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Detection Approach
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Bulk Acoustic Wave Devices
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Bulk Acoustic Wave Devices

e Top High Quality a-quartz,
e BVA-technology,
o SC-cut,

@ plano-covex...

Room temperature Cryogenic temperature

A BAW quartz resonators optimized for  Acoustic cavity traps longitudinally
the 5th overtone of th? C-mode (?,low polarised phonons (Of D) o) 22 (O L)
shear) at 5 — 10 MHz in the Akhiezer Landau-Rumer regime (Q = constant).

regime (Q X f = constant).
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Types of Losses

When losses due to phonon-tunnelling to the environment are minimised,

: - Sl . i - Sl - +etc (1)
oy — etcC
Q total Qphonon—phonon QTLS Qscatte'm'ng chermoelastic

Phonon-Phonon Dissipation (Landau-Rumer),

acoustic phonon scattering by thermal phonons over crystal anharmonicity

TLS Absorption

coupling to TLS attributed to impurity ions, e.g. A>T, Nat, Lit H7T, etc

Scattering Losses

due to acoustic phonon scattering on surface roughness and on small impurities in
bulk (Rayleigh scattering)

Thermoelastic Dissipation

due to thermal currents induced by medium compression/decompression...
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Observation of Phonon Loss Regimes
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Comparing to Other Technologies
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Comparing to Other Technologies
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Further Directions of Research

Coupling to light & mw Mechanical Optical

Resonator Interface

P. Kharel, arXiv:1809.04020
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SQUID
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teflon gasket

microwave resonance B field
qubit electric field

cavity post microwave resonance F field
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Further Directions of Research

Further understanding of loss Nonlinearities

mechanisms (< |K) Magnetic field sensitivity
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Pros and Cons of BAWSs
Highest Q (High Sensitivity)
Internal (Peizoelectric) coupling to SQUIDs

Allows parametric detection methods

Large number of sensitive modes (>100)

Modes scattered over wide frequency range (1-700MHz)

Well established technology (mass production)
Relatively iInexpensive
Small scale (~ | inch size)
Relatively large effective mass (~ | g)

High Precision (insensitive to external influences)

X 00000000 O

Poor accuracy
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BAW Cavity as a GW Antenna

Gravitational wave detection with high frequency phonon trapping

acoustic cavities

Maxim Goryachev and Michael E. Tobar
Phys. Rev. D 90, 102005 — Published 24 November 2014

There are a number of theoretical predictions for astrophysical and cosmological objects, which emit
high frequency (10‘5 10” Hz) gravitation waves (GW) or contribute somehow to the stochastic high
frequené ckg'rond Here we propose a new sensitive detector in this frequency band, which
is based on existing cryogenic ultrahigh quality factor quartz bulk acoustic wave cavity technology,
coupled to near-quantum- -limited SQUIDaImersat 20 mK. We show that spectral strain sensitivities
reaching 1022 per /Hz per mode is possible, which in principle can cover the frequency range with
multiple (> 100) modes with quality factors varying between 10° and 10'" allowing wide bandwidth
“detection. Due to its cpactness and well-established mamess the system is easily

scalable mto arrays and dlstnbuted networks that can also impact the overall sensitivity and introduce
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BAW Cavity as a GW Antenna

u,(x, 1) = By(1)U,(x), [}dUPUAUA' = Ormy,

EOM for a Bar Detector
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Phys.Rev.D 90, 102005 (2014)




BAW Cavity as a GW Antenna
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Detection Limit in Acoustic Antenna

Nyquist Spectral Density of Force Fluctuations

The acoustic losses in a two-mode resonant bar antenna
cause a white spectral density of force to excite the resonant
system according to Nyquist’s theorem. The single sided
spectral density of force (N*/Hz), exciting a mechanical os-
“CilTafor 1n equilibrium with the surroundings of temperature

T, is given by

S;y=4kTh,=4kTw,m,/Q,. (13)

Thus, the spectral
strain sensitivity to acoustic losses can be shown to be
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Detection Limit in Acoustic Antenna

Nyquist Spectral Density of Force Fluctuations

The acoustic losses in a two-mode resonant bar antenna
cause a white spectral density of force to excite the resonant
system according to Nyquist’s theorem. The single sided
spectral dens1ty of force (N2/Hz) exciting a mechanical os-
“Cillator 1n equilibrium with the surroundings of temperature

