Cartesian Co-ordinates

Element of length
in x-direction

$$
\overrightarrow{d l}_{1}=d x \hat{x}
$$

in y-direction

$$
\begin{aligned}
& \overrightarrow{d l}_{2}=d y y^{n} \\
& \frac{d l_{3}}{}=d_{33^{n}}
\end{aligned}
$$

Element of Area

$$
\begin{aligned}
& \overrightarrow{d a}_{1}=d x d z \hat{y} \\
& \vec{d} a_{2}=d x d y \hat{z} \\
& \overrightarrow{d a}_{3}=d y d z(-\hat{x}) \\
& \vec{d}_{a_{4}}=d_{y} d z(\hat{x})
\end{aligned}
$$

Element of volume is $d z=d x d y d z$

Gradient

$$
\vec{\nabla}=\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{\beta}
$$

Divergence

$$
\begin{gathered}
\bar{\nabla} \cdot \bar{v}=\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \xi^{a}\right) \cdot\left(V_{x} \dot{x}+V_{y} \hat{y}+V_{2} \hat{\xi}\right) \\
=\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}
\end{gathered}
$$

Divergence of a vector is a scalar quantity.
Curl
Curl of a vector function \vec{V} is given by.

$$
\begin{aligned}
& \bar{\nabla} \times \bar{\gamma}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
V_{x} & V_{y} & V_{z}
\end{array}\right| \\
& =x^{\hat{}}\left(\frac{\partial V_{z}}{\partial y}-\frac{\partial V_{y}}{\partial z}\right)+y^{y}\left(\frac{\partial V_{x}}{\partial z}-\frac{\partial V_{z}}{\partial x}\right)+\hat{z}\left(\frac{\partial V_{z}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right)
\end{aligned}
$$

Relation with Cartesian co-ordinates

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta \\
& \hat{r}=\sin \theta \cos \phi \hat{x}+\sin \theta \sin \phi \hat{y}+\cos \theta \hat{z} \\
& \hat{\theta}=\cos \theta \cos \phi \hat{x}+\cos \theta \sin \phi \hat{y}-\sin \theta \hat{z} \\
& \phi=-\sin \phi \hat{x}+\cos \phi \hat{y}
\end{aligned}
$$

Vector A can be written as.

$$
\bar{A}=A r \hat{r}+A \theta \hat{\theta}+A_{\phi} \hat{\phi}
$$

Ar_radial comps
A_{θ} - polar
Aq - - azimuthal"
Elements of length
In \hat{r}-direction

$$
\overrightarrow{d l_{r}} \equiv \overrightarrow{d r}
$$

Spherical Polar Co-ordinates
The spherical polar coordinates $(r, 0, \phi)$ of a point P are defined as

\bar{r} - distance from origin
θ - the angle down from z-axis Polar angle
ϕ - the around the x-axis Azimuthal angle.

An element of length in θ-dire.

$$
\overrightarrow{d l}_{\theta}=r d \theta \hat{\theta}
$$

In ϕ-direction.

$$
\overrightarrow{d f}=r \sin \theta d \phi \hat{\psi}
$$

$$
\Rightarrow \quad \overrightarrow{d l}=d r \hat{r}+r d \theta \hat{\theta}+r \sin \theta d \phi \hat{\phi}
$$

No general expression for element of area da

$$
\begin{aligned}
\overrightarrow{d a}_{1} & =d l_{\theta d l} \hat{r} \\
& =r^{2} \sin \theta d \theta d \rho \hat{r}
\end{aligned}
$$

If surface hies in $x-y$ plane

$$
d \vec{a}_{2}=d \operatorname{lr} d d \phi \hat{\theta}=r \sin \theta d r d \phi \hat{\delta}
$$

Volume element is

$$
d \tau=d \operatorname{lr} d l \theta d l \phi=r^{2} \sin \theta d r d \theta d \phi
$$

