of
pulsars in complicated functional form and we evaluate
its behavior numerically for simulation in the next sec-
tion.

2.2. Dealing with irregularly sampled data

The pulsar timing observations are unevenly sampled,
i.e. it is not a set of equidistant sampling values and the
underlying series is nonuniform requiring some sort of in-
terpolation techniques. The Lomb-Scargle periodogram
proposed a least-squares pipeline to resolve this prob-
lem (Lomb 1976; Scargle 1982). Radon transformations
have also been used for irregular sampling analysis (Ro-
nen et al. 1991; Duijndam & Schonewille 1999; Duijndam
et al. 1999) (see also (Gulati & Ferguson 2009) and ref-
erences therein). Extrapolation of irregularly recorded
data onto a regular grid has been introduced by Ferguson
(2006). For constructing Fourier expansion, nonuniform
discrete Fourier transform has been introduced by Gu-
lati & Ferguson (2009); Anholm et al. (2009). A trivial
but not necessarily optimum method with less compu-
tational burden is to interpolate between two successive
data points in recorded series. A more robust method
is to apply kernel functions on the irregular data as (see
also (Monaghan & Lattanzio 1985)):

PTRreg(t) =
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0)W(t� t0) (24)

where PTRreg and PTRirre are regular and nonuniform
sampled data, respectively. W is a normalized window
function. A typical functional form for this window func-
tion can be Gaussian. In general, the choice of the win-
dow function, W, depends on the smoothness, accuracy
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For �⇥(⇥ab) = +1, a prefect cross-correlation can be rec-
ognized, �⇥(⇥ab) = �1 indicates anti-cross-correlation,
while in the case of no cross-correlation between under-
lying series, we find �⇥(⇥ab) = 0. Averaging on all avail-
able pairs separated by ⇥ leads to:

�̄⇥(⇥) =
1

4⇡

Z
d⌦�⇥(⇥ab) (18)

The �̄⇥ introduced in Eq. (18) based on fluctuations
functions computed in the context of detrended cross-
correlation contains the quadrupolar signature if PTRs
modified by GWB signal. Therefore this is a new crite-
rion enables us to assess footprint of GWs more precisely.
Now we turn to the spatial-temporal cross-correlation
function for PTRs taking into account stationarity as:

C⇥(⌧,⇥ab)= hPTRa(t, n̂a)PTRb(t+ ⌧, n̂b)it, (19)

here ⇥ab = arccos |n̂a.n̂b|. To clarify the spatial and
temporal parts of cross-correlation function, we suppose
that the modified PTRa and PTRb by isotropic GWB
are represented by PTRa(t) = PTRpure

a (t)+BaRGWB

(t)
and PTRb(t) = PTRpure

b (t) + BbRGWB

(t), respectively.
The PTRpure

⇧ is the pure fluctuations of a typical PTR
in the absence of any gravitational waves and R

GWB

is
common for pulsars. The Bi is angle factor of ith pulsar
represented by

Bi ⌘ �1

2
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The ✓i is the angle of ith pulsar to the GWB propagation
direction and �i is the angle between the projection of
the pulsar position on the (x � y) plane and the GWB
principle polarization vector (Hellings & Downs 1983).
Computing spatial-temporal cross-correlation (Eq. (19))

yields:
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The first three terms are uncorrelated while the only
meaningful term is coming from GWB auto-correlation.
Taking into account statistical isotropy and stationary
regime, by averaging on all available pairs separated by
⇥, leads to:

C⇥(⌧,⇥)= h C⇥(⌧,⇥ab)ipairs ⇠ �(⇥)⇥ ⌧�⇥ (22)

where �⇥ = 2 � 2H⇥ = 2 � 2h⇥(q = 2). The �(⇥) is
given by (Hellings & Downs 1983; Jenet et al. 2005):
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where  ⌘ [1� cos(⇥)]/2. We should notice that, the
Hellings and Downs curve is only a function of angular
separation between pulsar pairs separated by ⇥ and it is
independent of the frequency (Romano & Cornish 2017).
Therefore, by applying MF-DXA, one can deduce the
value of temporal scaling exponent coming from GWB
signal. For the GWB, we expect to find constant h⇥(q)
with respect to di↵erent separation angle (⇥), while for
other local source of GWs, the h⇥(q) depends on ⇥ab
with arbitrary manner. The new cross-correlation coef-
ficient defined by Eq. (18) contains the angle factors of
pulsars in complicated functional form and we evaluate
its behavior numerically for simulation in the next sec-
tion.

2.2. Dealing with irregularly sampled data

The pulsar timing observations are unevenly sampled,
i.e. it is not a set of equidistant sampling values and the
underlying series is nonuniform requiring some sort of in-
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data onto a regular grid has been introduced by Ferguson
(2006). For constructing Fourier expansion, nonuniform
discrete Fourier transform has been introduced by Gu-
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but not necessarily optimum method with less compu-
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is to apply kernel functions on the irregular data as (see
also (Monaghan & Lattanzio 1985)):
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sampled data, respectively. W is a normalized window
function. A typical functional form for this window func-
tion can be Gaussian. In general, the choice of the win-
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The �̄⇥ introduced in Eq. (18) based on fluctuations
functions computed in the context of detrended cross-
correlation contains the quadrupolar signature if PTRs
modified by GWB signal. Therefore this is a new crite-
rion enables us to assess footprint of GWs more precisely.
Now we turn to the spatial-temporal cross-correlation
function for PTRs taking into account stationarity as:

C⇥(⌧,⇥ab)= hPTRa(t, n̂a)PTRb(t+ ⌧, n̂b)it, (19)
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that the modified PTRa and PTRb by isotropic GWB
are represented by PTRa(t) = PTRpure
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represented by
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The ✓i is the angle of ith pulsar to the GWB propagation
direction and �i is the angle between the projection of
the pulsar position on the (x � y) plane and the GWB
principle polarization vector (Hellings & Downs 1983).
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The first three terms are uncorrelated while the only
meaningful term is coming from GWB auto-correlation.
Taking into account statistical isotropy and stationary
regime, by averaging on all available pairs separated by
⇥, leads to:
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where  ⌘ [1� cos(⇥)]/2. We should notice that, the
Hellings and Downs curve is only a function of angular
separation between pulsar pairs separated by ⇥ and it is
independent of the frequency (Romano & Cornish 2017).
Therefore, by applying MF-DXA, one can deduce the
value of temporal scaling exponent coming from GWB
signal. For the GWB, we expect to find constant h⇥(q)
with respect to di↵erent separation angle (⇥), while for
other local source of GWs, the h⇥(q) depends on ⇥ab
with arbitrary manner. The new cross-correlation coef-
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underlying series is nonuniform requiring some sort of in-
terpolation techniques. The Lomb-Scargle periodogram
proposed a least-squares pipeline to resolve this prob-
lem (Lomb 1976; Scargle 1982). Radon transformations
have also been used for irregular sampling analysis (Ro-
nen et al. 1991; Duijndam & Schonewille 1999; Duijndam
et al. 1999) (see also (Gulati & Ferguson 2009) and ref-
erences therein). Extrapolation of irregularly recorded
data onto a regular grid has been introduced by Ferguson
(2006). For constructing Fourier expansion, nonuniform
discrete Fourier transform has been introduced by Gu-
lati & Ferguson (2009); Anholm et al. (2009). A trivial
but not necessarily optimum method with less compu-
tational burden is to interpolate between two successive
data points in recorded series. A more robust method
is to apply kernel functions on the irregular data as (see
also (Monaghan & Lattanzio 1985)):

PTRreg(t) =

Z
dt0PTRirre(t

0)W(t� t0) (24)

where PTRreg and PTRirre are regular and nonuniform
sampled data, respectively. W is a normalized window
function. A typical functional form for this window func-
tion can be Gaussian. In general, the choice of the win-
dow function, W, depends on the smoothness, accuracy
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and the Hölder exponent is ↵ ⌘ d⇠(q)/dq. In the case
of multifractality, a spectrum of Hölder exponent is ob-
tained instead of a single exponent. The domain of
Hölder spectrum, ↵ 2 [↵
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Subsequently, the width �↵ ⌘ ↵
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is a reliable
measure for quantifying multifractal nature of the un-
derlying data. The higher value of �↵ is associated with
the higher multifractal nature reflecting the complexity
of the signal. As other complexity measures, one can
point to q-order Lyapunov exponent (Eckmann & Pro-
caccia 1986), Lempel-Ziv complexity (LZC) (Lempel &
Ziv 1976).
Inspired by common cross-correlation definition, rely-

ing on Eq. (7), we define new cross-correlation function
(Zebende 2011; Zebende et al. 2013):
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For �⇥(⇥ab) = +1, a prefect cross-correlation can be rec-
ognized, �⇥(⇥ab) = �1 indicates anti-cross-correlation,
while in the case of no cross-correlation between under-
lying series, we find �⇥(⇥ab) = 0. Averaging on all avail-
able pairs separated by ⇥ leads to:

�̄⇥(⇥) =
1

4⇡

Z
d⌦�⇥(⇥ab) (18)

The �̄⇥ introduced in Eq. (18) based on fluctuations
functions computed in the context of detrended cross-
correlation contains the quadrupolar signature if PTRs
modified by GWB signal. Therefore this is a new crite-
rion enables us to assess footprint of GWs more precisely.
Now we turn to the spatial-temporal cross-correlation
function for PTRs taking into account stationarity as:

C⇥(⌧,⇥ab)= hPTRa(t, n̂a)PTRb(t+ ⌧, n̂b)it, (19)

here ⇥ab = arccos |n̂a.n̂b|. To clarify the spatial and
temporal parts of cross-correlation function, we suppose
that the modified PTRa and PTRb by isotropic GWB
are represented by PTRa(t) = PTRpure

a (t)+BaRGWB

(t)
and PTRb(t) = PTRpure

b (t) + BbRGWB

(t), respectively.
The PTRpure

⇧ is the pure fluctuations of a typical PTR
in the absence of any gravitational waves and R

GWB

is
common for pulsars. The Bi is angle factor of ith pulsar
represented by

Bi ⌘ �1

2
cos(2�i)(1� cos(✓i)) (20)

The ✓i is the angle of ith pulsar to the GWB propagation
direction and �i is the angle between the projection of
the pulsar position on the (x � y) plane and the GWB
principle polarization vector (Hellings & Downs 1983).
Computing spatial-temporal cross-correlation (Eq. (19))

yields:

C⇥(⌧,⇥ab)= hPTRa(t)PTRb(t+ ⌧)it
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a (t)PTRpure
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a (t)R
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(t+ ⌧)it
+BahRGWB
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b (t+ ⌧)it
+BaBbhRGWB

(t)R
GWB

(t+ ⌧)it (21)

The first three terms are uncorrelated while the only
meaningful term is coming from GWB auto-correlation.
Taking into account statistical isotropy and stationary
regime, by averaging on all available pairs separated by
⇥, leads to:

C⇥(⌧,⇥)= h C⇥(⌧,⇥ab)ipairs ⇠ �(⇥)⇥ ⌧�⇥ (22)

where �⇥ = 2 � 2H⇥ = 2 � 2h⇥(q = 2). The �(⇥) is
given by (Hellings & Downs 1983; Jenet et al. 2005):

�(⇥) =
3

2
 ln( )�  

4
+

1

2
, (23)

where  ⌘ [1� cos(⇥)]/2. We should notice that, the
Hellings and Downs curve is only a function of angular
separation between pulsar pairs separated by ⇥ and it is
independent of the frequency (Romano & Cornish 2017).
Therefore, by applying MF-DXA, one can deduce the
value of temporal scaling exponent coming from GWB
signal. For the GWB, we expect to find constant h⇥(q)
with respect to di↵erent separation angle (⇥), while for
other local source of GWs, the h⇥(q) depends on ⇥ab
with arbitrary manner. The new cross-correlation coef-
ficient defined by Eq. (18) contains the angle factors of
pulsars in complicated functional form and we evaluate
its behavior numerically for simulation in the next sec-
tion.

2.2. Dealing with irregularly sampled data

The pulsar timing observations are unevenly sampled,
i.e. it is not a set of equidistant sampling values and the
underlying series is nonuniform requiring some sort of in-
terpolation techniques. The Lomb-Scargle periodogram
proposed a least-squares pipeline to resolve this prob-
lem (Lomb 1976; Scargle 1982). Radon transformations
have also been used for irregular sampling analysis (Ro-
nen et al. 1991; Duijndam & Schonewille 1999; Duijndam
et al. 1999) (see also (Gulati & Ferguson 2009) and ref-
erences therein). Extrapolation of irregularly recorded
data onto a regular grid has been introduced by Ferguson
(2006). For constructing Fourier expansion, nonuniform
discrete Fourier transform has been introduced by Gu-
lati & Ferguson (2009); Anholm et al. (2009). A trivial
but not necessarily optimum method with less compu-
tational burden is to interpolate between two successive
data points in recorded series. A more robust method
is to apply kernel functions on the irregular data as (see
also (Monaghan & Lattanzio 1985)):

PTRreg(t) =

Z
dt0PTRirre(t

0)W(t� t0) (24)

where PTRreg and PTRirre are regular and nonuniform
sampled data, respectively. W is a normalized window
function. A typical functional form for this window func-
tion can be Gaussian. In general, the choice of the win-
dow function, W, depends on the smoothness, accuracy
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Subsequently, the width �↵ ⌘ ↵
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is a reliable
measure for quantifying multifractal nature of the un-
derlying data. The higher value of �↵ is associated with
the higher multifractal nature reflecting the complexity
of the signal. As other complexity measures, one can
point to q-order Lyapunov exponent (Eckmann & Pro-
caccia 1986), Lempel-Ziv complexity (LZC) (Lempel &
Ziv 1976).
Inspired by common cross-correlation definition, rely-

ing on Eq. (7), we define new cross-correlation function
(Zebende 2011; Zebende et al. 2013):
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For �⇥(⇥ab) = +1, a prefect cross-correlation can be rec-
ognized, �⇥(⇥ab) = �1 indicates anti-cross-correlation,
while in the case of no cross-correlation between under-
lying series, we find �⇥(⇥ab) = 0. Averaging on all avail-
able pairs separated by ⇥ leads to:

�̄⇥(⇥) =
1

4⇡

Z
d⌦�⇥(⇥ab) (18)

The �̄⇥ introduced in Eq. (18) based on fluctuations
functions computed in the context of detrended cross-
correlation contains the quadrupolar signature if PTRs
modified by GWB signal. Therefore this is a new crite-
rion enables us to assess footprint of GWs more precisely.
Now we turn to the spatial-temporal cross-correlation
function for PTRs taking into account stationarity as:

C⇥(⌧,⇥ab)= hPTRa(t, n̂a)PTRb(t+ ⌧, n̂b)it, (19)

here ⇥ab = arccos |n̂a.n̂b|. To clarify the spatial and
temporal parts of cross-correlation function, we suppose
that the modified PTRa and PTRb by isotropic GWB
are represented by PTRa(t) = PTRpure

a (t)+BaRGWB

(t)
and PTRb(t) = PTRpure

b (t) + BbRGWB

(t), respectively.
The PTRpure

⇧ is the pure fluctuations of a typical PTR
in the absence of any gravitational waves and R

GWB

is
common for pulsars. The Bi is angle factor of ith pulsar
represented by

Bi ⌘ �1

2
cos(2�i)(1� cos(✓i)) (20)

The ✓i is the angle of ith pulsar to the GWB propagation
direction and �i is the angle between the projection of
the pulsar position on the (x � y) plane and the GWB
principle polarization vector (Hellings & Downs 1983).
Computing spatial-temporal cross-correlation (Eq. (19))

yields:

C⇥(⌧,⇥ab)= hPTRa(t)PTRb(t+ ⌧)it
= hPTRpure
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The first three terms are uncorrelated while the only
meaningful term is coming from GWB auto-correlation.
Taking into account statistical isotropy and stationary
regime, by averaging on all available pairs separated by
⇥, leads to:

C⇥(⌧,⇥)= h C⇥(⌧,⇥ab)ipairs ⇠ �(⇥)⇥ ⌧�⇥ (22)

where �⇥ = 2 � 2H⇥ = 2 � 2h⇥(q = 2). The �(⇥) is
given by (Hellings & Downs 1983; Jenet et al. 2005):
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where  ⌘ [1� cos(⇥)]/2. We should notice that, the
Hellings and Downs curve is only a function of angular
separation between pulsar pairs separated by ⇥ and it is
independent of the frequency (Romano & Cornish 2017).
Therefore, by applying MF-DXA, one can deduce the
value of temporal scaling exponent coming from GWB
signal. For the GWB, we expect to find constant h⇥(q)
with respect to di↵erent separation angle (⇥), while for
other local source of GWs, the h⇥(q) depends on ⇥ab
with arbitrary manner. The new cross-correlation coef-
ficient defined by Eq. (18) contains the angle factors of
pulsars in complicated functional form and we evaluate
its behavior numerically for simulation in the next sec-
tion.

