

Department of Physics

A pipeline for searching Stochastic Gravitational Wave by Pulsar Timing Residuals

Seyed Mohammad Sadegh Movahed

Department of Physics-Shahid Beheshti University, Tehran IRAN Computational Cosmology Group (CCG-SBU) Ibn-Sina Multidisciplinary Lab. School of Physics, (IPM), Tehran IRAN <u>http://facultymembers.sbu.ac.ir/movahed</u> October 2019, ICTP

The main goal of my talk:

- 1) How can detect GWB?
- 2) How can determine the type of GWs?
- 3) What is the robust sequences of computational tools to detect and to determine the type of GWB?

For more details see:

- 1) I. Eghdami and SMSM, APJ, 864:162 (18 pp), 2018
- 2) M. Mozafarilagha and SMSM, Scientific Reports, 9 (1), 2019
- 3) A Vafaei Sadr, M Farhang, SMSM, B Bassett, M Kunz, MNRAS, 478.1 (2018): 1132-1140.
- 4) A Vafaei Sadr, SMSM, M Farhang, C Ringeval, F R Bouchet, MNRAS, 475.1 (2017): 1010-1022.
- 5) Ferreira, Paulo, Andreia Dionísio, and SMSM, Physica A: Statistical Mechanics and its Applications 486: 730-750, 2017.

Outline

- 1) Self-similar and self-affine Processes
- 2) Pulsars Timing Residuals and GWB
- 3) Our Pipeline for GWB detection
- 4) Research in progress

Part 1 Self-similar Processes

Self-similar process

To know more see: <u>http://facultymembers.sbu.a6.ir/movahed/index.php/talks-a-presentations</u>

Self-similar Regular time series

• Suppose a time series as:

y: {y(i)}
$$i = 1,...,N$$

 $i \rightarrow a \times i$
y($a \times i$) = $a^H y(i)$
So-called Hurst exponent

Classification of time series based on Hurst exponent

Scaling exponents

- Multifractal scaling exponent
- Generalized multifractal dimension
- Autocorrelation exponent
- Power spectrum scaling exponent
- Holder exponent

 $\tau(q) = qh(q) - 1$ $D(q) = \frac{\tau(q)}{q-1}$ $\begin{cases} C(s): s^{-\gamma} \\ C(i,j): i^{-\gamma} + j^{-\gamma} - |i-j|^{-\gamma} \end{cases}$ $S(\omega)$: $\omega^{-\beta}$ $\alpha = \tau'(q)$ $\alpha = h(q) + qh'(q)$ $f(\alpha) = q \left[\alpha - h(q) \right] + 1$

Singularity spectrum

Exponent	1D-fGn	1D-fBm	2D-Cascade	2D-fBm
$\gamma \ \beta$	2 - 2H 2H - 1	-2H $2H+1$	1 - 2H 2H	-1 - 2H $2H + 2$
		8		

Hosseinabadi, S., et al., Physical Review E 85.3 (2012): 031113.

Novelties

- (Irregular)-MF-DFA, MF-DMA and MF-DXA combined by either SVD or AD methods to characterize (I+I)D PRTs.
- 2) We have developed a systematic approach for Noise modeling
- 3) Quadrupolar signature of spatial cross-correlation
- 4) Searching the footprint of GWs not only for amplitude but also for determining the type of GWs

MF-DXA algorithm for joint analysis

(1) We consider two typical PTR series, named PTR_a and PTR_b, located at \hat{n}_a and \hat{n}_b with respect to the line of sight, respectively, as the input data sets to study their mutual multifractal property:

$$PTR_a(i), PTR_b(i), \quad i = 1, ..., N.$$
 (1)

(2) To magnify the hidden self-similarity property, we make profile series according to

$$X_{\Diamond}(j) = \sum_{i=1}^{j} [\operatorname{PTR}_{\Diamond}(i) - \langle \operatorname{PTR}_{\Diamond} \rangle], \quad j = 1, \dots, N.$$
 (2)

