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Several quantities of interest in quantum information, including entanglement and purity,
are nonlinear functions of the density matrix and cannot, even in principle, correspond
to proper quantum observables. Any method aimed to determine the value of these
quantities should resort to indirect measurements and thus corresponds to a parameter
estimation problem whose solution, i.e. the determination of the most precise estimator,
unavoidably involves an optimization procedure. We review local quantum estimation
theory and present explicit formulas for the symmetric logarithmic derivative and the
quantum Fisher information of relevant families of quantum states. Estimability of a
parameter is defined in terms of the quantum signal-to-noise ratio and the number of
measurements needed to achieve a given relative error. The connections between the
optmization procedure and the geometry of quantum statistical models are discussed.
Our analysis allows to quantify quantum noise in the measurements of non observable
quantities and provides a tools for the characterization of signals and devices in quantum
technology.
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1. Introduction

Many quantities of interest in physics are not directly accessible, either in principle
or due to experimental impediments. This is particolarly true for quantum mechan-
ical systems where relevant quantities like entanglement and purity are nonlinear
functions of the density matrix and cannot, even in principle, correspond to proper
quantum observables. In these situations one should resort to indirect measure-
ments, inferring the value of the quantity of interest by inspecting a set of data
coming from the measurement of a different obeservable, or a set of observables.
This is basically a parameter estimation problem which may be properly addressed
in the framework of quantum estimation theory (QET),1 which provides analytical
tools to find the optimal measurement according to some given criterion. In turn,
there are two main paradigms in QET: Global QET looks for the POVM minimizing
a suitable cost functional, averaged over all possible values of the parameter to be
estimated. The result of a global optimization is thus a single POVM, independent
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on the value of the parameter. On the other hand, local QET looks for the POVM
maximizing the Fisher information, thus minimizing the variance of the estima-
tor, at a fixed value of the parameter.2–6 Roughly speaking, one may expect local
QET to provide better performances since the optimization concerns a specific
value of the parameter, with some adaptive or feedback mechanism assuring the
achievability of the ultimate bound.7 Global QET has been mostly applied to find
optimal measurements and to evaluate lower bounds on precision for the estima-
tion of parameters imposed by unitary transformations. For bosonic systems these
include single-mode phase,8,9 displacement,10 squeezing 11,12 as well as two-mode
transformations, e.g. bilinear coupling.13 Local QET has been applied to the esti-
mation of quantum phase14 and to estimation problems with open quantum systems
and non unitary processes15: to finite dimensional systems,16 to optimally estimate
the noise parameter of depolarizing17 or amplitude-damping,18 and for continuous
variable systems to estimate the loss parameter of a quantum channel19–22 as well
as the position of a single photon.23 Recently, the geometric structure induced by
the Fisher information itself has been exploited to give a quantitative operational
interpretation for multipartite entanglement24 and to assess quantum criticality as
a resource for quantum estimation.25

In this paper we review local quantum estimation theory and present explicit
formulas for the symmetric logarithmic derivative and the quantum Fisher infor-
mation of relevant families of quantum states. We are interested in evaluating the
ultimate bound on precision (sensitivity), i.e. the smallest value of the parameter
that can be discriminated, and to determine the optimal measurement achieving
those bounds. Estimability of a parameter will be then defined in terms of the
quantum signal-to-noise ratio and the number of measurements needed to achieve
a given relative error.

The paper is structured as follows. In the next Section we review local quan-
tum estimation theory and report the solution of the optimization problem, i.e. the
determination of the optimal quantum estimator in terms of the symmetric logarith-
mic derivative, as well as the ultimate bounds to precision in terms of the quantum
Fisher information. General formulas for the symmetric logarithmic derivative and
the quantum Fisher information are derived. In Sec. 3 we address the quantification
of estimability of a parameter put forward the quantum signal-to-noise ratio and
the number of measurements needed to achieve a given relative error as the suitable
figures of merit. In Sec. 4 we present explicit formulas for sets of pure states and the
generic unitary family. We also consider the multiparamer case and the problem of
repametrization. In Sec. 5 we discuss the connections between estimability of a set
of parameters, the optmization procedure and the geometry of quantum statistical
models. Sec. 6 closes the paper with some concluding remarks.

2. Local Quantum Estimation Theory

The solution of a parameter estimation problem amounts to find an estimator, i.e.
a mapping λ̂ = λ̂(x1, x2, . . .) from the set χ of measurement outcomes into the
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space of parameters. Optimal estimators in classical estimation theory are those
saturating the Cramer-Rao inequality26

V(λ) ≥ 1
MF (λ)

(1)

which establishes a lower bound on the mean square error V (λ) = Eλ[(λ̂({x})−λ)2]
of any estimator of the parameter λ. In Eq. (1) M is the number of measurements
and F (λ) is the so-called Fisher Information (FI)

F (λ) =
∫

dxp(x|λ)
(
∂ ln p(x|λ)

∂λ

)2

=
∫

dx
1

p(x|λ)

(
∂p(x|λ)

∂λ

)2

. (2)

where p(x|λ) denotes the conditional probability of obtaining the value x when the
parameter has the value λ. For unbiased estimators, as those we will deal with, the
mean square error is equal to the variance Var(λ) = Eλ[λ̂2] − Eλ[λ̂]2.