2.2. Dealing with irregularly sampled data

The pulsar timing observations are unevenly sampled,
i.e. it is not a set of equidistant sampling values and the
underlying series is nonuniform requiring some sort of in-
terpolation techniques. The Lomb-Scargle periodogram
proposed a least-squares pipeline to resolve this prob-
lem (Lomb 1976; Scargle 1982). Radon transformations
have also been used for irregular sampling analysis (Ro-
nen et al. 1991; Duijndam & Schonewille 1999; Duijndam
et al. 1999) (see also (Gulati & Ferguson 2009) and ref-
erences therein). Extrapolation of irregularly recorded
data onto a regular grid has been introduced by Ferguson
(2006). For constructing Fourier expansion, nonuniform
discrete Fourier transform has been introduced by Gu-
lati & Ferguson (2009); Anholm et al. (2009). A trivial
but not necessarily optimum method with less compu-
tational burden is to interpolate between two successive
data points in recorded series. A more robust method
is to apply kernel functions on the irregular data as (see
also (Monaghan & Lattanzio 1985)):

PTRreg(t) =

Z
dt0PTRirre(t

0)W(t� t0) (24)

where PTRreg and PTRirre are regular and nonuniform
sampled data, respectively. W is a normalized window
function. A typical functional form for this window func-
tion can be Gaussian. In general, the choice of the win-
dow function, W, depends on the smoothness, accuracy
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Subsequently, the width �↵ ⌘ ↵
max

� ↵
min

is a reliable
measure for quantifying multifractal nature of the un-
derlying data. The higher value of �↵ is associated with
the higher multifractal nature reflecting the complexity
of the signal. As other complexity measures, one can
point to q-order Lyapunov exponent (Eckmann & Pro-
caccia 1986), Lempel-Ziv complexity (LZC) (Lempel &
Ziv 1976).
Inspired by common cross-correlation definition, rely-

ing on Eq. (7), we define new cross-correlation function
(Zebende 2011; Zebende et al. 2013):
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For �⇥(⇥ab) = +1, a prefect cross-correlation can be rec-
ognized, �⇥(⇥ab) = �1 indicates anti-cross-correlation,
while in the case of no cross-correlation between under-
lying series, we find �⇥(⇥ab) = 0. Averaging on all avail-
able pairs separated by ⇥ leads to:

�̄⇥(⇥) =
1

4⇡

Z
d⌦�⇥(⇥ab) (18)

The �̄⇥ introduced in Eq. (18) based on fluctuations
functions computed in the context of detrended cross-
correlation contains the quadrupolar signature if PTRs
modified by GWB signal. Therefore this is a new crite-
rion enables us to assess footprint of GWs more precisely.
Now we turn to the spatial-temporal cross-correlation
function for PTRs taking into account stationarity as:

C⇥(⌧,⇥ab)= hPTRa(t, n̂a)PTRb(t+ ⌧, n̂b)it, (19)

here ⇥ab = arccos |n̂a.n̂b|. To clarify the spatial and
temporal parts of cross-correlation function, we suppose
that the modified PTRa and PTRb by isotropic GWB
are represented by PTRa(t) = PTRpure

a (t)+BaRGWB

(t)
and PTRb(t) = PTRpure

b (t) + BbRGWB

(t), respectively.
The PTRpure

⇧ is the pure fluctuations of a typical PTR
in the absence of any gravitational waves and R

GWB

is
common for pulsars. The Bi is angle factor of ith pulsar
represented by

Bi ⌘ �1

2
cos(2�i)(1� cos(✓i)) (20)

The ✓i is the angle of ith pulsar to the GWB propagation
direction and �i is the angle between the projection of
the pulsar position on the (x � y) plane and the GWB
principle polarization vector (Hellings & Downs 1983).
Computing spatial-temporal cross-correlation (Eq. (19))

yields:

C⇥(⌧,⇥ab)= hPTRa(t)PTRb(t+ ⌧)it
= hPTRpure

a (t)PTRpure

b (t+ ⌧)it
+BbhPTRpure

a (t)R
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+BahRGWB
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(t)R
GWB

(t+ ⌧)it (21)

The first three terms are uncorrelated while the only
meaningful term is coming from GWB auto-correlation.
Taking into account statistical isotropy and stationary
regime, by averaging on all available pairs separated by
⇥, leads to:

C⇥(⌧,⇥)= h C⇥(⌧,⇥ab)ipairs ⇠ �(⇥)⇥ ⌧�⇥ (22)

where �⇥ = 2 � 2H⇥ = 2 � 2h⇥(q = 2). The �(⇥) is
given by (Hellings & Downs 1983; Jenet et al. 2005):
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2
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where  ⌘ [1� cos(⇥)]/2. We should notice that, the
Hellings and Downs curve is only a function of angular
separation between pulsar pairs separated by ⇥ and it is
independent of the frequency (Romano & Cornish 2017).
Therefore, by applying MF-DXA, one can deduce the
value of temporal scaling exponent coming from GWB
signal. For the GWB, we expect to find constant h⇥(q)
with respect to di↵erent separation angle (⇥), while for
other local source of GWs, the h⇥(q) depends on ⇥ab
with arbitrary manner. The new cross-correlation coef-
ficient defined by Eq. (18) contains the angle factors of
pulsars in complicated functional form and we evaluate
its behavior numerically for simulation in the next sec-
tion.

2.2. Dealing with irregularly sampled data

The pulsar timing observations are unevenly sampled,
i.e. it is not a set of equidistant sampling values and the
underlying series is nonuniform requiring some sort of in-
terpolation techniques. The Lomb-Scargle periodogram
proposed a least-squares pipeline to resolve this prob-
lem (Lomb 1976; Scargle 1982). Radon transformations
have also been used for irregular sampling analysis (Ro-
nen et al. 1991; Duijndam & Schonewille 1999; Duijndam
et al. 1999) (see also (Gulati & Ferguson 2009) and ref-
erences therein). Extrapolation of irregularly recorded
data onto a regular grid has been introduced by Ferguson
(2006). For constructing Fourier expansion, nonuniform
discrete Fourier transform has been introduced by Gu-
lati & Ferguson (2009); Anholm et al. (2009). A trivial
but not necessarily optimum method with less compu-
tational burden is to interpolate between two successive
data points in recorded series. A more robust method
is to apply kernel functions on the irregular data as (see
also (Monaghan & Lattanzio 1985)):

PTRreg(t) =

Z
dt0PTRirre(t

0)W(t� t0) (24)

where PTRreg and PTRirre are regular and nonuniform
sampled data, respectively. W is a normalized window
function. A typical functional form for this window func-
tion can be Gaussian. In general, the choice of the win-
dow function, W, depends on the smoothness, accuracy
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is a reliable
measure for quantifying multifractal nature of the un-
derlying data. The higher value of �↵ is associated with
the higher multifractal nature reflecting the complexity
of the signal. As other complexity measures, one can
point to q-order Lyapunov exponent (Eckmann & Pro-
caccia 1986), Lempel-Ziv complexity (LZC) (Lempel &
Ziv 1976).
Inspired by common cross-correlation definition, rely-

ing on Eq. (7), we define new cross-correlation function
(Zebende 2011; Zebende et al. 2013):
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For �⇥(⇥ab) = +1, a prefect cross-correlation can be rec-
ognized, �⇥(⇥ab) = �1 indicates anti-cross-correlation,
while in the case of no cross-correlation between under-
lying series, we find �⇥(⇥ab) = 0. Averaging on all avail-
able pairs separated by ⇥ leads to:

�̄⇥(⇥) =
1
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The �̄⇥ introduced in Eq. (18) based on fluctuations
functions computed in the context of detrended cross-
correlation contains the quadrupolar signature if PTRs
modified by GWB signal. Therefore this is a new crite-
rion enables us to assess footprint of GWs more precisely.
Now we turn to the spatial-temporal cross-correlation
function for PTRs taking into account stationarity as:

C⇥(⌧,⇥ab)= hPTRa(t, n̂a)PTRb(t+ ⌧, n̂b)it, (19)

here ⇥ab = arccos |n̂a.n̂b|. To clarify the spatial and
temporal parts of cross-correlation function, we suppose
that the modified PTRa and PTRb by isotropic GWB
are represented by PTRa(t) = PTRpure

a (t)+BaRGWB

(t)
and PTRb(t) = PTRpure

b (t) + BbRGWB

(t), respectively.
The PTRpure

⇧ is the pure fluctuations of a typical PTR
in the absence of any gravitational waves and R

GWB

is
common for pulsars. The Bi is angle factor of ith pulsar
represented by

Bi ⌘ �1

2
cos(2�i)(1� cos(✓i)) (20)

The ✓i is the angle of ith pulsar to the GWB propagation
direction and �i is the angle between the projection of
the pulsar position on the (x � y) plane and the GWB
principle polarization vector (Hellings & Downs 1983).
Computing spatial-temporal cross-correlation (Eq. (19))

yields:

C⇥(⌧,⇥ab)= hPTRa(t)PTRb(t+ ⌧)it
= hPTRpure
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The first three terms are uncorrelated while the only
meaningful term is coming from GWB auto-correlation.
Taking into account statistical isotropy and stationary
regime, by averaging on all available pairs separated by
⇥, leads to:

C⇥(⌧,⇥)= h C⇥(⌧,⇥ab)ipairs ⇠ �(⇥)⇥ ⌧�⇥ (22)

where �⇥ = 2 � 2H⇥ = 2 � 2h⇥(q = 2). The �(⇥) is
given by (Hellings & Downs 1983; Jenet et al. 2005):
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where  ⌘ [1� cos(⇥)]/2. We should notice that, the
Hellings and Downs curve is only a function of angular
separation between pulsar pairs separated by ⇥ and it is
independent of the frequency (Romano & Cornish 2017).
Therefore, by applying MF-DXA, one can deduce the
value of temporal scaling exponent coming from GWB
signal. For the GWB, we expect to find constant h⇥(q)
with respect to di↵erent separation angle (⇥), while for
other local source of GWs, the h⇥(q) depends on ⇥ab
with arbitrary manner. The new cross-correlation coef-
ficient defined by Eq. (18) contains the angle factors of
pulsars in complicated functional form and we evaluate
its behavior numerically for simulation in the next sec-
tion.

2.2. Dealing with irregularly sampled data

The pulsar timing observations are unevenly sampled,
i.e. it is not a set of equidistant sampling values and the
underlying series is nonuniform requiring some sort of in-
terpolation techniques. The Lomb-Scargle periodogram
proposed a least-squares pipeline to resolve this prob-
lem (Lomb 1976; Scargle 1982). Radon transformations
have also been used for irregular sampling analysis (Ro-
nen et al. 1991; Duijndam & Schonewille 1999; Duijndam
et al. 1999) (see also (Gulati & Ferguson 2009) and ref-
erences therein). Extrapolation of irregularly recorded
data onto a regular grid has been introduced by Ferguson
(2006). For constructing Fourier expansion, nonuniform
discrete Fourier transform has been introduced by Gu-
lati & Ferguson (2009); Anholm et al. (2009). A trivial
but not necessarily optimum method with less compu-
tational burden is to interpolate between two successive
data points in recorded series. A more robust method
is to apply kernel functions on the irregular data as (see
also (Monaghan & Lattanzio 1985)):

PTRreg(t) =

Z
dt0PTRirre(t

0)W(t� t0) (24)

where PTRreg and PTRirre are regular and nonuniform
sampled data, respectively. W is a normalized window
function. A typical functional form for this window func-
tion can be Gaussian. In general, the choice of the win-
dow function, W, depends on the smoothness, accuracy
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and the Hölder exponent is ↵ ⌘ d⇠(q)/dq. In the case
of multifractality, a spectrum of Hölder exponent is ob-
tained instead of a single exponent. The domain of
Hölder spectrum, ↵ 2 [↵

min

,↵
max

], becomes (Muzy et
al. 1994; Arneodo et al. 1995):

↵
min

= lim
q!+1

@⇠(q)

@q
, ↵

max

= lim
q!�1

@⇠(q)

@q
(16)

Subsequently, the width �↵ ⌘ ↵
max

� ↵
min

is a reliable
measure for quantifying multifractal nature of the un-
derlying data. The higher value of �↵ is associated with
the higher multifractal nature reflecting the complexity
of the signal. As other complexity measures, one can
point to q-order Lyapunov exponent (Eckmann & Pro-
caccia 1986), Lempel-Ziv complexity (LZC) (Lempel &
Ziv 1976).
Inspired by common cross-correlation definition, rely-

ing on Eq. (7), we define new cross-correlation function
(Zebende 2011; Zebende et al. 2013):

�⇥(⇥ab) ⌘
X

s
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P
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E⇥(s, ⌫)rhP
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s