T, is given by

S;y=4kTh,=4kTw,m,/Q,. (13)

Thus, the spectral

strain sensitivity due to acoustic losses can be shown to be
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Detection Limit in Acoustic Antenna
Nyquist Spectral Density of Force Fluctuations

The acoustic losses in a two-mode resonant bar antenna
cause a white spectral density of force to excite the resonant
system according to Nyquist’s theorem. The single sided
spectral density of force (N*/Hz), exciting a mechanical os-

“culafor 1n equilibrium with the surroundings of temperature
T, is given by

S;y=4kTh,=4kTw,m,/Q,.

(13)

Thus, the spectral

strain sensitivity due to acoustic losses can be shown to be

Resonant bar antenna
would be Infinrtely broadband if it I1s limited
only by resonance own (v 2nn,)
(narrowband) noise
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101
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BAW Cavity as a GW Antenna
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(a) 20mK
?éoio ‘ _— SQUID BA noise

BAW Cavity as a GW Antenna
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i B O | :
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Observation of the Fundamental Nyquist Noise Limit in an Ultra-High Q-Factor

. T DY . ‘ .
Maxim Goryachev.! * Eugene N. Ivanov,! Frank van Kann.? Serge Galliou,? and Michael E. Tobar!

BAW Cavity as a GW Antenna

Cryogenic Bulk Acoustic Wave Cavity

SQUID control

4K

BAW Cavity

Bias

SQuUID
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Appl.Phys.Lett 105, 153505
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Current Status
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SQUID control
Python data logging
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Current Status

Control and Signal Processing Cryogenic Part
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Two standalone lockin amplifiers
Two Signal generators
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First Data

Data taking started: |5 Nov 2018

4 A few short and long (~ | week) gaps

S
’ One cryocooler (3.4K), One crystal,
S 2 modes, 4 channels
-4 el | week: 2 cryocoolers (3.4K + 20mK),
— X (f.=5.505656 MHz)
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0 2 4 6 8
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Fourier Frequency (Hz)
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First Data

° * Data taking started: |5 Nov 2018

4 A few short and long (~ | week) gaps
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2 modes, 4 channels

Voltage (V)

X (f-=8.392108 MHz)
Y (f.=8.392108 MHz)

| week: 2 cryocoolers (3.4K + 20mK),
X (f.=5.505656 MHz)
U5 505656 i 2 crystals, 4 modes, 8 channels

ST‘ |_|_ RUNN‘NG ocoolers (34K + 4K)

EERaINE ) crystals, 4 modes, 8 channels

— X (f.=5.505656 MHz)
— Y (f.=5.505656 MHz)

B Y (f.—5.506 MH2) ||

Hz)

PSD (dBV/
L
S

-16

Fourier Frequency (Hz)

8 6 -4 -2 0 2 4 6 8
Signal (V)
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Further Improvements

Increase number of modes/channels/crystals

Improvements in signal processing

Shifting to 20 mK (dilution fridge)

MK higher frequency SQUIDs

Design of Dedicated BAW cavities

| Multisite Detection
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Signal Processing
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ORGAN: Axion Haloscope Above 15GHz
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Ferromagnetic Haloscop

Asuka Ito,* Tomonori Ikeda,! Kentaro Miuchi,} and Jiro Soda’
Department of Physics, Kobe University, Kobe 657-8501, Japan
(Dated: May 17, 2019)

A novel method for extending frequency frontier in gravitational wave observations is proposed.
It is shown that gravitational waves can excite a magnon in the presence of an external magnetic
field. Thus, gravitational waves can be probed by a graviton-magnon detector which measures
resonance fluorescence of magnons. The sensitivity of the graviton-magnon detector reaches strains

7.6 x 10722 [Hz'/?] at 14 GHz and 1.2 x 10~2° [Hz~'/?] at 8.2 GHz, respectively.
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Axion Detection with Frequency Metrology
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Axion Modified Electrodynamics

Modified Axion Electrodynamics as Impressed Electromagnetic Sources Through Oscillating Background
Polarization and Magnetization

Michael Edmund Tobar, Ben T. McAllister, Maxim Goryachev Consequences for LOW MaSS EXperlmeﬂtS

(Submitted on 5 Sep 2018 (v1), last revised 1 Aug 2019 (this version, v11))