Here the subscript \Diamond can be replaced by "*a*" or "*b*."

$$\mathcal{E}_{\times}(s, \nu) = \frac{1}{s} \sum_{i=1}^{s} [X_a(i + (\nu - 1)s) - \tilde{X}_a^{(\nu)}(i)] \\ \times [X_b(i + (\nu - 1)s) - \tilde{X}_b^{(\nu)}(i)],$$

for segments $\nu = 1, ..., N_s$. For the opposite end, we have

$$\mathcal{E}_{\times}(s, \nu) = \frac{1}{s} \sum_{i=1}^{s} [X_a(i + N - (\nu - N_s)s) - \tilde{X}_a^{(\nu)}(i)] \\ \times [X_b(i + N - (\nu - N_s)s) - \tilde{X}_b^{(\nu)}(i)],$$

Algorithm for MF-DXA

(3b) For each moving window with size s, we calculate the moving average function,

$$\widetilde{X_{\Diamond}(j)} = \frac{1}{s} \sum_{k=-s_1}^{s_2} X_{\Diamond}(j-k),$$

where $s_1 = \lfloor (s - 1)\theta \rfloor$ and $s_2 = \lceil (s - 1)(1 - \theta) \rceil$. The sym-

$$\varepsilon_{X_{\Diamond}}(i) = X_{\Diamond}(i) - \widetilde{X_{\Diamond}(i)},$$

Algorithm for MF-DXA

$$\begin{aligned} \mathcal{E}_{\times}(s,\,\nu) &= \frac{1}{s} \sum_{i=1}^{s} \varepsilon_{X_{a}}(i+(\nu-1)s) \,\times \,\varepsilon_{X_{b}}(i+(\nu-1)s). \\ \mathcal{F}_{\times}(q,\,s) &= \left(\frac{1}{2N_{s}} \sum_{\nu=1}^{2N_{s}} |\mathcal{E}_{\times}(s,\,\nu)|^{q/2}\right)^{1/q}. \end{aligned}$$

For q = 0, we have

$$\mathcal{F}_{X}(0, s) = \exp\left(\frac{1}{4N_s}\sum_{\nu=1}^{2N_s}\ln|\mathcal{E}_{X}(s, \nu)|\right).$$

 $\mathcal{F}_{X}(q, s) \sim s^{h_{X}(q)}$

$$\mathcal{F}_q(s) = \mathcal{G}_{h(q)} s^{h(q)};$$

for
$$q = 2, \mathcal{G}$$
 is

$$\mathcal{G} = \frac{\sigma^2}{2H+1} - \frac{4\sigma^2}{2H+2} + 3\sigma^2 \left(\frac{2}{H+1} - \frac{1}{2H+1}\right) - \frac{3\sigma^2}{H+1} \left(1 - \frac{1}{(H+1)(2H+1)}\right)$$

Regularization

$$PTR_{reg}(t) = \int dt' PTR_{irre}(t') \mathcal{W}(t - t'),$$

$$\mathcal{E}^{2}(s, \nu) = \frac{1}{s_{\nu}'(s)} \sum_{i=1}^{s_{\nu}'(s)} [X(i + (\nu - 1)s') - \tilde{X}_{\nu}(i)]^{2}.$$

$$\mathcal{F}_{\mathsf{X}}(q,s) = \left(\frac{1}{2N_s} \sum_{\nu=1}^{2N_s} |\mathcal{E}_{\mathsf{X}}(s,\nu)|^{q/2}\right)^{1/q} \longrightarrow \mathcal{F}_q(s) = \left(\frac{\sum_{\nu=1}^{2N_s} \frac{[\mathcal{E}^2(s,\nu)]^{q/2}}{\sigma_{\mathcal{E}}^2(s,\nu,q)}}{\sum_{\nu=1}^{2N_s} \frac{1}{\sigma_{\mathcal{E}}^2(s,\nu,q)}}\right)^{1/q}$$

Trend and Noise models

Of Shahid Beheshti University

User manual for MF-DFA code written by Sadegh Movahed

1: You should write the name of your data file in it

2: To shuffled data set you should select YES here.

