

Optical polarization based logical gate system of ON-OFF type using SPR periodic arrays

Nicoleta Tosa¹ and Humberto Cabrerra^{2, 3}

¹National Institute for Research & Development for Isotopic and Molecular Technologies, Cluj-Napoca, Romania

²The Abdul Salam International Center for Theoretical Physics, Optics Lab, Trieste, Italy ³National Institute for Nuclear Physics Trieste, Italy

Preparatory School on Optics: Quantum Photonics and Information ICTP, 3-7 February 2020, Trieste, Italy,

Why metal/gold?

- high chemical stability
- high plasmon resonance of gold nanoparticles
- controllable range of densities
- extended applications

Why metallic colloids (nanoparticles)?

- small inhomogeneities to create effective macroscopic behaviors
- starting point for composite materials, micro- and nanostructured
- applications in opto-electronics such as spectral filtering, sensor detection, and metamaterials, man-made objects that have properties often absent in nature (n<0)

Outline

- Metallic periodic micro-/nanostructure induced by direct light writing in films: principle and obtaining
- Optical microscopy imaging
- UV-Vis spectroscopic investigations
- Polarization testing
- Conclusion

Material Composite

Doped Polymer Matrix :

- polystyren sulfonic acid (PSS) 18% (w/w) solution
- gold precursor : tetrachloroauric acid (III) AuCl₄H-3H₂O (99.5%)
- photosensitizer: trisodium citrate C₆H₅Na₃O₇·2H₂O

Composite Material

Doped Polymer Film

Grid: metallic micro-/nanostructures of neutral Au (0) generated by direct light writing lithography procedure

Both cross-sections are dependent on the polarizability of the particle, which is proportional to the size of them with R³. Thus, as the particle size increase, re-radiation of the energy to the surrounding medium is expected to be dominant.

- For the case of nanoparticles smaller than 60-70 nm, the image of the array cannot be identified with reflected light but can be noticed with transmission light.
- The extinction cross section is dominated by absorption while the larger particles can provide bright images both in the reflection and transmission modes.

UV-Vis investigations in the patterned gratings

Attenuated transmission & uniform size distribution

Period of the gratings: d=10 µm

Period of the gratings: d=5 µm

Period of the gratings: d=4 µm

Period of the gratings: d= 3 µm

Period of the gratings: $d=5 \mu m$ (V), $d=4 \mu m$ (V and H)

The polarization angle has no spectacular effect among the in contact lower size Au nanoparticles embedded in written patterns except a slighter narrowing of the period of the gratings in the horizontal configuration

The polarization angle has no effect among in contact lower size Au nanoparticles embedded in the written patterns except attenuating the SPR response due to the light attenuation

Gold Wires on Polyimide Underlayered Glass

Optical image of a gold wires array (in dark-field scattering) SEM image of two gold double wires

Direct laser writing, Two-photon absorption, 100x oil-immersed objective, NA 1.3

No red colour but yellow to orange now \implies The reflection will prevail instead of absorbtion/transmission due to the change of the refractive index of the patterns

N. Tosa et al., Proc. of SPIE, 2006, 6195, 1-8.

Double Wire

Double wire due to the thermal effect induced by the colloids during the laser irradiation of the sample

N. Tosa et al., J. Optoelectron.Adv.Mater, 2007, 9(3), 641-645

Double Wire – Diffraction properties

Schematic view of the dark-field arrangement for a metallic double-wire shape

Diffraction intensity perpendicular to the sample:

$$I_{d} = K \cdot I_{0} \cos^{2}(\pi / \lambda \cdot n \cdot d \cos(\theta))$$

$$I_{m} = d \cdot \cos(\theta) / p \cdot n$$

$$I = I_{m} \cdot \cos^{2}(\varphi/2) \quad \text{Im at } \theta = 0$$

$$\varphi = (2\pi d / \lambda) \cdot \sin \theta$$

N. Tosa et al., J. Optoelectron.Adv.Mater, 2007, 9(3), 641-645

Optical image obtained with metallic double – wire shapes with increasing distances between the walls, from the left to the right

Direct laser writing, one-photon absorption, 100x oil-immersion, NA 1.3

Period of the gratings: - 13 µm for the horizontal and vertical group of 4 lines - 5 µm for the vertical

group of 6 lines

The nanostructured Au patterns exhibit very important surface plasmon resonances (SPR) as expected – see the red color due to the higher absorption cross-section.

The polarization angle affects in contact larger size Au nanoparticles outside of written patterns

Polarization effect on vertical and horizontal SPR gratings

The polarization angle affect the absorbance/transmission of the in contact lower size Au nanoparticles embedded in the written patterns

The lower RI regions appear to be narrower for horizontal lines comparison with the vertical lines embedding in contact lower size Au nanoparticles

Polarization effect on Au nanostructured patterns: ordered and agglomerated

Polarization angle has no effect among ordered and in contact lower size Au nanoparticles embedded in the written patterns

Polarization angle affects the agglomerated and in contact larger size Au nanoparticles outside of the written patterns

Polarization effect on Au nanostructured patterns: ordered and agglomerated

OFF'

polarization angle 70
 polarization angle 110

The polarization angle affects the plasmonic coupling modes

Polarization effect in round Au patterns: nanostructured and bulk

ON'

OFF'

1- polarization angle 70

- 2 polarization angle 90
- 2 polarization angle 110

The polarization angle affects the plasmonic modes

Polarization effect on Au nanostructured patterns: ordered and agglomerated

1 - polarization angle: 0 ON/ OFF'

6 - polarization angle 90 OFF/ ON'

OFF

ON' The polarization angle affects the plasmonic coupling modes

CONCLUSIONS

Periodical arrays of gold nanostructured patterns in transparent polymer films has been drawn using direct laser writing (DLW)

DLW is a maskless procedure with spatial control of the process, confined in at the focal point, which selectively generates well defined patterns of tunable sizes and periodicities

□ Metallic microstructures contain nanoparticles with size and shape uniformly distributed along the pattern

- The nature of the light interaction with particles, whether is absorption or scattering, is mainly dependent on the material and the size of the nanoparticles.
- Polarization angle has no effect among ordered and in contact lower size Au nanoparticles embedded in the written patterns
- Polarization angle affects the agglomerated and in contact larger size Au nanoparticles outside of the written patterns

Changing the polarization angles the intensity of the colors decrease to cutoff, allowing to build an optical polarization based logical gate device of ON-OFF type in the SPR periodic array.

Acknowledgements

The financial and technical support from ICTP is warmly acknowledge.

Nicoleta Tosa wants to thank also for the financial and technical support of this work by grant of the Ministry of Research and Innovation, CCCDI-UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0010/74PCCDI/2018, project component 3, within PNCDI III.

A very special thank to Dr. Florin Toadere from INCDTIM Cluj-Napoca, Romania, for the Matlab image processing algorithm employed to remove the blur of the original microscope images and their work up to have a better visibility in terms of perception of the microscope images details, such as the ON and OFF plasmonic coupling modes.

Thank you for your attention!