We present a reformulation of axion modified electrodynamics with all modifications redefined within the constitutive relations between the D,H,B and E fields. This allows the interpretation of the axion
induced background bound charge, polarization current and background polarization and magnetization satisfying the charge-current continuity equation. This representation is of similar form to photon
sector odd-parity Lorentz invariance violating background fields. We show that when a DC B-field is applied an oscillating background polarization is induced at a frequency equivalent to the axion mass. In
contrast, when DC E-field is applied, an oscillating background magnetization is induced at a frequency equivalent to the axion mass. We show that these terms are equivalent to impressed source terms,
analogous to the way that voltage and current sources are impressed into Maxwell's equations in circuit and antenna theory. The impressed source terms represent the conversion of external energy into
electromagnetic energy, and in the case of axion modified electrodynamics this is due to the inverse Primakoff effect converting energy from axions into photons. The axion induced oscillating polarization
under a DC magnetic field is analogous to a permanent polarised electret oscillating at the axion Compton frequency, which sources an electromotive force from an effective impressed magnetic current
source. In particular, it is shown that the impressed electrical DC current that drives the solenoidal magnetic DC field of an electromagnet, induces an impressed magnetic current parallel to the DC electrical

Physics of the Dark Universe, Vol. 26, 100339 (2019) HE—
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Ben T. McAllister, Maxim Goryachev, Jeremy Bourhill, Eugene N. Ivanov, Michael E. Tobar <

1 2 3 4 5

(Submitted on 21 Mar 2018 (v1), last revised 26 Oct 2018 (this version, v4)) Axion Mass (10° n eVv)
The mass of axion dark matter is only weakly bounded by cosmological observations, necessitating a variety of detection techniques over several orders of magnitude of mass ranges. Axions haloscopes
based on resonant cavities have become the current standard to search for dark matter axions. Such structures are inherently narrowband and for low masses the volume of the required cavity becomes
prohibitively large. Broadband low-mass detectors have already been proposed using inductive magnetometer sensors and a gapped toroidal solenoid magnet. In this work we propose an alternative, which
uses electric sensors in a conventional solenoidal magnet aligned in the laboratory z-axis, as implemented in standard haloscope experiments. In the presence of the DC magnetic field, the inverse
Primakoff effect causes a time varying permanent electric vacuum polarization in the z-direction to oscillate at the axion Compton frequency, which induces an oscillating electromotive force. We propose
non-resonant techniques to detect this oscillating elctromotive force by implementing a capacitive sensor or an electric dipole antenna coupled to a low noise amplifier. We present the first experimental

results and discuss the foundations and potential of this proposal. Preliminary results constrain g,,, >~ 2.35 X 10712 GeV~! in the mass range of 2.08 X 107" t0 2.2 x 107! eV, and demonstrate
potential sensitivity to axion-like dark matter with masses in the range of 1072 to 1078 ev.
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Lorentz Invariance Tests

Acoustic Tests of Lorentz Symmetry Using Quartz Oscillators

Anthony Lo, Philipp Haslinger, Eli Mizrachi, Loic Anderegg, Holger Muller, Michael Hohensee, Maxim Goryachey,
and Michael E. Tobar

Phys. Rev. X 6, 011018 — Published 24 February 2016
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ABSTRACT -

) + We propose and demonstrate a test of Lorentz symmetry based on new, compact, and reliable quartz
oscillator technology. Violations of Lorentz invariance in the matter and photon sector of the standard

Quasi-transverse
polarisation

model extension generate anisotropies in particles’ inertial masses and the elastic constants of solids,
giving rise to measurable anisotropies in the resonance frequencies of acoustic modes in solids. A first

realization of such a “phonon-sector” test of Lorentz symmetry using room-temperature stress-
compensated-cut crystals yields 120 h of data at a frequency resolution of 2.4 x 10~'* and a limit of

Rotational Encoder

=n

Co= (—1.8+2.2) x 10 ' GeV on the most weakly constrained neutron-sector ¢ coefficient of the
standard model extension. Future experiments with cryogenic oscillators promise significant
improvements in accuracy, opening up the potential for improved limits on Lorentz violation in the
neutron, proton, electron, and photon sector.