3: If you want to surrogate your data, select YES for this option

 This value shows the number of shuffling data set.

5: Here you should determine the maximum and minimum no. of windows, i.e. if you select "10" for maximum and "2" for minimum, your data set is divided to 2 up to 10 non-overlapping windows.

6: If you want to calculate just H=h(q=2) you should determine q=2., namely, q_max=q_min=2. To find

the generalized Hurst exponent i.e. h(q) versus q(moment exponent), must q_min and q_max to be different. Just in this case you can find the singularity spectrum for data set.

7: Here the step of moment exponent is determined.

To know more visit http://facultymembers.sbu.ac.ir/movahed/

Part 2 PTRs and GWB

Pulsar's Timing residual

Residual is difference between measured pulse's time of arrival and expected time of arrival:

Residual=Observed ToA-Computed ToA or vise versa

$$\Delta t = \Delta_c + \Delta_A + \Delta_{E_{\odot}} + \Delta_{R_{\odot}} + \Delta_{S_{\odot}} - D/f^{\dagger} + \Delta_{VP} + \Delta_B$$

Synthetic Datasets $\mathcal{A}_{\rm yr} = 10^{-15}$ $\zeta = -2/3$

Pure PTR

TEMPO2 software package

500

1000

Generalized form of Hellings & Downs (1983)

$$\mathcal{C}_{\times}(\tau,\Theta_{ab}) = \langle PTR_a(t,\hat{n}_a)PTR_b(t+\tau,\hat{n}_b) \rangle_t$$

$$\begin{split} PT_{R_a}(t) &= PTR_a^{\text{pure}}(t) + \mathcal{B}_a R_{\text{GWB}}(t) \\ PTR_b(t) &= PTR_b^{\text{pure}}(t) + \mathcal{B}_b R_{\text{GWB}}(t) \\ \mathcal{B}_i &\equiv -\frac{1}{2}\cos(2\phi_i)(1 - \cos(\theta_i)) \\ \overline{\mathcal{C}}_{\times}(\tau, \Theta) &= \langle \mathcal{C}_{\times}(\tau, \Theta_{ab}) \rangle_{\text{pairs}} \sim \overline{\Gamma}(\Theta) \times \tau^{\gamma_{\times}} \\ \overline{\Gamma}(\Theta) &= \frac{3}{2}\psi \ln(\psi) - \frac{\psi}{4} + \frac{1}{2}, \\ \psi &\equiv [1 - \cos(\Theta)]/2 \end{split}$$

 $\gamma_{\times} = 2 - 2H_{\times} = 2 - 2h_{\times}(q = 2)$

$$\Theta_{ab} = \arccos \left| \hat{n}_a \cdot \hat{n}_b \right|$$

arXiv:1410.8256

New measure

Pipeline for GWB detection

Eghdami, I., et al., APJ, 864:162 (18 pp), 2018

Observed PTR, Parkes Pulsar Timing Array (PPTA)

Table 1

Hurst Exponent, H, Width of Singularity Spectrum, $\Delta \alpha$, Scaling Exponent of Temporal Autocorrelation, γ , rms, Total Time Span (TTS) of Post-fit Timing Residuals, and Upper Limit on Dimensionless Amplitude of GWB of 20 MSPs Observed in PPTA Project