⌫=1

Ea(s, ⌫)
i hP

2N
s

⌫=1

Eb(s, ⌫)
i

1

CCA

(17)
For �⇥(⇥ab) = +1, a prefect cross-correlation can be rec-
ognized, �⇥(⇥ab) = �1 indicates anti-cross-correlation,
while in the case of no cross-correlation between under-
lying series, we find �⇥(⇥ab) = 0. Averaging on all avail-
able pairs separated by ⇥ leads to:

�̄⇥(⇥) =
1

4⇡

Z
d⌦�⇥(⇥ab) (18)

The �̄⇥ introduced in Eq. (18) based on fluctuations
functions computed in the context of detrended cross-
correlation contains the quadrupolar signature if PTRs
modified by GWB signal. Therefore this is a new crite-
rion enables us to assess footprint of GWs more precisely.
Now we turn to the spatial-temporal cross-correlation
function for PTRs taking into account stationarity as:

C⇥(⌧,⇥ab)= hPTRa(t, n̂a)PTRb(t+ ⌧, n̂b)it, (19)

here ⇥ab = arccos |n̂a.n̂b|. To clarify the spatial and
temporal parts of cross-correlation function, we suppose
that the modified PTRa and PTRb by isotropic GWB
are represented by PTRa(t) = PTRpure

a (t)+BaRGWB

(t)
and PTRb(t) = PTRpure

b (t) + BbRGWB

(t), respectively.
The PTRpure

⇧ is the pure fluctuations of a typical PTR
in the absence of any gravitational waves and R

GWB

is
common for pulsars. The Bi is angle factor of ith pulsar
represented by

Bi ⌘ �1

2
cos(2�i)(1� cos(✓i)) (20)

The ✓i is the angle of ith pulsar to the GWB propagation
direction and �i is the angle between the projection of
the pulsar position on the (x � y) plane and the GWB
principle polarization vector (Hellings & Downs 1983).
Computing spatial-temporal cross-correlation (Eq. (19))

yields:

C⇥(⌧,⇥ab)= hPTRa(t)PTRb(t+ ⌧)it
= hPTRpure

a (t)PTRpure

b (t+ ⌧)it
+BbhPTRpure

a (t)R
GWB

(t+ ⌧)it
+BahRGWB

(t)PTRpure

b (t+ ⌧)it
+BaBbhRGWB

(t)R
GWB

(t+ ⌧)it (21)

The first three terms are uncorrelated while the only
meaningful term is coming from GWB auto-correlation.
Taking into account statistical isotropy and stationary
regime, by averaging on all available pairs separated by
⇥, leads to:

C⇥(⌧,⇥)= h C⇥(⌧,⇥ab)ipairs ⇠ �(⇥)⇥ ⌧�⇥ (22)

where �⇥ = 2 � 2H⇥ = 2 � 2h⇥(q = 2). The �(⇥) is
given by (Hellings & Downs 1983; Jenet et al. 2005):

�(⇥) =
3

2
 ln( )�  

4
+

1

2
, (23)

where  ⌘ [1� cos(⇥)]/2. We should notice that, the
Hellings and Downs curve is only a function of angular
separation between pulsar pairs separated by ⇥ and it is
independent of the frequency (Romano & Cornish 2017).
Therefore, by applying MF-DXA, one can deduce the
value of temporal scaling exponent coming from GWB
signal. For the GWB, we expect to find constant h⇥(q)
with respect to di↵erent separation angle (⇥), while for
other local source of GWs, the h⇥(q) depends on ⇥ab
with arbitrary manner. The new cross-correlation coef-
ficient defined by Eq. (18) contains the angle factors of
pulsars in complicated functional form and we evaluate
its behavior numerically for simulation in the next sec-
tion.

2.2. Dealing with irregularly sampled data

The pulsar timing observations are unevenly sampled,
i.e. it is not a set of equidistant sampling values and the
underlying series is nonuniform requiring some sort of in-
terpolation techniques. The Lomb-Scargle periodogram
proposed a least-squares pipeline to resolve this prob-
lem (Lomb 1976; Scargle 1982). Radon transformations
have also been used for irregular sampling analysis (Ro-
nen et al. 1991; Duijndam & Schonewille 1999; Duijndam
et al. 1999) (see also (Gulati & Ferguson 2009) and ref-
erences therein). Extrapolation of irregularly recorded
data onto a regular grid has been introduced by Ferguson
(2006). For constructing Fourier expansion, nonuniform
discrete Fourier transform has been introduced by Gu-
lati & Ferguson (2009); Anholm et al. (2009). A trivial
but not necessarily optimum method with less compu-
tational burden is to interpolate between two successive
data points in recorded series. A more robust method
is to apply kernel functions on the irregular data as (see
also (Monaghan & Lattanzio 1985)):

PTRreg(t) =

Z
dt0PTRirre(t

0)W(t� t0) (24)

where PTRreg and PTRirre are regular and nonuniform
sampled data, respectively. W is a normalized window
function. A typical functional form for this window func-
tion can be Gaussian. In general, the choice of the win-
dow function, W, depends on the smoothness, accuracy
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موج اثر تنها مͳ کنند، ایجاد ͳهم بستگ تپ اخترها ͳزمان پسماند در که ͳعوامل تمام میان از زیرا بود.
این یافتن مͳ شود. تپ اخترها داده های در چهارقطبی ͳهم بستگ Έی ایجاد باعث است زمینه ̥ͳگرانش
با اما است نشده حاصل کنون تا که دارد تپ اخترها ͳزمان سنج در بالا بسیار دقت به نیاز ͳهم بستگ
ͳگرانش موج شدت روی مͳ توان داریم اختیار در حاضر حال در که زمانͳ ای پسماندهای از استفاده
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داده ایم. نشان را شده است رصد [٣۶] PPTA پروژه ی بوسیله که J٠۴٣٧-۴٧١۵ تپ اختر
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نوشت: زیر ش΋ل به مͳ توان را ام i تپ اختر داده های در شده
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= αih(t) + ni(t), (١ . ٣٣)
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4.3. Strategies for Searching GWs

According to the results presented in the previous sections,
the randomness of pure PTRs exhibits that deviations from
uncorrelated behavior can be considered as additional features
presented in the recorded data. Unfortunately, the observed
PTRs may include intrinsic fractal noise, interstellar plasma,
uncertainties in the Earth’s motion, master clocks, and receiver
signals. It has been demonstrated that the noise from some of
these sources is wavelength dependent and has spatial
correlation, either monopole or dipole in nature. Subsequently,
relying on multifractal analysis modified by preprocessing
algorithms such as the AD or SVD methods of individual PTRs
probably gives rise to spurious results in the framework of GW
searching. To get rid of the effect of undesired components, we
rely on the quadrupole structure of the GWB and carry out the
irregular MF-DXA approach.

Therefore, we begin with irregular MF-DXA on all available
PTRs distributed over all directions and then compute s Q´¯ ( ) as
a function of separation angle, Θ. The existence of a feature
similar to Figure 5 in observed PTRs would imply detection of
a GWB. Note that Figure 5 is the average of 50 realizations.
One observation with these parameters would have error bars
almost 7 times larger, so the GWB would be detected but the
significance would be much less. Thereafter, we will turn to the
multifractal behavior of the PTR series to determine the type
and amplitude of the GWB. In order to determine the type of
stochastic GWB with a strain spectrum modeled by
Equation (33), after preprocessing to remove noise and
foreground, we apply multifractal methods to compute a
reliable Hurst exponent. This exponent is related to the power-
spectrum exponent. Finally, the best-fit value of ζ and its
associated error bar are determined (Hobbs et al. 2009).
However, there are many complications in the real data sets,
making the inference procedure less straightforward to assess
GWs. We therefore introduce four criteria as follows.

(I) According to Equations (11) and (12), the intercept of
fluctuation function for PTRs contains the intensity of
superimposed GWs. Therefore, after recognizing a quadrupolar
signature in analyzing pairs of PTRs, the following quantity is

able to indicate the intensity of GWB: � zD º( )h ,1 yr
� � � �zå - ==

= ∣ ( ) ( )∣( ) ( ), 0q q
q q

h q h qyr yr
min
max . In practice, we find

a robust mathematical relation between � zD ( )h ,1 yr and �yr
for any given ζ (or, equivalently, H) and rms of white noise, as
follows. We do many simulations for a given value of ζ with
different �yr values. Then, we apply either SVD or AD to
make clean data. The clean data are used for further analysis.
According to our simulation for ζ=−2/3 and rms=100 ns,
the mathematical relation between �yr and Δh1 in the range of
� Î - -[ ]10 , 10yr

17 15 reads as

�
= D + D +

-

⎛
⎝⎜

⎞
⎠⎟ ( )a h b h c

10
, 34yr

17 1
2

1

where a=(−1.15±0.40)×1012, b=(2.84±0.54)×107,
and c=−74.45±16.88. This fitting function is not unique,
and here we select one with a high goodness of fit before going
further. Also, for any other rms dictated by experiment, the
above analysis should be repeated to find the corresponding
fitting function.
(II) For pure PTRs, we found that the Hurst exponent is almost

0.5, while there will be deviations in the generalized Hurst
exponent for PTR signals affected by GWs (Equation (33)) for a
given amplitude �yr and ζ. Therefore, another powerful measure
to quantify the intensity of the GWB would be � zD º( )h ,2 yr

� �z zå -= ∣ ( ) ( )∣h q h q; , ; ,q q
q

yr shuf yr
min

max ,where � z( )h q; ,shuf yr

is for completely randomized PTRs and “shuf ” refers to shuffled.
In practice, we find a robust mathematical relation between

� zD ( )h ,2 yr and �yr for any given ζ (or, equivalently, H) and
rms of white noise. The corresponding shuffled series are
produced using original series. Now, by calculating the general-
ized Hurst exponent for original and shuffled data, one can
compute Δh2. We find that the following function is a good fit to
our simulations for �yr in the range of � Î - -[ ]10 , 10yr

17 15

versus Δh2 for ζ=−2/3 and rms=100 ns:

�
= D + D + D

-

⎛
⎝⎜

⎞
⎠⎟ ( )a h b h c h

10
, 35yr

17 2
3

2
2

2

where a=0.19±0.06, b=−1.57±0.92, and c=7.40±
3.30. This fitting function is not unique, and here we select one
with a high goodness of fit. Before going further, it is worth
noting that the whitened noise generation is serious in many
simulations. An optimal algorithm to evaluate noise quality in
many simulations, especially in data generated by the TEMPO2
software, can be carried out by the shuffling procedure
explained here. Subsequently, our proposal in this regard can
be straightforwardly implemented as a new plug-in.
(III) Since GWs may induce non-Gaussianity in PTRs, it

is interesting to take into account � zD º å =( )h , q q
q

3 yr
min

max

� �z z-∣ ( ) ( )∣h q h q; , , ,yr sur yr . In the mentioned criterion,
� z( )h q; ,sur yr is the generalized Hurst exponents computed for

Gaussian data sets with the same correlation function as the
original series. Here “sur” represents surrogated data or phase-
randomized surrogated series, including the multiplication of
Fourier-transform data by a random phase with a uniform
distribution function (Prichard & Theiler 1994). We simulated
the PTR accompanying the GWB with different amplitudes, and
the following fitting function is determined for �yr in the same

Figure 5. The s Q´¯ ( ) vs. Θ for simulated pure (triangles) and induced by
stochastic GWB with ζ=−2/3 and � = ´ -50 10yr

17 (circles), as well as
� = ´ -100 10yr

17 (squares) PTRs. By definition, s̄́ is almost insensitive to
the value of �yr. The dashed line corresponds to the Hellings and Downs
curve.
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so-called forward moving average; finally, θ=0.5 is related to
the centered moving average (Xu et al. 2005; Gu & Zhou 2010).
Therefore, detrended data are constructed by subtracting the
calculated moving average function from the cumulative series,
X◊, as

e = -
~

à àà( ) ( ) ( ) ( )i X i X i , 6X

where s−s1�i�N−s1. Now e àX (i) values are divided into
Ns=int[N/s] nonoverlapping windows with the same size of
s, and we calculate the fluctuation function:

� ån e n e n= + - ´ + -´
=

( ) ( ( ) ) ( ( ) )

( )

s
s

i s i s,
1

1 1 .

7
i

s

X X
1

a b

(4) Using Equations (3) and (4) for the MF-DCCA (MF-
DFA) method (Peng et al. 1992, 1994; Buldyrev et al. 1995;
Kantelhardt et al. 2002; Shao et al. 2012) and Equation (7) for
the MF-DMA algorithm, the corresponding qth-order fluctua-
tion function can be computed by:
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For q=0, we have

� �å n=
n

´
=
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⎛
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N
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1
4

ln , . 9
s

N

1

2 s

(5) The scaling behavior of the fluctuation function
according to

� ~´ ´( ) ( )( )q s s, 10h q

gives the cross-correlation exponent h×(q). The q-parameter
enables us to quantify the contribution of different values of
fluctuation functions in Equations (8) and (9). The small
fluctuations play a major role in summation for q<1, while
large fluctuations become dominant for q�1. We emphasize
that for heteroskedastic data, the summation in Equations (8)
and (9) should incorporate variable error bars, and weighted
fitting polynomials must be considered. It turns out that for
a=b, the usual generalized Hurst exponent, h(q), is retrieved.
In this case we have

� �=( ) ( )( ) ( )s s ; 11q h q
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and s = á ñPTR2 2 for zero mean data. Any q-dependency of h(q)
confirms that the underlying data set is a multifractal process. For
the class of the nonstationary series (corresponding to a fractional
Brownian motion; fBm), the exponent derived by using MF-DFA
is h(q=2)>1. Therefore, in this case, the Hurst exponent is
given by H=h(q=2)−1. In the stationary case, h(q=2)<1
(corresponding to a fractional Gaussian noise; fGn) and H=h

(q=2). For completely stationary random data, H=0.5, while
for a persistent data set, 0.5<H<1.0. For an anticorrelated data
set, H<0.5 (Ossadnik et al. 1994; Peng et al. 1994; Taqqu et al.
1995). When the Hurst exponent is determined, the scaling
exponents of autocorrelation for an fGn process read as
� t t t= á + ñ ~ g-( ) ( ) ( )x t x t for τ?0 with γ=2−2H,
while for a fBm signal, we have � = á ñ ~ +g-( ) ( ) ( )t t x t x t t,i j i j i

- -g g- -∣ ∣t t tj i j for - �∣ ∣t t 0i j with γ=−2H. The associated
power spectrum is S( f )∼f−β with β=2H−1 and β=
2H+1 for the fGn and fBm processes, respectively. The relation
between the generalized Hurst exponent and the scaling exponent
of the partition function known as the multifractal scaling exponent
based on the standard multifractal formalism becomes (Kantelhardt
et al. 2002)

x = -( ) ( ) ( )q qh q 1. 13

For a monofractal data set, ξ(q) is a linear function (Kantelhardt
et al. 2002). The generalized multifractal dimension is also
given by

x
=

-
=

-
-

( ) ( ) ( ) ( )D q
q

q
qh q

q1
1

1
, 14

where D(q=0)=Df is the fractal dimension of the time series
and D(q=1) is related to the so-called entropy of the
underlying system (Halsey et al. 1986). A more complete
quantitative measure of multifractality is the singularity
spectrum and indicates how the box probability of standard
multifractal formalism behaves at small scales. It is defined by
the Legendre transformation of ξ(q) as (Feder 2013)

a a x= -( ) ( ) ( )f q q , 15

and the Hölder exponent is α≡dξ(q)/dq. In the case of
multifractality, a spectrum of the Hölder exponent is obtained
instead of a single exponent. The domain of the Hölder
spectrum, a a aÎ [ ],min max , becomes (Muzy et al. 1994;
Arneodo et al. 1995)

a
x

a
x

=
¶
¶

=
¶
¶l+¥ l-¥
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q

q
q

lim , lim . 16
q q

min max

Subsequently, the width Δα≡αmax−αmin is a reliable
measure for quantifying the multifractal nature of the underlying
data. The higher value of Δα is associated with the higher
multifractal nature reflecting the complexity of the signal. As
other complexity measures, one can point to the q-order
Lyapunov exponent (Eckmann & Procaccia 1986) and the
Lempel–Ziv complexity (Lempel & Ziv 1976). Inspired by the
common cross-correlation definition, relying on Equation (7),
we define the new cross-correlation function (Zebende 2011;
Zebende et al. 2013),
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here Q = ∣ ˆ ˆ ∣n narccos .ab a b . Averaging on all available pairs
separated by Θ leads to

òs
p

sQ = W Q´ ´¯ ( ) ( ) ( )d
1

4
. 18ab

The s̄́ introduced by Equation (18) based on fluctuation
functions computed in the context of detrended cross-correlation
contains the quadrupolar signature if PTRs are modified by the
GWB signal. Therefore, this is a new criterion that enables us to
assess the footprint of GWs more precisely.