Gradient:

$$
\nabla T=\frac{\partial T}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial T}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial T}{\partial \phi} \phi^{n}
$$

Divergence

$$
\begin{aligned}
& \nabla \cdot N= \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} V_{f}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta V_{\theta}\right) \\
&+\frac{1}{r \sin \theta} \frac{\partial V_{\phi}}{\partial \phi} \\
& \text { Curl }= \\
& \bar{\nabla} \times \bar{V}= \frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta V_{\phi}\right)-\frac{\partial V_{\theta}}{\partial \phi}\right] \hat{r} \\
&+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\gamma V_{r}}{r \phi}-\frac{\partial}{\partial r}\left(r V_{\phi}\right)\right] \hat{\theta} \\
&+ \frac{1}{r}\left[\frac{\partial}{\partial r}\left(r V_{\theta}\right)-\frac{\partial V_{r}}{\partial \theta}\right] \hat{\phi}
\end{aligned}
$$

Laplacian:

$$
\begin{aligned}
\nabla^{2} T= & \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial T}{\partial 6}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial T}{\partial \theta}\right) \\
& +\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} T}{\partial \phi^{2}}
\end{aligned}
$$

Cylindrical So-ordinates
Cylindrical co-ordinates (r, ϕ, z) for apt. P are defined by figure.

$$
\begin{aligned}
& x=r \cos \phi \\
& y=r \sin \psi \\
& z=z
\end{aligned}
$$

elements of length arc

$$
\begin{array}{l:l}
\overrightarrow{d l}_{r}=d r \hat{r} & \hat{r}=\cos \phi \hat{x}+\sin \phi \hat{y} \\
d l_{\psi}=r d \phi \hat{\phi} & \hat{\phi}=-\sin \phi \hat{x}+\cos \phi \hat{y} \\
d l_{z}=d z \hat{z} & \hat{z}=\hat{z}
\end{array}
$$

$$
\overrightarrow{d l}=d r \hat{r}+r d \phi \hat{\phi}+d z \hat{z}
$$

$$
r \rightarrow 0 \longrightarrow \infty
$$

$$
\phi \rightarrow 0 \longrightarrow 2 \pi
$$

$$
z \rightarrow-\infty \rightarrow \infty
$$

For flat surface

$$
\begin{aligned}
& \vec{d} a_{1}=r d \phi d r z^{n} \\
& \vec{a}_{2}=r d \phi d z \hat{r}\binom{\text { curved }}{\text { surface }}
\end{aligned}
$$

Volume element

$$
d z=r d r d \phi d z
$$

Volume of a cylinder of radius R and height

$$
\begin{gathered}
V=\int_{V} d r=\int_{0}^{R} r d r \int_{0}^{2 \pi} d \phi \int_{0}^{l} d z=\frac{R^{2}}{2}(2 \pi)(L) \\
V=\pi R^{2} L
\end{gathered}
$$

The vector derivatives in cylinderical co-ordinates

Gradient:

$$
\bar{\nabla} T=\frac{\partial T}{\partial r} \hat{r}+\frac{1}{\gamma} \frac{\partial T}{\partial \phi} \hat{\phi}+\frac{\partial T}{\partial z} \hat{z}
$$

Divergence

$$
\begin{aligned}
\bar{\nabla} \cdot \bar{V}= & \frac{1}{r} \frac{\partial}{\partial r}\left(r V_{r}\right)+\frac{1}{r} \frac{\partial V_{\phi}}{\partial \phi}+\frac{\partial V_{z}}{\partial z} \\
\text { Curl }=\bar{\nabla} \times \bar{V}= & \left(\frac{1}{r} \frac{\partial V_{z}}{\partial \phi}-\frac{\partial V_{\phi}}{\partial z}\right) \hat{r}+\left(\frac{\partial V_{r}}{\partial z}-\frac{\partial V_{z}}{\partial r}\right) \hat{\phi} \\
& +\frac{1}{r}\left(\frac{\partial}{\partial_{r}}\left(r V_{\phi}\right)-\frac{\partial V_{r}}{\partial \phi}\right] \hat{z}
\end{aligned}
$$