Data
Acquisition

L owest Bound on anisotropy of Neutron Mass

Next Generation of Phonon Tests of Lorentz Invariance Using Quartz BAW
Resonators

Publisher: IEEE
Direction of

| nadeag Abstract:

We demonstrate technological improvements in phonon sector tests of the Lorentz invariance that

implement quartz bulk acoustic wave oscillators. In this experiment, room temperature oscillators with

state-of-the-art phase noise are continuously compared on a platform that rotates at a rate of order of a

cycle per second. The discussion is focused on improvements in noise measurement techniques, data

0 acquisition, and data processing. Preliminary results of the second generation of such tests are given, and

l“" 2] indicate that standard model extension coefficients in the matter sector can be measured at a precision of
order 10 -'6 GeV after taking a year's worth of data. This is equivalent to an improvement of two orders of

magnitude over the prior acoustic phonon sector experiment.

Phys. Rev. X 6,011018 (2016) -
IEEE TUFFC, Vol 65,991-1000 (2018)

Cenitre of Excellence for

Engineered Quantum Systems




Tests of Quantum G

Testing of Generalized Uncertainty Principle With Macroscopic Mechanical Oscillators and
Pendulums

P. A. Busheyv, J. Bourhill, M. Goryachev, N. Kukharchyk, E. Ivanov, S. Galliou, M. E. Tobar, S. Danilishin
(Submitted on 8 Mar 2019 (v1), last revised 23 Aug 20189 (this version, v2))

Recent progress in observing and manipulating mechanical oscillators at quantum regime provides new opportunities of studying fundamental physics, for example, to
search for low energy signatures of quantum gravity. For example, it was recently proposed that such devices can be used to test quantum gravity effects, by detecting
the change in the [x,p] commutation relation that could result from quantum gravity corrections. We show that such a correction results in a dependence of a resonant
frequency of a mechanical oscillator on its amplitude, which is known as amplitude-frequency effect. By implementing this new method we measure amplitude-
frequency effect for 0.3 kg ultra high-Q sapphire split-bar mechanical resonator and for 10 mg quartz bulk acoustic wave resonator. Our experiments with sapphire
resonator have established the upper limit on quantum gravity correction constant for ff; < 5 X 10° which is a factor of 6 better than previously detected. The
reasonable estimates of f}; from experiments with quartz resonators yield an even more stringent limit of 4 X 10*. The data sets of 1936 measurement of physical
pendulum period by Atkinson results in significantly stronger limitations on ff; < 1. Yet, due to the lack of proper pendulum frequency stability measurement in these
experiments, the exact upper bound on f§; can not be reliably established. Moreover, pendulum based systems only allow testing a specific form of the modified
commutator that depends on the mean value of momentum. The electro-mechanical oscillators to the contrary enable testing of any form of generalized uncertainty
principle directly due to much higher stability and a higher degree of control.

Ap* + (p)?
M,fc2

.\ 2
P . P
. —ihl1 . )
[Z, plg, =1 + 8o My ,

AmAng 1+ Bo

e — E—

H — Hy + AH = ﬁ2/2m+m9(2,§:2/2 +,30134/(3m(MpC)2)

e ——

ravity

(b)

MRALLL BELEALLL BELEARLL BEREALLL BELEALLL BEEARL L BELEALLL SEALALLL BELEAL L] BEEELLL BEERLELL ELEALLL LRI

N
_..
...
_..
:.
:.

4

20

-

o o}
—
O
~—

T

- -
Lo - )]
-

o

Y

- -
o N

T

T

Displacement amplitude x (pm)

A

aaal

Al

0 100 200
Time (sec)

- €

projected

T PRI ERT BT RET REIT RET PRI N RETT CRTT CNT RN REIT RETT ERTICRT RETT RETT PRTINNT NUT NI PNTT

P

T T

QG correction strength log, (B, )
g 10\ 0
(o}

»

-10 -8 -6 -4 -2 0
log,  of resonator mass (kg)

Amplifier

|
/

gl\-@@‘—

AM-excitation at 127 kHz

Centre o celler 0
Engineered Quantum Systems




Advantages of BAW Technologies

Highest Qs in business
High Precision
Insensitive to external influences
Multi-Mode (I-100s MHz)
Piezoelectric Coupling to SQUIDs
Parametric coupling Is possible
Reliable (mass production) technology
Small scale (~ | inch size)
Relatively inexpensive
Room for improvement!
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