Now we turn to the spatial cross-correlation function for
PTRs taking into account stationarity as

� Q = á ñ(́ ) ( ˆ ) ( ˆ ) ( )t n t nPTR , PTR , . 19ab a a b b t

In the presence of an isotropic GWB, averaging the cross-
correlation on all available pairs separated by Θ leads to

� �Q = á Q ñ ~ G Q´ ´( ) ( ) ( ) ( ). 20ab pairs

The G Q( ) is given by the Hellings and Downs equation
(Hellings & Downs 1983; Jenet et al. 2005),

y y
y

G Q = - +( ) ( ) ( )3
2

ln
4

1
2

, 21

where ψ≡[1−cos(Θ)]/2. We should notice that the Hellings
and Downs curve is only a function of the angular separation
between pulsar pairs separated by Θ, and it is independent of
the frequency (Romano & Cornish 2017).

The new cross-correlation coefficient defined by Equation (18)
is related to the traditional cross-correlation �´ in a complex way,
the relation is not analytically tractable without any approximation,
and we will evaluate it numerically in the next section. However,
according to Equation (7), the mapping between �´ and σ× does
not change the sign of σ×. Thus, the quadrupolar signature of the
Hellings and Downs function is preserved. It is worth mentioning
that, besides the probable GW signal superimposed in the PTRs,
the following fluctuations can be existed in the recorded data: the
correlated red (fractal) noise; clock errors, which are the same in all
pulsars (i.e., monopolar); and ephemeris errors (which are dipolar).
There are no known noise sources other than GWs that are
quadrupolar (Tiburzi et al. 2015).

Applying MF-DXA on PTRs determines the value of the
temporal scaling exponent, h×. We expect to find constant
h×(q) with respect to different separation angles (Θ) for an
isotropic GWB, while for the other local source of GWs, the
h×(q) depends on Θab in an arbitrary manner.

2.2. Dealing with Irregularly Sampled Data

The pulsar timing observations are unevenly sampled; i.e., they
are not a set of equidistant sampling values, and the underlying
series is nonuniform, requiring some sort of interpolation
technique. The Lomb–Scargle periodogram proposed a least-
squares pipeline to resolve this problem (Lomb 1976; Scargle
1982). Radon transformations have also been used for irregular
sampling analysis (Ronen et al. 1991; Duijndam & Schonewille
1999; Duijndam et al. 1999; see also Gulati & Ferguson 2009 and
references therein). Extrapolation of irregularly recorded data onto
a regular grid was introduced by Ferguson (2006). For constructing
Fourier expansion, nonuniform discrete Fourier transform was
introduced by Gulati & Ferguson (2009) and Anholm et al. (2009).
A trivial but not necessarily optimum method with less

computational burden is to interpolate between two successive
data points in a recorded series. A more robust method is to apply
kernel functions on the irregular data, as see also (Monaghan &
Lattanzio 1985)

/ò= ¢ ¢ - ¢( ) ( ) ( ) ( )t dt t t tPTR PTR , 22reg irre

where PTRreg and PTRirre are regular and nonuniform sampled
data, respectively. Here/ is a normalized window function. A
typical functional form for this window function can be
Gaussian. In general, the choice of the window function, / ,
depends on the smoothness, accuracy requirements, and
computation efficiency (Monaghan & Lattanzio 1985).
Here we propose a new approach to find robust scaling

properties for irregular sampled data. If there is no a priori
information for the smoothing procedure, we suggest applying
a Gaussian kernel to the data followed by a linear interpolation
to regularize data sets. Subsequently, we can construct the
profile using such regular data (Equation (2)). To reduce the
contribution of artificial data points produced in this interpola-
tion, we introduce the irregular MF-DXA method. In this new
algorithm, we modify the fluctuation function procedure given
by Equations (3) and (4) for identical PTRs as

� ån n=
¢

+ - ¢ -
n

n
=

¢n
( )

( )
[ ( ( ) ) ˜ ( )] ( )

( )
s

s s
X i s X i,

1
1 . 23

i

s s
2

1

2

In the above equation, only the data points recorded during
observation in each segment with size s will be considered for
further computations. Therefore, the number of data in the νth
window with size s is represented by sν
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not equal to s. Now Equation (8) becomes a weighted average,
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where �s n( )s q, ,2 is the variance of � n[ ( )]s, q2 2. We similarly
replace the averaging procedure in any relevant parts with the
weighted averaging.
Recently, Ma et al. (2010) showed that the global scaling

exponents of long-correlated signals remain unchanged for up
to 90% of data loss, while for anticorrelated series, even less
than 10% of data loss creates a significant modification in the
original scaling exponents. This research shows that one can
compute the scaling exponents for long-range correlated
irregularly sampled data points if one regularizes the data set
through linear interpolation and then applies DFA. But for an
anticorrelated signal, the DFA method does not lead to
reasonable results. Our new proposal demonstrates that for
synthetic series with known Hurst exponents, our modification
leads to more reliable estimations for scaling exponents, not
only for correlated series but also for anticorrelated data sets.
Our simulations show that the PTR can be considered as long-
range correlated fluctuation. Therefore, our results are almost
not affected by the type of regularization.

2.3. SVD

It is important to find trends and noise sectors in data
analysis, especially in the astronomical data. When we use
MF-DFA, MF-DMA, and MF-DXA, an essential demand
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1. INTRODUCTION

The Cold Spot, first found in the WMAP data (Vielva
et al. 2004; Cruz et al. 2005, 2006) and confirmed by the
Planck observations (Planck Collaboration et al. 2016),
is among the most important CMB anomalies. The
chances that Guassian and isotropic initial conditions
have led to such a large and relatively cold region is low
(Cruz et al. 2005, 2006, 2007). Therefore, there have
been speculations of the Cold Spot being produced by
a secondary source of anisotropy such a supervoid or a
cosmic texture. (?Inoue & Silk 2007) have shown that a
huge underdense region with density contrast � ⇠ �0.3
and a comoving radius of R ⇠ 200h�1Mpc located at
z ⇡ 1 could lead to such a pattern of anisotropy. How-
ever, both simulations, under the standard assumptions
of structure formation in ⇤CDM (Colberg et al. 2005;
Platen et al. 2008), and observational evidence (Patiri
et al. 2006; Hoyle & Vogeley 2004; Mackenzie et al. 2017)
are against the existence of such a supervoid at this
redshift. A more probable alternative is a cosmic texture
causing a cold spot on the CMB sky through interaction
with the photons passing nearby (Cruz et al. 2007, 2008).

In this work, we are interested in analyzing the traces
such structures, if existing, would leave on the microwave
sky, as seen by the Planck data, and do not assess the
feasibility of their formation. These structures through
gravitational interaction with the CMB photons that
are on their way to reach us lead to both their red-
shift and lensing whose amplitudes can be simultaneously
measured. The consistency of the measured amplitudes
would imply the viability of the assumption used in the
template construction. Their inconsistency, on the other
hand, may call for a di↵erent parameterization of the
templates or di↵erent parameter values, or even more
severely, may challenge the existence of the structure and
its role in generating the cold spot. In Section 2 we in-
troduce the candidates used here as possible sources of
the cold spot and their imprints on CMB photons. The
mathematical framework for this analysis these imprints
is explained in Section 3, and the results are presented in
Section ??. We conclude in Section 5. This work is based
on the standard ⇤CDM cosmology, consistent with the
Planck 2018 data (Planck Collaboration et al. 2018).

2. CANDIDATES

In this section we introduce two physically well-
motivated candidates as the physical origins of the CMB

Corresponding author email: m farhang@sbu.ac.ir

cold spot, i.e., a cosmic texture (Section 2.1) and a huge
void (Section 2.2). We discuss the gravitational redshift
and lensing of the CMB photons as they pass through or
close to these structures. Given the small size of the sky
patch we are interested in, we work in the flat sky limit.

2.1. Cosmic Texture

Among the most plausible explanations for the ob-
served CMB cold spot is a collapsing cosmic texture, first
proposed by Cruz et al. (2007). Cosmic textures are a
type of topological defect possibly formed in phase tran-
sitions at early times, associated with symmetry breaking
of certain models of high-energy physics (Turok 1989) .
The photons passing through the non-static gravitational
potential of a collapsing texture would experience gravi-
tational redshift and therefor a decrease in their temper-
ature. Such temperature anisotropies produced at small
angular scales are approximated by (Pen et al. 1994)

�̄⇥(⇥) = h�⇥(⇥ab)iab�rs(✓) ⌘ (
�T

T

)rs(✓) = ✏

1q
1 + 4( ✓

✓T
)2

(1)
Here ✓ represents the angular separation of the direc-

tion of the observation to the center of the cold spot. ✓T
is the characteristic angular scale of the texture, deter-
mined by the dynamics of the Universe, as well as the
redshift of the texture zT,

✓T =
2
p
2(1 + zT)

E(zT)
R zT
0 dz/E(z)

, (2)

where E(z) =
p

⌦m(1 + z)3 + ⌦⇤ and  is a constant
determined by simulations. ✏ in Eq. ?? is associated
with the energy scale  0 of the symmetry breaking phase
through ✏ = 8⇡2

G 

2
0 . It should be noted that the above

approximation of Eq. ?? is only valid up to ✓ ⇡ ✓T. The
profile for temperature anisotropies can be extended to
larger separations, based on imposing the continuity of
the profile and its first derivative at ✓T. In this work we
neglect these details and focus on the cold spot itself.
In addition to generating anisotropies in the microwave

sky by gravitational redshift, the texture potential also
acts as a converging lens and bends the trajectories of
the photons passing through it. The deflection angle,
~↵T = �↵T(✓)✓̂, is approximately given by (Durrer et al.
1992; Das & Spergel 2009)

↵T (✓) = AT
✓q

1 + 4( ✓
✓T

)2
. (3)
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able PT Rs distributed over all directions and then compute
�̄⇥(⇥) as a function of separation angle, ⇥. The existence
of a feature similar to Fig. ?? in observed PT Rs would im-
ply detection of a GWB. Note that Fig. ?? is the average of
50 realizations. One observation with these parameters would
have error bars almost 7 times larger, so the GWB would be
detected but the significance would be much less. Thereafter,
we will turn to the multifractal behavior of the PT R series to
determine the type and amplitude of the GWB. In order to
determine the type of stochastic GWB with a strain spectrum
modeled by Eq. (??), after preprocessing to remove noise
and foreground, we apply multifractal methods to compute
a reliable Hurst exponent. This exponent is related to the
power-spectrum exponent. Finally, the best-fit value of ⇣ and
its associated error bar are determined (?). However, there are
many complications in the real data sets, making the inference
procedure less straightforward to assess GWs. We therefore
introduce four criteria as follows:

I) According to Eqs. (??) and (??), the intercept of fluctua-
tion function for PTRs contains the intensity of superimposed
GWs. Therefore, after recognizing a quadrupolar signature
in analyzing pairs of PTRs, the following quantity is able to
indicate the intensity of GWB:

�h1(Ayr,⇣)⌘
q=qmaxX

q=qmin

|Gh(q)(Ayr,⇣)�Gh(q)(Ayr = 0)|

. In practice, we find a robust mathematical relation between
�h1(Ayr,⇣) and Ayr for any given ⇣ (or, equivalently, H) and
rms of white noise, as follows. We do many simulations for
a given value of ⇣ with different Ayr values. Then, we apply
either SVD or AD to make clean data. The clean data are
used for further analysis. According to our simulation for ⇣ =
�2/3 and rms=100 ns, the mathematical relation between Ayr

and �h1 in the range of Ayr 2 [10�17,10�15] reads as:
✓ Ayr

10�17

◆
= a�h2

1 +b�h1 + c (34)

where a = (�1.15 ± 0.40)⇥ 1012, b = (2.84 ± 0.54)⇥ 107

and c = �74.45± 16.88. This fitting function is not unique,
and here we select one with a high goodness of fit before go-
ing further. Also, for any other rms dictated by experiment,
the above analysis should be repeated again to find the corre-
sponding fitting function.