Laplacian:

$$
\nabla^{2} T=\frac{1}{6} \frac{\partial}{\partial 6}\left(r \frac{\partial T}{\partial r}\right)+\frac{1}{\gamma^{2}} \frac{\partial^{2} T}{\partial \phi^{2}}+\frac{\partial^{2} T}{\partial z^{2}}
$$

Tensor Notation:
A vector \vec{x}

$$
\begin{aligned}
& \vec{x}=(x, y, z)=x_{i} \quad i=1,2,3 \\
& \vec{A}=A_{x} \hat{i}+A_{y \hat{j}}+A_{z \hat{k}} \\
& \vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k} \\
& \bar{A} \cdot \bar{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

$$
=\sum_{i} A_{i} B_{i}=A_{i} B_{i} \text { ņrepeated }
$$ indies are summed Einstein summation coveution

$$
\Rightarrow \bar{A} \cdot \bar{B}=A ; B_{i}
$$

Cross -Product

Tensor Notation:
A vector \vec{x}

$$
\begin{aligned}
& \vec{x}=(x, y, z)=x_{i} \quad i=1, z, 3 \\
& \vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k} \\
& \vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k} \\
& \bar{A} \cdot \bar{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

$$
=\sum_{i} A_{i} B_{i}=A_{i} B_{i} \text { repeated }
$$ indies are summed

Einstein summation convention

$$
\Rightarrow \bar{A} \cdot \bar{B}=A_{i} B_{i}
$$

Cross -Product

$$
\vec{A} \times \vec{B}=|\bar{A}||\bar{B}| \sin \theta \hat{n}
$$

\hat{n} - a unit vector \perp to the plane of $A=B$

$$
\begin{aligned}
& \bar{A} \times \bar{B}=\left|\begin{array}{ccc}
1 & k \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \\
& =\hat{i}\left(A_{y} B_{z}-A_{z} B_{y}\right)+j\left(A_{x} B_{z}-A_{z} B_{x}\right) \\
& \quad+\hat{k}\left(A_{x} B_{y}-A_{y} B_{x}\right)
\end{aligned}
$$

Can be written as.

$$
(\vec{A} \times \vec{B})_{x}=(\bar{A} \times \bar{B})_{i}=(A \times B)_{1}=A_{2} B_{3}-A_{3} B_{2}
$$

$(\vec{A} \times \vec{B}) \hat{i}=\epsilon_{i j k} A_{j} B_{k}$ (Tensor form of a vector product)
Eijk Levi- Civita symbol.

$$
\begin{aligned}
\vec{A} \times \vec{B} & =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{i j k} \hat{i} A_{j} B_{k}=\mathbb{Z}_{j} \\
(\bar{A} \times \bar{B})_{i} & =\sum_{j k} \epsilon_{i j k} A ; B_{k}=\sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{i j k} A_{j} B_{k} \\
& =\epsilon_{i j k} A_{j} B_{k}
\end{aligned}
$$

Totally anti-symmetric tensor.
$\epsilon_{123}=1$ for cyclic permutation

$$
\Rightarrow \quad \epsilon_{123}=\epsilon_{231}=\epsilon_{312}=1
$$

For anti-cyclic order

$$
\begin{aligned}
& \epsilon_{j k k}=\epsilon_{k j i}=\epsilon_{i k j}=-1 \\
& \epsilon_{j j k}=\epsilon_{i j i}=\cdots=0
\end{aligned}
$$

kronecker Delta.