PSR Number	PSR Name	H	$\Delta \alpha$	γ	rms (µs)	TTS (yr)	$\mathcal{A}_{yr}^{up}(95\%)$
1	J0437–4715	0.78 ± 0.03	0.89 ± 0.06	-1.56 ± 0.06	0.08	4.76	5.0×10^{-15}
2	J0613-0200	0.68 ± 0.06	1.22 ± 0.04	-1.37 ± 0.11	1.07	5.99	$7.0 imes 10^{-15}$
3	J0711-6830	0.56 ± 0.10	1.40 ± 0.08	-1.13 ± 0.19	0.89	5.99	6.0×10^{-15}
4	J1022+1001	0.65 ± 0.06	1.04 ± 0.04	-1.30 ± 0.13	1.72	5.88	8.5×10^{-15}
5	J1024-0719	0.87 ± 0.03	1.60 ± 0.03	-1.74 ± 0.07	1.13	5.99	
6	J1045-4509	0.84 ± 0.02	1.29 ± 0.04	-1.68 ± 0.05	2.77	5.94	
7	J1600-3053	0.75 ± 0.05	1.34 ± 0.04	-1.50 ± 0.09	0.68	5.93	
8	J1603-7202	0.68 ± 0.04	1.29 ± 0.05	-1.37 ± 0.07	2.14	5.99	2.5×10^{-15}
9	J1643-1224	0.83 ± 0.04	0.89 ± 0.02	-1.66 ± 0.08	1.64	5.87	
10	J1713+0747	0.74 ± 0.04	1.20 ± 0.05	-1.48 ± 0.09	0.31	5.71	2.0×10^{-15}
11	J1730-2304	0.60 ± 0.11	1.79 ± 0.04	-1.21 ± 0.23	1.47	5.93	
12	J1732-5049	0.81 ± 0.03	1.56 ± 0.03	-1.62 ± 0.07	2.22	5.08	$2.0 imes 10^{-15}$
13	J1744–1134	0.85 ± 0.04	1.52 ± 0.03	-1.70 ± 0.09	0.32	5.87	
14	J1824–2452A	0.70 ± 0.03	1.26 ± 0.05	-1.40 ± 0.07	2.44	5.75	10.0×10^{-15}
15	J1857+0943	0.71 ± 0.05	1.45 ± 0.02	-1.42 ± 0.10	0.84	5.93	
16	J1909–3744	0.76 ± 0.06	1.32 ± 0.06	-1.52 ± 0.11	0.13	5.75	6.0×10^{-15}
17	J1939+2134	0.80 ± 0.02	1.25 ± 0.02	-1.61 ± 0.04	0.68	5.88	
18	J2124-3358	0.65 ± 0.07	1.23 ± 0.04	-1.30 ± 0.13	1.90	5.99	6.0×10^{-15}
19	J2129–5721	0.66 ± 0.07	1.54 ± 0.04	-1.32 ± 0.13	0.80	5.86	7.0×10^{-15}
20	J2145-0750	0.69 ± 0.06	1.29 ± 0.05	-1.38 ± 0.11	0.78	5.99	

Eghdami, I., et al., APJ, 864:162 (18 pp), 2018

Observed PTR, Parkes Pulsar Timing Array (PPTA)

Eghdami, I., et al., APJ, 864:162 (18 pp), 2018

What the next?

- 1) Based on Machine Learning, we look for optimum pipeline for GW detection
- 2) Applying Topological and geometrical measures on PTRs for further analysis
- 3) TDA based analysis (Persistence Homology)

Frédéric Chazal and Bertrand Michel arXiv:1710.04019

Take-home message

1- Data and various observations provide opportunity to evaluate our models to explain our cosmos

2- Pipelines may help compared to doing single tools.

3- Machines may help as well

Vafaei Sadr, A., et al., MNRAS, 478.1 (2018): 1132-1140; Eghdami, I., et al., APJ, 864:162 (18 pp), 2018

Summary

- 1) Self-similar and self-affine Processes
- 2) Pulsars Timing Residuals and GWB
- 3) Our Pipeline for detection GWB

Thank you

http://physics.sbu.ac.ir

از ترجہ تھا کے کنزار ^م