II) For pure PTRs, we found that the Hurst exponent is al-
most 0.5, while there will be deviations in the generalized
Hurst exponent for PT R signals affected by GWs (Eq. (??))
for a given amplitude Ayr, and ⇣. Therefore, another power-
ful measure to quantify the intensity of the GWB would be
�h2(Ayr,⇣)⌘

Pqmax
q=qmin

|h(q;Ayr,⇣)�hshuf(q;Ayr,⇣)|. Where
hshuf(q;Ayr,⇣) is for completely randomized PT R and "shuf"
refers to shuffled. In practice, we find a robust mathemati-
cal relation between �h2(Ayr,⇣) and Ayr for any given ⇣ (or,
equivalently, H) and rms of white noise. The corresponding
shuffled series are produced using original series. Now by
calculating the generalized Hurst exponent for original and
shuffled data, one can compute �h2. We find that the fol-
lowing function is a good fit to our simulations for Ayr in the
range of Ayr 2 [10�17,10�15] versus �h2 for ⇣ = �2/3 and
rms=100 ns:

✓ Ayr

10�17

◆
= a�h3

2 +b�h2
2 + c�h2 (35)

where a= 0.19±0.06, b=�1.57±0.92, and c= 7.40±3.30.
This fitting function is not unique, and here we select a high
goodness of fit. Before going further, it is worth noting
that the whitened noise generation is serious in many simula-
tions. An optimal algorithm to evaluate noise quality in many
simulations, especially in data generation by the TEMPO2
software, can be carried out by the shuffling procedure ex-
plained here. Subsequently, our proposal in this regard can be
straightforwardly implemented as a new plug-in.

III) Since GWs may induce non-Gaussianity in PT R,
it is interesting to take into account �h3(Ayr,⇣) ⌘Pqmax

q=qmin
|h(q;Ayr,⇣)� hsur(q,Ayr,⇣)|. In the mentioned cri-

terion, hsur(q;Ayr,⇣) is the generalized Hurst exponents com-
puted for Gaussian datasets with the same correlation function
as the original series. Here "sur" represents surrogated data
or phase-randomized surrogated series, including the multi-
plication of Fourier-transform data by a random phase with
a uniform distribution function (?). We simulated the PT R
accompanying the GWB with different amplitudes, and the
following fitting function is determined for Ayr in the same
range as above versus �h3 for ⇣ =�2/3 and rms=100 ns:

✓ Ayr

10�17

◆
= a�h3 +b (36)

where a = 68.03±11.73 and b =�321.50±65.10.
IV ) The width of the singularity spectrum, which quanti-

fies the nature of multifractality, is another benchmark for de-
termining the amplitude of GWs superimposed on the PT Rs.
This measure is defined by �h4(Ayr,⇣) ⌘ |�↵(Ayr,⇣) �
�↵(Ayr = 0)|. According to our simulations, we find:

✓ Ayr

10�17

◆
= a�hb

4 + c (37)
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able PT Rs distributed over all directions and then compute
�̄⇥(⇥) as a function of separation angle, ⇥. The existence
of a feature similar to Fig. ?? in observed PT Rs would im-
ply detection of a GWB. Note that Fig. ?? is the average of
50 realizations. One observation with these parameters would
have error bars almost 7 times larger, so the GWB would be
detected but the significance would be much less. Thereafter,
we will turn to the multifractal behavior of the PT R series to
determine the type and amplitude of the GWB. In order to
determine the type of stochastic GWB with a strain spectrum
modeled by Eq. (??), after preprocessing to remove noise
and foreground, we apply multifractal methods to compute
a reliable Hurst exponent. This exponent is related to the
power-spectrum exponent. Finally, the best-fit value of ⇣ and
its associated error bar are determined (?). However, there are
many complications in the real data sets, making the inference
procedure less straightforward to assess GWs. We therefore
introduce four criteria as follows:

I) According to Eqs. (??) and (??), the intercept of fluctua-
tion function for PTRs contains the intensity of superimposed
GWs. Therefore, after recognizing a quadrupolar signature
in analyzing pairs of PTRs, the following quantity is able to
indicate the intensity of GWB:

�h1(Ayr,⇣)⌘
q=qmaxX

q=qmin

|Gh(q)(Ayr,⇣)�Gh(q)(Ayr = 0)|

. In practice, we find a robust mathematical relation between
�h1(Ayr,⇣) and Ayr for any given ⇣ (or, equivalently, H) and
rms of white noise, as follows. We do many simulations for
a given value of ⇣ with different Ayr values. Then, we apply
either SVD or AD to make clean data. The clean data are
used for further analysis. According to our simulation for ⇣ =
�2/3 and rms=100 ns, the mathematical relation between Ayr

and �h1 in the range of Ayr 2 [10�17,10�15] reads as:
✓ Ayr
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1 +b�h1 + c (34)

where a = (�1.15 ± 0.40)⇥ 1012, b = (2.84 ± 0.54)⇥ 107

and c = �74.45± 16.88. This fitting function is not unique,
and here we select one with a high goodness of fit before go-
ing further. Also, for any other rms dictated by experiment,
the above analysis should be repeated again to find the corre-
sponding fitting function.

II) For pure PTRs, we found that the Hurst exponent is al-
most 0.5, while there will be deviations in the generalized
Hurst exponent for PT R signals affected by GWs (Eq. (??))
for a given amplitude Ayr, and ⇣. Therefore, another power-
ful measure to quantify the intensity of the GWB would be
�h2(Ayr,⇣)⌘

Pqmax
q=qmin

|h(q;Ayr,⇣)�hshuf(q;Ayr,⇣)|. Where
hshuf(q;Ayr,⇣) is for completely randomized PT R and "shuf"
refers to shuffled. In practice, we find a robust mathemati-
cal relation between �h2(Ayr,⇣) and Ayr for any given ⇣ (or,
equivalently, H) and rms of white noise. The corresponding
shuffled series are produced using original series. Now by
calculating the generalized Hurst exponent for original and
shuffled data, one can compute �h2. We find that the fol-
lowing function is a good fit to our simulations for Ayr in the
range of Ayr 2 [10�17,10�15] versus �h2 for ⇣ = �2/3 and
rms=100 ns:

✓ Ayr

10�17

◆
= a�h3

2 +b�h2
2 + c�h2 (35)

where a= 0.19±0.06, b=�1.57±0.92, and c= 7.40±3.30.
This fitting function is not unique, and here we select a high
goodness of fit. Before going further, it is worth noting
that the whitened noise generation is serious in many simula-
tions. An optimal algorithm to evaluate noise quality in many
simulations, especially in data generation by the TEMPO2
software, can be carried out by the shuffling procedure ex-
plained here. Subsequently, our proposal in this regard can be
straightforwardly implemented as a new plug-in.

III) Since GWs may induce non-Gaussianity in PT R,
it is interesting to take into account �h3(Ayr,⇣) ⌘Pqmax

q=qmin
|h(q;Ayr,⇣)� hsur(q,Ayr,⇣)|. In the mentioned cri-

terion, hsur(q;Ayr,⇣) is the generalized Hurst exponents com-
puted for Gaussian datasets with the same correlation function
as the original series. Here "sur" represents surrogated data
or phase-randomized surrogated series, including the multi-
plication of Fourier-transform data by a random phase with
a uniform distribution function (?). We simulated the PT R
accompanying the GWB with different amplitudes, and the
following fitting function is determined for Ayr in the same
range as above versus �h3 for ⇣ =�2/3 and rms=100 ns:
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= a�h3 +b (36)

where a = 68.03±11.73 and b =�321.50±65.10.
IV ) The width of the singularity spectrum, which quanti-

fies the nature of multifractality, is another benchmark for de-
termining the amplitude of GWs superimposed on the PT Rs.
This measure is defined by �h4(Ayr,⇣) ⌘ |�↵(Ayr,⇣) �
�↵(Ayr = 0)|. According to our simulations, we find:
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and �h1 in the range of Ayr 2 [10�17,10�15] reads as:
✓ Ayr

10�17

◆
= a�h2

1 +b�h1 + c (34)

where a = (�1.15 ± 0.40)⇥ 1012, b = (2.84 ± 0.54)⇥ 107

and c = �74.45± 16.88. This fitting function is not unique,
and here we select one with a high goodness of fit before go-
ing further. Also, for any other rms dictated by experiment,
the above analysis should be repeated again to find the corre-
sponding fitting function.

II) For pure PTRs, we found that the Hurst exponent is al-
most 0.5, while there will be deviations in the generalized
Hurst exponent for PT R signals affected by GWs (Eq. (33))
for a given amplitude Ayr, and ⇣. Therefore, another powerful
measure to quantify the intensity of the GWB would be

�h2(Ayr,⇣)⌘
qmaxX

q=qmin

|h(q;Ayr,⇣)�hshuf(q;Ayr,⇣)|

. Where hshuf(q;Ayr,⇣) is for completely randomized PT R
and "shuf" refers to shuffled. In practice, we find a robust
mathematical relation between �h2(Ayr,⇣) and Ayr for any
given ⇣ (or, equivalently, H) and rms of white noise. The cor-
responding shuffled series are produced using original series.

Now by calculating the generalized Hurst exponent for origi-
nal and shuffled data, one can compute �h2. We find that the
following function is a good fit to our simulations for Ayr in
the range of Ayr 2 [10�17,10�15] versus �h2 for ⇣ = �2/3
and rms=100 ns:

✓ Ayr

10�17

◆
= a�h3

2 +b�h2
2 + c�h2 (35)

where a= 0.19±0.06, b=�1.57±0.92, and c= 7.40±3.30.
This fitting function is not unique, and here we select a high
goodness of fit. Before going further, it is worth noting
that the whitened noise generation is serious in many simula-
tions. An optimal algorithm to evaluate noise quality in many
simulations, especially in data generation by the TEMPO2
software, can be carried out by the shuffling procedure ex-
plained here. Subsequently, our proposal in this regard can be
straightforwardly implemented as a new plug-in.

III) Since GWs may induce non-Gaussianity in PT R,
it is interesting to take into account �h3(Ayr,⇣) ⌘Pqmax

q=qmin
|h(q;Ayr,⇣)� hsur(q,Ayr,⇣)|. In the mentioned cri-

terion, hsur(q;Ayr,⇣) is the generalized Hurst exponents com-
puted for Gaussian datasets with the same correlation function
as the original series. Here "sur" represents surrogated data
or phase-randomized surrogated series, including the multi-

Multifractal Analysis of Pulsar Timing Residuals 11

!h3

A
yr

 (
10

-1
7 )

5 5.5 6
0

10

20

30

40

50

60

70

80

90

100

!h1

A
yr

(1
0-1

7 )

4E-06 6E-06 8E-06 1E-05
0

10

20

30

40

50

60

70

80

90

100

!h4

A
yr

(1
0-1

7 )

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

!h2

A
yr
 (

10
-1

7 )

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

FIG. 6.— Value of Ayr determined by four strategies introduced in this paper only for ⇣ =�2/3 and rms=100 ns. The solid lines are typical fitting functions.

and �h1 in the range of Ayr 2 [10�17,10�15] reads as:
✓ Ayr

10�17
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= a�h2

1 +b�h1 + c (34)

where a = (�1.15 ± 0.40)⇥ 1012, b = (2.84 ± 0.54)⇥ 107

and c = �74.45± 16.88. This fitting function is not unique,
and here we select one with a high goodness of fit before go-
ing further. Also, for any other rms dictated by experiment,
the above analysis should be repeated again to find the corre-
sponding fitting function.

II) For pure PTRs, we found that the Hurst exponent is al-
most 0.5, while there will be deviations in the generalized
Hurst exponent for PT R signals affected by GWs (Eq. (33))
for a given amplitude Ayr, and ⇣. Therefore, another powerful
measure to quantify the intensity of the GWB would be

�h2(Ayr,⇣)⌘
qmaxX

q=qmin

|h(q;Ayr,⇣)�hshuf(q;Ayr,⇣)|

. Where hshuf(q;Ayr,⇣) is for completely randomized PT R
and "shuf" refers to shuffled. In practice, we find a robust
mathematical relation between �h2(Ayr,⇣) and Ayr for any
given ⇣ (or, equivalently, H) and rms of white noise. The cor-
responding shuffled series are produced using original series.

Now by calculating the generalized Hurst exponent for origi-
nal and shuffled data, one can compute �h2. We find that the
following function is a good fit to our simulations for Ayr in
the range of Ayr 2 [10�17,10�15] versus �h2 for ⇣ = �2/3
and rms=100 ns:

✓ Ayr

10�17

◆
= a�h3

2 +b�h2
2 + c�h2 (35)

where a= 0.19±0.06, b=�1.57±0.92, and c= 7.40±3.30.
This fitting function is not unique, and here we select a high
goodness of fit. Before going further, it is worth noting
that the whitened noise generation is serious in many simula-
tions. An optimal algorithm to evaluate noise quality in many
simulations, especially in data generation by the TEMPO2
software, can be carried out by the shuffling procedure ex-
plained here. Subsequently, our proposal in this regard can be
straightforwardly implemented as a new plug-in.

III) Since GWs may induce non-Gaussianity in PT R,
it is interesting to take into account �h3(Ayr,⇣) ⌘Pqmax

q=qmin
|h(q;Ayr,⇣)� hsur(q,Ayr,⇣)|. In the mentioned cri-

terion, hsur(q;Ayr,⇣) is the generalized Hurst exponents com-
puted for Gaussian datasets with the same correlation function
as the original series. Here "sur" represents surrogated data
or phase-randomized surrogated series, including the multi-

Multifractal Analysis of Pulsar Timing Residuals 11

!h3

A
yr

 (
10

-1
7 )

5 5.5 6
0

10

20

30

40

50

60

70

80

90

100

!h1

A
yr

(1
0-1

7 )

4E-06 6E-06 8E-06 1E-05
0

10

20

30

40

50

60

70

80

90

100

!h4

A
yr

(1
0-1

7 )

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

!h2

A
yr
 (

10
-1

7 )

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

FIG. 6.— Value of Ayr determined by four strategies introduced in this paper only for ⇣ =�2/3 and rms=100 ns. The solid lines are typical fitting functions.
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sponding fitting function.

II) For pure PTRs, we found that the Hurst exponent is al-
most 0.5, while there will be deviations in the generalized
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for a given amplitude Ayr, and ⇣. Therefore, another powerful
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. Where hshuf(q;Ayr,⇣) is for completely randomized PT R
and "shuf" refers to shuffled. In practice, we find a robust
mathematical relation between �h2(Ayr,⇣) and Ayr for any
given ⇣ (or, equivalently, H) and rms of white noise. The cor-
responding shuffled series are produced using original series.

Now by calculating the generalized Hurst exponent for origi-
nal and shuffled data, one can compute �h2. We find that the
following function is a good fit to our simulations for Ayr in
the range of Ayr 2 [10�17,10�15] versus �h2 for ⇣ = �2/3
and rms=100 ns:
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where a= 0.19±0.06, b=�1.57±0.92, and c= 7.40±3.30.
This fitting function is not unique, and here we select a high
goodness of fit. Before going further, it is worth noting
that the whitened noise generation is serious in many simula-
tions. An optimal algorithm to evaluate noise quality in many
simulations, especially in data generation by the TEMPO2
software, can be carried out by the shuffling procedure ex-
plained here. Subsequently, our proposal in this regard can be
straightforwardly implemented as a new plug-in.