$$
\begin{gathered}
\delta_{i j}=\delta_{j i}=\text { Symmetric in two indices. } \\
\delta_{i j}=1 \quad i=j \\
=0 \quad i \neq j \\
\sum_{i} C_{i} \delta_{i j}=C_{i} \delta_{i j}=C_{j} \\
\delta_{i i}=\delta_{11}+\delta_{22}+\delta_{33}=1+1+1=3 \\
\epsilon_{i j k} \epsilon_{i l m}=\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l} \\
\epsilon_{i j k} \epsilon_{k t m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}
\end{gathered}
$$

$E_{i j k}$ - atensor of rank three.
As $\frac{\partial x}{\partial y}=0 \quad$ \& $\frac{\partial x}{\partial x}=1$

$$
\Rightarrow \delta_{i j}=\frac{\partial x_{i}}{\partial x_{j}}
$$

Vector triple Product

$$
\bar{A} \times(\bar{B} \times \bar{C})=B(\bar{A} \cdot \bar{C})-C(\bar{A} \cdot \bar{B})\}
$$

Proof:
called $B A C-C A B$ Rule.

$$
\begin{aligned}
{[\bar{A} \times(\bar{B} \times \bar{C})]_{i} } & =\epsilon_{i j k} A_{j}(\bar{B} \times \bar{C})_{k} \\
& =\epsilon_{i j k} A_{j} \epsilon_{k l m} B_{l} C_{m} \\
& =\epsilon_{i j k} \epsilon_{k l m} A_{j} B_{l} C_{m}
\end{aligned}
$$

As $\epsilon_{k t_{m}}=\epsilon_{l_{m k}} \rightarrow$ cyclic permutat.

$$
\begin{aligned}
& {[\bar{A} \times(\bar{B} \times \bar{C})]_{i}=\epsilon_{i j k} \epsilon_{l m k} A_{j} B_{l} C_{m}} \\
& =\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) A_{j} B_{1} C_{m} \\
& =\delta_{i l} \delta_{j m} A_{j} B_{1} C_{m}-\delta_{i m} \delta_{j l l} A_{j} B_{l} C_{m} \\
& i=l \\
& =A_{j} B_{i=m} B_{i} C_{j}-A_{j} B_{j} C_{i} \\
& = \\
& =B_{i}\left(A_{j} C_{j}\right)-C_{i}\left(A ; B_{j}\right) \\
& =[\bar{B}(\bar{A} \cdot \bar{C})-C(A \cdot B)] i \\
& \Rightarrow A \times(\bar{B} \times \bar{C})=B A C-C A B
\end{aligned}
$$

Gradient: (In Tensor form)
As

$$
\begin{aligned}
& \bar{\nabla} \phi(x, y, z)=\frac{\partial \psi}{\partial x} \hat{i}+\frac{\partial \phi}{\partial y} \hat{j}+\frac{\partial \phi}{\partial k^{n}} \\
& (\bar{\nabla} \phi)_{i}=\frac{\partial \phi}{\partial x_{i}} \text { (ith compt) }=\sum_{i=1}^{3} x_{i} \frac{\partial \phi}{\partial x_{i}}
\end{aligned}
$$

Divergence:

$$
\bar{\nabla} \cdot \bar{A}=\frac{\partial}{\partial x} A_{x}+\frac{\partial}{\partial y} A_{y}+\frac{\partial}{\partial z} A_{z}=\sum_{i} \frac{\partial A_{i}}{\partial x_{i}}=\frac{\partial A_{i}}{\partial x_{i}}
$$

curl..

$$
\begin{aligned}
& \bar{\nabla} \times \bar{A}=\sum \hat{x}_{i} \epsilon_{i j k} \frac{\partial A_{k}}{\partial x_{j}} \\
& (\bar{\nabla} \times \bar{A}) i=\epsilon_{i j k} \frac{\partial A_{k}}{\partial x_{j}}
\end{aligned}
$$