III) Since GWs may induce non-Gaussianity in PT R, it is
interesting to take into account

�h3(Ayr,⇣)⌘
qmaxX

q=qmin

|h(q;Ayr,⇣)�hsur(q,Ayr,⇣)|

. In the mentioned criterion, hsur(q;Ayr,⇣) is the general-
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FIG. 7.— Schematic representation of our pipeline for searching the footprint of GWB in the context of multifractal analysis of irregular PT Rs.

ized Hurst exponents computed for Gaussian datasets with
the same correlation function as the original series. Here
"sur" represents surrogated data or phase-randomized surro-
gated series, including the multiplication of Fourier-transform
data by a random phase with a uniform distribution function
(Prichard & Theiler 1994). We simulated the PT R accompa-
nying the GWB with different amplitudes, and the following
fitting function is determined for Ayr in the same range as
above versus �h3 for ⇣ =�2/3 and rms=100 ns:

✓ Ayr

10�17

◆
= a�h3 +b (36)

where a = 68.03±11.73 and b =�321.50±65.10.
IV ) The width of the singularity spectrum, which quanti-

fies the nature of multifractality, is another benchmark for de-
termining the amplitude of GWs superimposed on the PT Rs.
This measure is defined by �h4(Ayr,⇣) ⌘ |�↵(Ayr,⇣) �
�↵(Ayr = 0)|. According to our simulations, we find:

✓ Ayr

10�17

◆
= a�hb

4 + c (37)

for ⇣ = �2/3 and rms=100 ns in the range of
Ayr 2 [10�17,10�15]. Here a = 106.30 ± 7.80,
b = 1.62±0.42, and c = 1.52±9.74.

Let us summarize our strategy based on the above criteria
for searching GWs in observation. As explained in section
2, in the case of the proper value of signal-to-noise (S/N) for
each observed PTR, we remove all known contributions from
foreground contamination. Therefore, we make regular series
according to methods explained in subsection 2.3. Now we
are ready to apply either AD or SVD method to extract the
dominant part of the signal (the trend part) from the noise.
Then, we apply the MF-DXA method to compute �̄⇥, and we
compute the spatial cross-correlation to identify the probable
quadrupolar signature. In the case of finding the mentioned
signature, we go through the detection of GWs. Otherwise,
we can only carry out the upper-limit approach. We also ap-
ply irregular MF-DXA on the proper part of the series for
all available pairs of observed PT Rs to examine the temporal
part of the cross-correlation function and deduce the tempo-
ral scaling exponent. In the case of the homogeneous and
isotropic source of the GWB, h⇥ is independent from the an-
gular separation of PT Rs, while for anisotropic or different
single sources of GWs, the scaling exponent of the tempo-
ral part of the cross-correlation gets various values for differ-
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FIG. 8.— Log-log plot of F2(s) versus s computed according to backward
DMA, namely ✓ = 0.0, for various observed datasets. To make more sense,
we shifted F2 vertically for different amplitudes

ent pairs. Utilizing either irregular MF-DFA or irregular MF-
DMA on cleaned data leads to computing h(q). The best-fit
value of ⇣ is then determined by using the power-spectrum
exponent. Following the benchmarks, we compute �h1, �h2,
�h3, and �h4 for the observed PT Rs. The GWB amplitude
can be conservatively read from the corresponding plots, as
indicated in Fig. 6 or stated by Eqs (34), (35), (36) and (37).
It is worth noting that the functional form of �h should be
determined for each value of ⇣ and given rms of white noise
associated with observed data. Finally, we are able to compute
the upper limit on Ayr using posterior analysis (see section 5).
Fig. 7 is a schematic representation of the pipeline.

Here we emphasize some important considerations for deal-
ing with observed PT Rs. First of all, we define a relative dif-
ference between the scaling exponent computed for the ob-
served PT Rs and that computed for the PT Rs without GWB
to reduce the contribution of noise and trends. Finally, in our
approach, the level of noise is almost no longer serious when
we focus on the scaling exponent.

5. IMPLEMENTATION OF MULTIFRACTAL METHODS
ON OBSERVED PTR DATA
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ized Hurst exponents computed for Gaussian datasets with
the same correlation function as the original series. Here
"sur" represents surrogated data or phase-randomized surro-
gated series, including the multiplication of Fourier-transform
data by a random phase with a uniform distribution function
(Prichard & Theiler 1994). We simulated the PT R accompa-
nying the GWB with different amplitudes, and the following
fitting function is determined for Ayr in the same range as
above versus �h3 for ⇣ =�2/3 and rms=100 ns:
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where a = 68.03±11.73 and b =�321.50±65.10.
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fies the nature of multifractality, is another benchmark for de-
termining the amplitude of GWs superimposed on the PT Rs.
This measure is defined by
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. According to our simulations, we find:
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for ⇣ = �2/3 and rms=100 ns in the range of
Ayr 2 [10�17,10�15]. Here a = 106.30 ± 7.80,
b = 1.62±0.42, and c = 1.52±9.74.

Let us summarize our strategy based on the above criteria
for searching GWs in observation. As explained in section
2, in the case of the proper value of signal-to-noise (S/N) for
each observed PTR, we remove all known contributions from
foreground contamination. Therefore, we make regular series
according to methods explained in subsection 2.3. Now we
are ready to apply either AD or SVD method to extract the
dominant part of the signal (the trend part) from the noise.
Then, we apply the MF-DXA method to compute �̄⇥, and we
compute the spatial cross-correlation to identify the probable
quadrupolar signature. In the case of finding the mentioned
signature, we go through the detection of GWs. Otherwise,
we can only carry out the upper-limit approach. We also ap-
ply irregular MF-DXA on the proper part of the series for
all available pairs of observed PT Rs to examine the temporal
part of the cross-correlation function and deduce the tempo-
ral scaling exponent. In the case of the homogeneous and
isotropic source of the GWB, h⇥ is independent from the an-
gular separation of PT Rs, while for anisotropic or different
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single sources of GWs, the scaling exponent of the tempo-
ral part of the cross-correlation gets various values for differ-
ent pairs. Utilizing either irregular MF-DFA or irregular MF-
DMA on cleaned data leads to computing h(q). The best-fit
value of ⇣ is then determined by using the power-spectrum
exponent. Following the benchmarks, we compute �h1, �h2,
�h3, and �h4 for the observed PT Rs. The GWB amplitude
can be conservatively read from the corresponding plots, as
indicated in Fig. 6 or stated by Eqs (34), (35), (36) and (37).
It is worth noting that the functional form of �h should be
determined for each value of ⇣ and given rms of white noise
associated with observed data. Finally, we are able to compute
the upper limit on Ayr using posterior analysis (see section 5).
Fig. 7 is a schematic representation of the pipeline.

Here we emphasize some important considerations for deal-
ing with observed PT Rs. First of all, we define a relative dif-
ference between the scaling exponent computed for the ob-
served PT Rs and that computed for the PT Rs without GWB
to reduce the contribution of noise and trends. Finally, in our
approach, the level of noise is almost no longer serious when
we focus on the scaling exponent.
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ized Hurst exponents computed for Gaussian datasets with
the same correlation function as the original series. Here
"sur" represents surrogated data or phase-randomized surro-
gated series, including the multiplication of Fourier-transform
data by a random phase with a uniform distribution function
(Prichard & Theiler 1994). We simulated the PT R accompa-
nying the GWB with different amplitudes, and the following
fitting function is determined for Ayr in the same range as
above versus �h3 for ⇣ =�2/3 and rms=100 ns:
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termining the amplitude of GWs superimposed on the PT Rs.
This measure is defined by
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. According to our simulations, we find:

✓ Ayr

10�17

◆
= a�hb

4 + c (37)

for ⇣ = �2/3 and rms=100 ns in the range of
Ayr 2 [10�17,10�15]. Here a = 106.30 ± 7.80,
b = 1.62±0.42, and c = 1.52±9.74.

Let us summarize our strategy based on the above criteria
for searching GWs in observation. As explained in section
2, in the case of the proper value of signal-to-noise (S/N) for
each observed PTR, we remove all known contributions from
foreground contamination. Therefore, we make regular series
according to methods explained in subsection 2.3. Now we
are ready to apply either AD or SVD method to extract the
dominant part of the signal (the trend part) from the noise.
Then, we apply the MF-DXA method to compute �̄⇥, and we
compute the spatial cross-correlation to identify the probable
quadrupolar signature. In the case of finding the mentioned
signature, we go through the detection of GWs. Otherwise,
we can only carry out the upper-limit approach. We also ap-
ply irregular MF-DXA on the proper part of the series for
all available pairs of observed PT Rs to examine the temporal
part of the cross-correlation function and deduce the tempo-
ral scaling exponent. In the case of the homogeneous and
isotropic source of the GWB, h⇥ is independent from the an-
gular separation of PT Rs, while for anisotropic or different
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single sources of GWs, the scaling exponent of the tempo-
ral part of the cross-correlation gets various values for differ-
ent pairs. Utilizing either irregular MF-DFA or irregular MF-
DMA on cleaned data leads to computing h(q). The best-fit
value of ⇣ is then determined by using the power-spectrum
exponent. Following the benchmarks, we compute �h1, �h2,
�h3, and �h4 for the observed PT Rs. The GWB amplitude
can be conservatively read from the corresponding plots, as
indicated in Fig. 6 or stated by Eqs (34), (35), (36) and (37).
It is worth noting that the functional form of �h should be
determined for each value of ⇣ and given rms of white noise
associated with observed data. Finally, we are able to compute
the upper limit on Ayr using posterior analysis (see section 5).
Fig. 7 is a schematic representation of the pipeline.

Here we emphasize some important considerations for deal-
ing with observed PT Rs. First of all, we define a relative dif-
ference between the scaling exponent computed for the ob-
served PT Rs and that computed for the PT Rs without GWB
to reduce the contribution of noise and trends. Finally, in our
approach, the level of noise is almost no longer serious when
we focus on the scaling exponent.
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FIG. 6.— Value of Ayr determined by four strategies introduced in this paper only for ⇣ =�2/3 and rms=100 ns. The solid lines are typical fitting functions.

and �h1 in the range of Ayr 2 [10�17,10�15] reads as:
✓ Ayr

10�17

◆
= a�h2

1 +b�h1 + c (34)

where a = (�1.15 ± 0.40)⇥ 1012, b = (2.84 ± 0.54)⇥ 107

and c = �74.45± 16.88. This fitting function is not unique,
and here we select one with a high goodness of fit before go-
ing further. Also, for any other rms dictated by experiment,
the above analysis should be repeated again to find the corre-
sponding fitting function.

II) For pure PTRs, we found that the Hurst exponent is al-
most 0.5, while there will be deviations in the generalized
Hurst exponent for PT R signals affected by GWs (Eq. (33))
for a given amplitude Ayr, and ⇣. Therefore, another powerful
measure to quantify the intensity of the GWB would be

�h2(Ayr,⇣)⌘
qmaxX

q=qmin

|h(q;Ayr,⇣)�hshuf(q;Ayr,⇣)|

. Where hshuf(q;Ayr,⇣) is for completely randomized PT R
and "shuf" refers to shuffled. In practice, we find a robust
mathematical relation between �h2(Ayr,⇣) and Ayr for any
given ⇣ (or, equivalently, H) and rms of white noise. The cor-
responding shuffled series are produced using original series.

Now by calculating the generalized Hurst exponent for origi-
nal and shuffled data, one can compute �h2. We find that the
following function is a good fit to our simulations for Ayr in
the range of Ayr 2 [10�17,10�15] versus �h2 for ⇣ = �2/3
and rms=100 ns:

✓ Ayr

10�17

◆
= a�h3

2 +b�h2
2 + c�h2 (35)

where a= 0.19±0.06, b=�1.57±0.92, and c= 7.40±3.30.
This fitting function is not unique, and here we select a high
goodness of fit. Before going further, it is worth noting
that the whitened noise generation is serious in many simula-
tions. An optimal algorithm to evaluate noise quality in many
simulations, especially in data generation by the TEMPO2
software, can be carried out by the shuffling procedure ex-
plained here. Subsequently, our proposal in this regard can be
straightforwardly implemented as a new plug-in.

III) Since GWs may induce non-Gaussianity in PT R, it is
interesting to take into account

�h3(Ayr,⇣)⌘
qmaxX

q=qmin

|h(q;Ayr,⇣)�hsur(q,Ayr,⇣)|

. In the mentioned criterion, hsur(q;Ayr,⇣) is the general-
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where f is the frequency of GWs, ºf1 yr
1

1 yr
; �yr is the

dimensionless amplitude of the GWB; and ζ is a scaling
exponent and for almost all expected GWs is z < 0. The
corresponding ζ exponent takes the following values for
different mechanisms: z = - 2

3
for coalescing black hole

binaries, ζ=−1 for cosmic strings, and z = - 7
6
for primordial

GWs from the Big Bang (Hobbs 2011). We should mention
that the power-law relation obtained in Equation (33) is not
unique and there is another framework represented by Sesana
et al. (2008) and Yardley (2011). The dimensionless amplitude
of GWs has been predicted by most authors in the range of
� Î - -[ ]10 , 10yr

15 14 ; however, according to Sesana et al.
(2008) and Yardley (2011), the expected range of �yr for a
stochastic GWB is � Î ´- -[ ]10 , 3 10yr

16 15 .

3.2. Synthetic Data Sets for GWB

To simulate synthetic series, we use the TEMPO2 software
package that carries out the fitting procedure of TOA (Hobbs
et al. 2006a). This package is used to simulate pure timing
residuals (Hobbs et al. 2009). To simulate the GWB, the
“GWbkgrd” plug-in of TEMPO2 will be used (Taylor &
Gair 2013). In the absence of GW signal, we have pure PTRs
represented by PTRpure, while signal induced by the GWB is
indicated by PTR(t).

In order to test the effect of GWs on the PTRs, we simulate
100 timing residuals with 1076 data points that are separated by
13 days with an rms of 100 ns. Then we add the effect of GWB
on the simulated pure PTR using different seeds for a given
�yr. The chosen accuracy for simulation has been used in other
work as a level at which a GWB might be detected (Jenet
et al. 2005); however, it should be noted that only two of the
PPTA pulsars (J0437–4715 and J1909–3744) have rms noise
of this order (Table 1).

The GWB introduces two terms for each polarization, one
set of which is referred to as the Earth terms. These Earth terms
are correlated. However, the other set, referred to as the pulsar
terms, has equal amplitude but a long and unknown time delay,
so these terms are effectively uncorrelated noise with the same
red spectrum as the Earth terms. Our simulations include both
the Earth and the pulsar terms. We simulate 20 pure PTRs for
pulsars separated in the sky according to the ephemeris of
20 MSPs observed in the PPTA project (Table 1). An isotropic
GWB induces a particular spatial cross-correlation in PTRs
leading to a quadrupolar signature (Hellings and Downs curve;
Hellings & Downs 1983; Jenet et al. 2005). Subsequently, to
examine the GWB, we will examine the cross-correlation
property of the simulated data.
The upper panel of Figure 1 indicates a typical pure timing

residual simulated by TEMPO2 with zero mean uncorrelated
series. We also depict the superposition of pure timing
residuals with the GW model introduced in Hobbs et al.
(2009) in the middle panel of Figure 1.

3.3. Observed Data

We use the timing residual data of 20 MSPs observed by the
PPTA project at three bandwidths, namely 10, 20, and 50 cm,
by implementing the Parkes 64 m radio telescope (PTA;
Manchester et al. 2013). The PTA telescope is located in
Australia at an altitude of −33° and can observe all of the inner
Galaxy. Due to the higher stability of the short-period MSPs,
the observed pulsars have short periods and are selected from
bright ones. Also, these MSPs have narrow pulse widths in
order to reduce uncertainties in the corresponding TOA.
Finally, isolated wide-binary MSPs have been selected to
avoid the effects of the companion star.
The PTR series for these MSPs as observed data sets are

publicly available.5 We have used the TEMPO2 software to

Table 1
Hurst Exponent, H, Width of Singularity Spectrum, Δα, Scaling Exponent of Temporal Autocorrelation, γ, rms, Total Time Span (TTS) of Post-fit Timing Residuals,

and Upper Limit on Dimensionless Amplitude of GWB of 20 MSPs Observed in PPTA Project

PSR Number PSR Name H Δα γ rms (μs) TTS (yr) � ( )95%yr
up

1 J0437–4715 0.78±0.03 0.89±0.06 −1.56±0.06 0.08 4.76 5.0×10−15

2 J0613–0200 0.68±0.06 1.22±0.04 −1.37±0.11 1.07 5.99 7.0×10−15

3 J0711–6830 0.56±0.10 1.40±0.08 −1.13±0.19 0.89 5.99 6.0×10−15

4 J1022+1001 0.65±0.06 1.04±0.04 −1.30±0.13 1.72 5.88 8.5×10−15

5 J1024–0719 0.87±0.03 1.60±0.03 −1.74±0.07 1.13 5.99 L
6 J1045–4509 0.84±0.02 1.29±0.04 −1.68±0.05 2.77 5.94 L
7 J1600–3053 0.75±0.05 1.34±0.04 −1.50±0.09 0.68 5.93 L
8 J1603–7202 0.68±0.04 1.29±0.05 −1.37±0.07 2.14 5.99 2.5×10−15

9 J1643–1224 0.83±0.04 0.89±0.02 −1.66±0.08 1.64 5.87 L
10 J1713+0747 0.74±0.04 1.20±0.05 −1.48±0.09 0.31 5.71 2.0×10−15

11 J1730–2304 0.60±0.11 1.79±0.04 −1.21±0.23 1.47 5.93 L
12 J1732–5049 0.81±0.03 1.56±0.03 −1.62±0.07 2.22 5.08 2.0×10−15

13 J1744–1134 0.85±0.04 1.52±0.03 −1.70±0.09 0.32 5.87 L
14 J1824–2452A 0.70±0.03 1.26±0.05 −1.40±0.07 2.44 5.75 10.0×10−15

15 J1857+0943 0.71±0.05 1.45±0.02 −1.42±0.10 0.84 5.93 L
16 J1909–3744 0.76±0.06 1.32±0.06 −1.52±0.11 0.13 5.75 6.0×10−15

17 J1939+2134 0.80±0.02 1.25±0.02 −1.61±0.04 0.68 5.88 L
18 J2124–3358 0.65±0.07 1.23±0.04 −1.30±0.13 1.90 5.99 6.0×10−15

19 J2129–5721 0.66±0.07 1.54±0.04 −1.32±0.13 0.80 5.86 7.0×10−15

20 J2145–0750 0.69±0.06 1.29±0.05 −1.38±0.11 0.78 5.99 L

Note. The error bar corresponds to a 1σ confidence interval.

5 https://data.csiro.au/dap/home?execution=e1s1
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confirming that the pure PTRs belong to monofractal
uncorrelated stationary processes. There is no crossover in
fluctuation functions versus scale determined by MF-DFA and
MF-DMA (Figure 2). Adding mock GWB signal on pure PTRs
leads to crossovers in the log–log plot of �2 as a function of s,
as indicated in Figure 3. To examine the scaling behavior of
PTRs induced by GWs, we carried out either the SVD or AD
method on the data. We found that SVD can remove the
crossover on fluctuation function for any q. The timescale for
crossover depends on the intensity of the GW signal. In the
presence of GWs, PTRs belong to a multifractal process due to
the q-dependency of the generalized Hurst exponent, h(q)
(Figure 4). Therefore, we were able to classify the mentioned
data in the universal class of the multifractal process. The value
of multifractality increased by increasing the intensity of GWs.

Various components of a recorded PTR may behave as a
scaling fluctuation. Therefore, applying a multifractal algorithm
on individual PTRs may give spurious results in exploring
GWs. We relied on quadrupolar structure associated with the
impact of GWB on the spatial cross-correlation of PTRs. We
carried out cross-correlation analysis by the irregular MF-DXA
introduced in this paper on all available PTRs distributed in all

directions. To this end, we defined a new cross-correlation
function (Equation (18)), and accordingly, we computed the
ensemble average of sá Q ñ(́ )ab pair for all synthetic PTRs as a
function of separation angle, Θ. We obtained an analogous
behavior as a quadrupolar signature in s̄́ . According to a
model for GWB, obviously, the temporal part must be
independent from the separation angle of the PTR pairs
affected by isotropic GWB, while the amplitude of cross-
correlation defined by the DXA method illustrates the Hellings
and Downs curve (Figure 5), similar to the usual spatial cross-
correlation.
We proposed four criteria to quantify the footprint of GWs

on PTRs. Comparing the y-intercept of fluctuation functions
with the one computed for pure PTRs is our first measure. The
second measure is devoted to the generalized Hurst exponent
with the one computed for pure PTRs. Comparison between
h(q) and the generalized Hurst exponent computed for the
Gaussian signal is the third criterion. The fourth criterion
corresponds to the width of the singularity spectrum.

Figure 11. Upper panel: Hurst exponent of timing residuals of 20 MSPs
observed by PPTA. Lower panel: generalized Hurst exponent h(q) vs. q by the
SVD–MF-DMA method with θ=0.0 for some observed timing residuals.

Figure 12. The upper panel shows the singularity spectrum f (α) vs. α for some
observed timing residuals. To make it more obvious, we shifted f (α) vertically
for different series. The lower panel indicates the width of the singularity
spectrum, which is a measure for quantifying the multifractal nature of
20 MSPs observed by PPTA.
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The strategy for GWB detection in observations is as follows.
After removing foreground and systematic noise by applying
either SVD or AD on data sets, cleaned data that are associated
with the dominant part of the signal (the trend part) will be used as
input for irregular MF-DXA. Having observed relevant features
for GWB on PTRs, irregular MF-DFA or irregular MF-DMA
methods are applied exclusively. The type of superimposed GWs
can be recognized by determining the Hurst exponent. Finally, the
dimensionless amplitude of the expected GWB (�yr) can be
determined by inserting relevant quantities extracted by our four
measures given by Equations (34)–(37) for a given ζ and rms of
white noise determined in observations.
There is a crossover in the log–log plot of fluctuation

function versus window length of observed PTRs. For s<s×
and s>s×, the exponents h(q=2) are h(2)ä[1.03, 1.82] and
h(2)ä[0.07, 1.55], respectively. After applying SVD, the
corresponding Hurst exponent is Hä[0.56, 0.87].
The q-dependency of h(q) confirmed that all observed MSPs

behave as multifractal fields. The relevant exponents for
observed MSPs have been reported in Table 1. The source of
multifractality is mainly the correlation in small and large
scales and is a universal property of all observed pulsars
examined in this paper. The contribution of the red-noise model
indicated the extra multifractality on observed MSPs. Conse-
quently, the degree of multifractality reported for PPTA data
sets is the upper value, and a part of this value is associated
with the noise model.
To infer the statistical significance of the GWB impact on the

PTRs, we computed s Q´¯ ( ) for 20 MSPs observed in the PPTA
project. Due to a high value of rms and a short length in the size
of the recorded data, we have not found a quadrupolar
signature. Thereafter, we computed the upper bound for PSRs
reported in Table 1.
We make the following final remarks. The observed PTRs are

affected by noises classified in intrinsic and extrinsic categories
(Hobbs et al. 2006b; Caballero et al. 2016). Reliable statistical
models for noise and signal were introduced. The shuffling
procedure and its evaluation by multifractal detrended analysis
can also be implemented in TEMPO2 and other subroutines for
simulation of PTRs. It could be interesting to simulate various
kinds of GWs and to consider timing noise. Evaluation of
different noise models and sensitivity to frequency is beyond the
scope of this paper and will be considered elsewhere.
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Figure 1. A schematic view of the feature vector generation. For
a CMB map (input on left side) it produces a 275-dimensional
feature vector, here presented as a 25⇥ 11 array (right side). The
vector includes all possible combinations of decomposers, filters
and statistical measures used in this work.

4 DETECTION STRATEGY

The CS detection algorithm of this work has two main steps.
The pre-processing step compresses information from maps
into feature vectors (each with 275 elements). The feature
vectors are then passed to the classifier unit for classification.
These two steps are briefly explained in the following.

4.1 I) Pre-processing unit

The feature extraction step employs three layers of image
processors and statistical measures to produce a feature vec-
tor as the input for the learning unit (Figure 1). The first two
layers aim at producing maps with enhanced CS detectabil-
ity (Figure 2), and the third layer quantifies the deviation
of certain statistical measures of the map from those of the
baseline model corresponding to null simulations with no CS
imprints. These layers can be briefly described as:
(i) decomposers to disintegrate maps into scales relevant to
the signal of interest. The output is labeled as either none

(corresponding to the full map), WL (or wavelet2), or one of
the three curvelet components C

5

, C
6

and C
7

, correspond-
ing to the three smallest scales3(Vafaei Sadr et al. 2017).
(ii) various filters to enhance edges. The output is labeled as
either none (corresponding to the full map), der (or deriva-
tive), lap (or Laplacian), sob (or Sobel) or sch (or Scharr).
(iii) di↵erent statistical measures applied on the filtered,
scale-decomposed maps. The measures are pdf (the prob-
ability distribution function), M

2

to M
7

(the second to sev-
enth statistical moments), cor (the map correlation func-
tion),  pp (the autocorrelation of peaks),  cc (the autocor-

2 The wavelet used here is the Daubechies db12 (Daubechies
1990) with the mother function provided by the PyWavelets pack-
age, https://github.com/PyWavelets, and with the coe�cients
low-pass filtered with a threshold of 3.
3 We used the Pycurvelet package (Vafaei Sadr et al. 2017) as
our 2D, discrete version of the curvelet transform (Candes et al.
2006). This package is the python-wrapped version of CurveLab,
http://www.curvelet.org/. We chose n

scales

= 7 and n
angles

=
10 as the curvelet transformation parameters.

Figure 2. All of the 25 outputs of the image processing layers of
the algorithm applied to a map with Gµ = 1.0⇥ 10�7. The color
scale is logarithmic. These are then passed to the 11 statistical
measures, yielding the full set of 275 features.

relation of upcrossings) and  cp (the peak-upcrossing cross-
correlation). For a thorough description see Vafaei Sadr et al.
(2017). See also Rice 1944; Bardeen et al. 1986; Bond & Ef-
stathiou 1987; Ryden et al. 1989; Ryden 1988; Landy &
Szalay 1993; Matsubara 1996, 2003; Ducout et al. 2013;
Pogosyan et al. 2009; Gay et al. 2012; Codis et al. 2013.
For any given map, the final output of the pre-processor
is a feature vector with 275 elements, corresponding to all
combinations of processors from each layer (Figure 1). The
feature vector is then passed to the learning unit for classi-
fication, i.e. to RF and GB, to learn from simulations and
to estimate Gµ for new maps.

4.2 II) Learning unit

In this section we develop a machine-based algorithm to
estimate the Gµ’s of given CMB maps using their feature
vectors generated by the pre-processors. We use supervised
classifiers to build the data-driven model which maps the
feature vector XXX to the predictor Y . More specifically, we
use the two powerful tree-based ensemble methods intro-
duced in sections 3.2.1 and 3.2.2: random forest or RF and
gradient boosting or GB.

As pointed out in Section 3, using classifiers as the
learning algorithm would discretize the allowed ranges of
the continues parameter Gµ and limit the prediction power
of the method. To bypass its limitation, we propose to use
the Bayesian average of classes as the prediction for the ob-
servation (discussed below), thus expanding the prediction
power of the classifier to intra-class Gµ’s.

To avoid overfitting, we use a K-fold cross-validation
strategy (Section 3.4) where the original dataset is randomly
divided into K equal subsets where K � 1 subsets form the
training sets and one is the validation set. The process is
repeated K times to guarantee each subset is validated once.

MNRAS 000, 1–10 (0000)

corresponding to presenting a scaling behavior must be
satisfied, as represented by Equations (10) and (11). In some
cases, there exist one or more crossovers corresponding to
different correlation behaviors of the pattern in various scales
(Hu et al. 2001; Kantelhardt et al. 2001; Chen et al. 2002;
Nagarajan & Kavasseri 2005a, 2005b, 2005c). The MF-DFA
and MF-DXA methods cannot remove the effect of all
undesired parts of the underlying signal; therefore, we
implement complementary tasks to properly recover the scaling
behavior of fluctuation functions and obtain the reliable scaling
exponents. There are some preprocessing methods for denois-
ing in the literature; for instance, the EMD method (Huang
et al. 1998), the Fourier-detrended (Fourier-based filtering)
method (Chianca et al. 2005; Nagarajan & Kavasseri 2005b),
the SVD method (Golub & Van Loan 1996; Nagarajan &
Kavasseri 2005a, 2005c), and the AD algorithm (Hu et al.
2009). In this paper, we utilize the SVD method and AD
algorithm. The main part of the SVD method can be described
in the following steps (Nagarajan & Kavasseri 2005a, 2005c;
Hajian & Movahed 2010).

(I) Construct a matrix whose elements are PTRs in the
following order,

G º

t t

t t

t t

+ + - - -

+ + - - -

+ + - - -

# # # #

# # # #

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )

( )

( )

( )

PTR PTR ... PTR

PTR PTR ... PTR

PTR PTR ... PTR
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N d

i i i N d

d d d N d

1 1 1 1 1

1 1

1 1

where d is the embedding dimension, τ is the time delay, and
1�i�d. Considering a time series of size N, the maximum
value of the embedding dimension d is equal to d�N−
(d−1)τ+1 (Nagarajan & Kavasseri 2005b, 2005c; Shang
et al. 2009).