1, $\bar{\nabla} \times \bar{\nabla} \phi=0$
Prove

$$
\begin{aligned}
&(\bar{\nabla} \times \bar{\nabla} \phi) i=\epsilon_{i j k} \frac{\partial}{\partial x}(\bar{\nabla} \phi)_{k} \\
&=\epsilon_{i j k} \frac{\partial}{J x_{j}} \frac{\partial \phi}{\partial x_{k}}=-\epsilon_{i k J} \frac{\partial}{\partial x_{k}} \frac{\partial}{\partial x_{J}} \\
&=-\epsilon_{i J R} \frac{\partial}{\partial x_{J}} \frac{\partial}{\partial x_{k}} \phi \quad\left(\begin{array}{l}
\text { in partial differentids } \\
\text { order of indices } \\
\text { doesnot matter) }
\end{array}\right. \\
& \Rightarrow \quad \epsilon_{i J k} \frac{\partial}{\partial x_{J}} \frac{\partial}{\partial x_{k}} \phi=-\epsilon_{i T k} \frac{\partial}{\partial x_{J}} \frac{\partial \phi}{\partial x_{k}} \\
& \Rightarrow \quad 2 \epsilon_{i J k} \frac{\partial}{\partial x_{J}} \frac{\partial}{\partial x_{k}} \phi=0 \\
& \Rightarrow(\bar{\nabla} \times \bar{\nabla} \phi)_{i}=0 \Rightarrow \bar{\nabla} \times \bar{\nabla} \phi=0
\end{aligned}
$$

2,

$$
\left.\begin{array}{rl}
\bar{\nabla} \cdot(\bar{\nabla} \times \bar{A})= & \frac{\partial}{\partial x_{i}} \cdot(\bar{\nabla} \times \bar{A}) i=\frac{\partial}{\partial x_{i}} \epsilon_{i j k} \frac{\partial}{\partial x_{j}} A_{k} \\
& =\epsilon_{i j k} \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{J}} A_{k}=-\epsilon_{\text {JFk }} \frac{\partial}{\partial x_{J}} \frac{\partial}{\partial x_{i}} A_{R} \\
& =-\epsilon_{i T k} \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{J}} A_{R} \quad \text { (in partial differentials } \\
\text { order of indices } \\
\text { doesnot matter) }
\end{array}\right]-\frac{\partial}{\partial x_{i}} \epsilon_{i j k} \frac{\partial}{\partial x_{J}} A_{R} \quad \epsilon_{i T k} \frac{\partial}{\partial x_{J}} A_{R} \Rightarrow \frac{\partial}{\partial x_{i}} \epsilon_{i T k} \frac{\partial}{\partial X_{J}} A_{k}=0
$$

(3)

$$
\begin{aligned}
& \overline{\bar{\nabla}} \times(\bar{\nabla} \times \bar{A})=\bar{\nabla}(\bar{\nabla} \cdot A)-\nabla^{2} A \\
& (\overline{\bar{\nabla}} \times(\bar{\nabla} \times \bar{A}))_{i}=\epsilon_{i j k} \frac{\partial}{\partial x_{j}}(\nabla \times A)_{k} \\
& =\epsilon_{i j k} \epsilon_{k l m} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{l}} A_{m} \\
& A s \epsilon_{i j k} \epsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l} \\
& \begin{aligned}
(\nabla \times(\bar{\nabla} \times \bar{A}))_{i} & =\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{l}} A_{m} \\
& =\delta_{i l} \delta_{j m} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x l} A_{m}-\delta_{i m} \delta_{j l} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x l} A_{m} \\
& \stackrel{i}{2}=l \\
& =\delta_{j m} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{i}} A_{m}-\delta_{j l} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{l}} A_{i} \\
& =\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{i}} A_{j}-\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{j}} A_{i} \\
& =\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} A_{j}-\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{j}} A_{i} \\
& =\nabla_{i}(\bar{\nabla} \cdot \bar{A})-(\bar{\nabla} \cdot \bar{\nabla}) A_{i} \\
& =[\nabla(\bar{\nabla} \cdot A)] ;-\nabla^{2} A i
\end{aligned}
\end{aligned}
$$