(II) Decompose the matrix G to left ( ´Ud d) and right
( t t- - ´ - -( ( ) ) ( ( ) )VN d N d1 1 ) orthogonal matrices,

G = ( )†USV , 26

where t´ - -( ( ) )Sd N d 1 is a diagonal matrix and its elements are
the desired singular values. If we are interested in examining
the fluctuations with high frequency, we should remove
dominant wavelengths. In this case, for removing trends
containing p-dominant wavelengths, we set the 2p+1 largest
eigenvalues of matrix S to zero; therefore, long periods or short
frequencies are eliminated. In other words, the p dominant
eigenvalues and associated eigenvectors correspond to long-
wavelength (short-frequency part) subspace, while d−p
eigenvalues and the corresponding eigen-decomposed vectors
represent short-wavelength (high-frequency part) subspace.

In this paper, we look for the footprint of GWs superimposed
on the PTR signals. As shown in Figure 1, the GW part
behaves as a dominant trend in PTRs; consequently, we
essentially need to do denoising using the SVD method to
magnify the contribution of superimposed GWs. To this end,
we should remove small eigenvalues corresponding to a low-
pass filter. In this paper, we eliminate the high-frequency part
of the signal by keeping the 2p+1 largest eigenvalues of the
matrix S.

Finally, the new eigenvalues matrix, S̃, is determined.
According to the filtered matrix, G =˜ ˜ †USV , the cleaned time

series is constructed by

= G~
+ - ˜ ( )PTR . 27i j ij1

Figure 1. The upper panel corresponds to a pure simulated timing residual. The
middle panel shows a synthetic pure timing residual induced by the GWB with
a dimensionless amplitude of� = -10yr

15. Here we take ζ=−2/3. The lower
panel shows the observed PTRs of PSR J0437–4715 from the PPTA project.
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Wavelet

C5
C6
C7

None

Laplacian
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Scharr

Correlation

PDF

Peak-peak

Up-peak

μ2-μ7

Up-up

None

machine!

correlation function of PTR fluctuations, we apply multifractal
cross-correlation analysis. This is a generalized function
including spatial–temporal cross-correlation function and has
some novelties compared to the standard spatial cross-
correlation analysis. Our algorithm is a proper method for
denoising and detrending.

The irregular MF-DXA applied to the observed irregular
PTRs did not yield reliable results for detecting GWB due to
the limited size and low S/N of the data. Different criteria
introduced in this paper will enable us to detect the footprint
of possible GWs with a future generation of surveys with high-
S/N observations. Now we turn to assigning an upper bound
on probable GWB amplitude.

Previous studies have mainly considered a model for the
power spectrum of the PTR signal modulated by GWB,
including the amplitude and scaling exponent of GWB.
According to priors associated with the model parameters,
the Bayesian method has been adopted (Lentati et al. 2013;
Shannon et al. 2015 and references therein). In our approach,
we proceed with our strategies for searching the GWB
(Section 4.3). The posterior probability function, ( �à( ∣ )Dyr ,

reads as

( � $ � ( �
�d

~

= á - F D ñ
à à à

à

( ∣ ) ( ∣ ) ( )
( ( )) ( )

D D

h . 39D

yr yr yr

D yr

Here à corresponds to one of four measures proposed for
determining the amplitude of the stochastic GWB, and δD is the
Dirac delta function. The F D à( )hD represents the functional
form presented in Figure 6. The integral form of Equation (39)
is given by

( �

( " �ò d= D ¢ D ¢ D ¢ - D

à

à à à à D ¢=Fà
-

( ∣ )
( ) ( ) ∣ ∣ ( )( )

D

d h h h h , 40h

yr

D D
1

yr

in which "∣ ∣ is the Jacobian computed for �D ¢ = Fà
- ( )h D

1
yr .

Finally, the upper bound on � -à
yr
up can be determined by

� ( � �
�

ò= ¢ ¢à

-¥
à

-à

( ∣ ) ( )C L d. . , 41yr yr
yr
up

where C.L.◊ and � -à
yr
up are the confidence interval and upper

limit associated with one of our strategies, respectively.
According to the posterior function defined by Equation (29),
considering = D à{ } { }D h PTR for a given observed pulsar called
by PTR and �¡ ={ } yr, we compute

� ��c º D D-( ) ( )† . . , 42PTR
2

yr PTR
1

PTRyr

where �D º D - áD ñ[ ( ) ]h hPTR
PTR

yr and ��yr is the 4×4
covariance matrix of the four statistical features defined by
Δh1, Δh2, Δh3, and Δh4 (see Equations (34)–(37)). The

�áD ñ( )h yr is the average of Δh over 1000 synthetic data sets
for a given �yr, where � Î - -[ ]10 , 10yr

16 14 , and with a step
size of 5×10−16. According to the likelihood function,
$ � �cD ~ -( ∣ ) ( ( ) )h exp 2PTR

yr
2

yr , the 95% upper bound on
�yr

up using the observed PTRs is defined by

� $ �
�

ò= D
-¥

( ∣ ) ( )d h95% . 43yr
PTR

yr
yr
up

We report the computed upper bound for some observed PTRs
at a 95% confidence level in Table 1. One may note that the
upper bound on �yr has not been reported for some observed
PTRs. This is because, for such cases, the upper value is not in

Figure 7. Schematic representation of our pipeline for searching the footprint of GWB in the context of multifractal analysis of irregular PTRs.

Figure 8. Log–log plot of � ( )s2 vs. s computed according to backward DMA,
namely θ=0.0, for various observed data sets. To make more sense, we
shifted �2 vertically for different amplitudes.
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Here 1�i�d and 1�j�N−(d−1)τ. Now the cleaned
~
PTR data sets will be used as input for the MF-DFA or MF-
DXA discussed in previous subsections.

2.4. AD Algorithm

Another robust algorithm to examine trends is the AD
method introduced by Hu et al. (2009). The implementation of
the AD algorithm is a complementary method for determining
local and global trends. Therefore, after applying the AD
method on observed pulsar timing series, the corresponding
dominant trend output data will be used as input for the MF-
DFA or MF-DXA methods. The AD method includes the
following steps (Hu et al. 2009). A discrete series, PTR(i) with
i=1, K, N, is partitioned with overlapping windows of length
2n+1 and, accordingly, each neighboring segment has n+1
overlapping points. An arbitrary polynomial 1 is constructed in
each window of length 2n+1. In order to have the continuous
trend function avoid a typical sharp jump in it, the following
weighted function for the overlapping part of the νth segment is
considered (Hu et al. 2009):

1 1 1= -
-

+ +
-

n n n+⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )j

j
n

j n
j

n
j1

1 1
, 28overlap

1

where j=1, 2, K, n+1. The two free parameters, namely n
and the order of the fitting polynomial, should be determined
properly (Hu et al. 2009).

The size of each segment was calculated by + =n2 1
´ - + +[( ) ( )]N w2 int 1 1 1adaptive . It turns out that by

increasing the value of wadaptive and the order of the fitting
polynomial, the fluctuations disappear, and, consequently, the
fluctuations are suppressed. For the nonoverlapping segments,
the AD data are given by 1- n( ) ( )i iPTR , while for the overlap
part it is 1- n( ) ( )i iPTR overlap . Since the GW, as the dominant
part of the signal, is our desired part of the signal, we instead
use 1=
~

n( ) ( )i iPTR , while for the overlap part, we consider
1=

~
n( ) ( )i iPTR overlap . Now

~
PTR(i) is used for further analysis

in MF-DFA or MF-DXA.

2.5. Trend and Noise Modeling

In real observational data to carry out parametric detection,
reliable statistical models of the noise and signal should be well
established. A proposal for noise modeling is based on the
denoising procedure carried out by the SVD or AD algorithms.
Previously, we were interested in removing the contribution of
undesired noise modulated on real data. Now we concentrate
on the

~
PTR given by Equation (27) in the context of SVD

analysis as a model of trends and -
~

PTR PTR for noise. Also,
if we use the AD approach, the global variation part of the
signal corresponds to both 1 and 1 overlapp (Equation (28)). For
the noise part, we should consider 1- n( ) ( )i iPTR , while for
the overlap part, it is 1- n( ) ( )i iPTR overlap . Therefore, SVD or
AD, as well as the internal part of the MF-DFA and MF-DXA
algorithms, are able to give a robust model for trends and noise.
Also, extracting intrinsic functions based on EMD can be a
good proposal for this purpose (Huang et al. 1998).

2.6. Posterior Analysis

In this paper, we turn to Bayesian statistics (Colistete
et al. 2004) to compute the reliable value of the generalized
Hurst exponent (Equations (10) and (11)). Let �{ } { ( )}D s: q

and {ϒ} : {h(q)} represent the measurements and model
parameters, respectively. The posterior function is defined by

(
$ (
$ (ò

¡ =
¡ ¡
¡ ¡ ¡

( ∣ ) ( ∣ ) ( )
( ∣ ) ( )

( )D
D

D d
, 29

where $ is the likelihood and ( ¡( ) is the prior probability
function including all information concerning model para-
meters. Here we adopt the top-hat function for (( ( ))h q in the
interval h(q)ä[0, 4]. According to the central limit theorem,
the functional form of likelihood becomes multivariate
Gaussian, i.e., $ c¡ ~ -( ∣ ) ( )D exp 22 . The χ2 for determining
the best-fit value for the scaling exponent coordinated by
multifractal formalism reads as

c ¡ º D D-( ) ( )† C. . , 302 1

where � �D º -[ ]q q
obs. the. and C is the covariance matrix. The

� ( )sq
obs. and � ( ( ))s h q;q

the. are fluctuation functions computed
directly from the data and determined by Equations (10)
or (11), respectively. In the case of the diagonal covariance
matrix, the χ2 becomes

� �
åc

s
=

-

=

=

( ( ))
[ ( ) ( ( ))]

( )
( )h q

s s h q

s

;
. 31

s s

s s
q q2
obs. the. 2

obs.
2

min

max

Here �s d= á ñ( ) [ ( )]s sqobs.
obs. 2 , which is related to the diagonal

elements of C and can be computed using a standard statistical
error propagator from primary uncertainties on PTR data sets
(Equation (1) to Equations (8) and (9)). The 1σ error bar of h(q)
is determined by

$ �ò=
s

s

-

+

-

+

( ( ) ∣ ( )) ( ) ( )
( )

( )
s h q dh q68.3% . 32q

h q

h q

Subsequently, we report the best value of the scaling exponent

at a 1σ confidence interval as s
s

-
+

-

+

( ) ( )
( )h q

h q

h q .

3. Data Description

In this section, we will describe theoretical models for GW
signals. The observational data sets, synthetic series for pure
timing residuals, and GWs, in order to examine the multi-
scaling behavior of PTRs as an indicator of GWs, will be
described in this section.

3.1. Theoretical Notions of the GWB on PTRs

The potential sources of GWs could be massive accelerated
objects (Rajagopal & Romani 1995; Taylor & Gair 2012), burst
sources (Thorne & Braginskii 1976; Damour & Vilenkin 2001),
or stochastic background sources (Maggiore 2000; Damour &
Vilenkin 2005; Hobbs et al. 2009; Pshirkov & Tuntsov 2010;
Hobbs 2011). Isotropic stochastic GWB produced by coales-
cing supermassive binary black hole mergers is the strongest
potentially detectable signal of GWs (Hobbs et al. 2009).
Therefore, we use the GWB model to produce synthetic data.
The characteristic strain spectrum,  ( )fc , for a stochastic
GWB can be described by the power-law relation (Hobbs 2011)

 �=
z⎛

⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )f

f
f

, 33c yr
1 yr

7
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component appears in Fa1 . Persistent homology thus registers a1 as the birth time of a connected
component and start to keep track of it by creating an interval starting at a1. Then, Fr remains
connected until r reaches the value a2 where a second connected component appears. Persistent
homology starts to keep track of this new connected component by creating a second interval
starting at a2. Similarly, when r reaches a3, a new connected component appears and persistent
homology creates a new interval starting at a3. When r reaches a4, the two connected components
created at a1 and a3 merges together to give a single larger component. At this step, persistent
homology follows the rule that this is the most recently appeared component in the filtration
that dies: the interval started at a3 is thus ended at a4 and a first persistence interval encoding
the lifespan of the component born at a3 is created. When r reaches a5, as in the previous
case, the component born at a2 dies and the persistent interval (a2, a5) is created. The interval
created at a1 remains until the end of the filtration giving rise to the persistent interval (a1, a6)
if the filtration is stopped at a6, or (a1,+1) if r goes to +1 (notice that in this later case, the
filtration remains constant for r > a6). The obtained set of intervals encoding the span life of the
different homological features encountered along the filtration is called the persistence barcode of
f . Each interval (a, a0) can be represented by the point of coordinates (a, a0) in R2 plane. The
resulting set of points is called the persistence diagram of f . Notice that a function may have
several copies of the same interval in its persistence barcode. As a consequence, the persistence
diagram of f is indeed a multi-set where each point has an integer valued multiplicity. Last, for
technical reasons that will become clear in the next section, one adds to the persistence all the
points of the diagonal � = {(b, d) : b = d} with an infinite multiplicity.

0

1

0

1

x

y

birth

death

a1

a2

a3

a4

a5

a6

a1 a2 a3

Figure 11: The persistence barcode and the persistence diagram of a function f : [0, 1] ! R.

Example 2. Let now f : M ! R be the function of Figure 12 where M is a 2-dimensional
surface homeomorphic to a torus, and let (Fr = f�1((�1, r]))r2R be the sublevel set filtration
of f . The 0-dimensional persistent homology is computed as in the previous example, giving
rise to the red bars in the barcode. Now, the sublevel sets also carry 1-dimensional homological
features. When r goes through the height a1, the sublevel sets Fr that were homeomorphic to two
discs become homeomorphic to the disjoint union of a disc and an annulus, creating a first cycle
homologous to �1 on Figure 12. A interval (in blue) representing the birth of this new 1-cycle
is thus started at a1. Similarly, when r goes through the height a2 a second cycle, homologous
to �2 is created, giving rise to the start of a new persistent interval. These two created cycles
are never filled (indeed they span H1(M)) and the corresponding intervals remains until the end
of the filtration. When r reaches a3, a new cycle is created that is filled and thus dies at a4,
giving rise to the persistence interval (a3, a4). So, now, the sublevel set filtration of f gives rise
to two barcodes, one for 0-dimensional homology (in red) and one for 1-dimensional homology
(in blue). As previously, these two barcodes can equivalently be represented as diagrams in the
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Take-home message

1- Data and various observations provide opportunity to 
evaluate our models to explain our cosmos  
  
2- Pipelines may help compared to doing single tools. 

3- Machines may help as well 

 Vafaei Sadr, A., et al., MNRAS, 478.1 (2018): 1132-1140; 
Eghdami, I., et al., APJ, 864:162 (18 pp), 2018
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Summary 

  

1) Self-similar and self-affine Processes 

2) Pulsars Timing Residuals and GWB    

3) Our Pipeline for detection GWB 
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Thank you
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