When quantum systems are involved any estimation problem may be stated by
considering a family of quantum states ϱλ which are defined on a given Hilbert
space H and labeled by a parameter λ living on a d-dimensional manifold M, with
the mapping λ #→ ϱλ providing a coordinate system. This is sometimes referred
to as a quantum statistical model. The parameter λ does not, in general, corre-
spond to a quantum observable and our aim is to estimate its values through the
measurement of some observable on ϱλ. In turn, a quantum estimator Oλ for λ
is a selfadjoint operator, which describe a quantum measurement followed by any
classical data processing performed on the outcomes. The indirect procedure of
parameter estimation implies an additional uncertainty for the measured value,
that cannot be avoided even in optimal conditions. The aim of quantum estima-
tion theory is to optimize the inference procedure by minimizing this additional
uncertainty.

In quantum mechanics, according to the Born rule we have p(x|λ) = Tr[Πxϱλ]
where {Πx},

∫
dxΠx = I, are the elements of a positive operator-valued measure

(POVM) and ϱλ is the density operator parametrized by the quantity we want
to estimate. Introducing the Symmetric Logarithmic Derivative (SLD) Lλ as the
selfadjoint operator satistying the equation

Lλϱλ + ϱλLλ

2
=

∂ϱλ

∂λ
(3)

we have that ∂λp(x|λ) = Tr[∂λϱλΠx] = Re(Tr[ϱλΠxLλ]). The Fisher Information
(2) is then rewritten as

F (λ) =
∫

dx
Re (Tr [ϱλΠxLλ])2

Tr[ϱλΠx]
. (4)

For a given quantum measurement, i.e. a POVM {Πx}, Eqs. (2) and (4) establish the
classical bound on precision, which may be achieved by a proper data processing,
e.g. by maximum likelihood, which is known to provide an asymptotically efficient
estimator. On the other hand, in order to evaluate the ultimate bounds to precision
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we have now to maximize the Fisher information over the quantum measurements.
Following Refs. 3–6 we have

F (λ) ≤
∫

dx

∣∣∣∣∣
Tr [ϱλΠxLλ]√

Tr[ϱλΠx]

∣∣∣∣∣

2

(5)

=
∫

dx

∣∣∣∣∣Tr

[ √
ϱλ

√
Πx√

Tr [ϱλΠx]

√
ΠxLλ

√
ϱλ

]∣∣∣∣∣

2

≤
∫

dxTr [ΠxLλϱλLλ] (6)

= Tr[LλϱλLλ]

= Tr[ϱλL2
λ]

The above chain of inequalities prove that the Fisher information F (λ) of any quan-
tum measurement is bounded by the so-called Quantum Fisher Information (QFI)

F (λ) ≤ H(λ) ≡ Tr[ϱλL2
λ] = Tr[∂λϱλLλ] (7)

leading the quantum Cramer-Rao bound

Var(λ) ≥ 1
MH(λ)

(8)

to the variance of any estimator. The quantum version of the Cramer-Rao theo-
rem provides an ultimate bound: it does depend on the geometrical structure of
the quantum statistical model and does not depend on the measurement. Opti-
mal quantum measurements for the estimation of λ thus corresponds to POVM
with a Fisher information equal to the quantum Fisher information, i.e. those sat-
urating both inequalities (5) and (6). The first one is saturated when Tr[ϱλΠxLλ]
is a real number ∀λ. On the other hand, Ineq. (6) is based on the Schwartz
inequality |Tr[A†B]|2 ≤ Tr[A†A]Tr[B†B] applied to A† = √

ϱλ
√
Πx/

√
Tr[ϱλΠx]

and B =
√
ΠxLλ

√
ϱλ and it is saturated when

√
Πx

√
ϱλ

Tr [ϱλΠx]
=

√
ΠxLλ

√
ϱλ

Tr[ϱλΠxLλ]
∀λ, (9)

The operatorial condition in Eq. (9) is satisfied iff {Πx} is made by the set of pro-
jectors over the eigenstates of Lλ, which, in turn, represents the optimal POVM
to estimate the parameter λ. Notice, however, that Lλ itself may not represent the
optimal observable to be measured. In fact, Eq. (9) determines the POVM and
not the estimator i.e. the function of the eigenvalues of Lλ. As we have already
mentioned above, this corresponds to a classical post-processing of data aimed to
saturate the Cramer-Rao inequality (1) and may be pursued by maximum likeli-
hood, which is known to provide an asymptotically efficient estimator. Using the
fact that Tr[ϱλLλ] = 0 an explicit form for the optimal quantum estimator is
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given by

Oλ = λI +
Lλ

H(λ)
(10)

for which we have

Tr[ϱλOλ] = λ, Tr[ϱλO2
λ] = λ2 +

Tr[ϱλL2
λ]

H2(λ)
, and thus ⟨∆O2

λ⟩ = 1/H(λ).

Equation (3) is Lyapunov matrix equation to be solved for the SLD Lλ. The
general solution may be written as

Lλ = 2
∫ ∞

0
dt exp{−ϱλt} ∂λϱλ exp{−ϱλt} (11)

which, upon writing ϱλ in its eigenbasis ϱλ =
∑

n ϱn|ψn⟩⟨ψn|, leads to

Lλ = 2
∑

nm

⟨ψm|∂λϱλ|ψn⟩
ϱn + ϱm

|ψm⟩⟨ψn|, (12)

where the sums include only terms with ϱn + ϱm ̸= 0. The quantum Fisher infor-
mation is thus given by

H(λ) = 2
∑

nm

|⟨ψm|∂λϱλ|ψn⟩|2

ϱn + ϱm
, (13)

or, in a basis independent form,

H(λ) = 2
∫ ∞

0
dt Tr[∂λϱλ exp{−ϱλt} ∂λϱλ exp{−ϱλt}]. (14)

Notice that the SLD is defined only on the support of ϱλ and that both the eigen-
values ϱn and the eigenvectors |ψn⟩ may depend on the parameter. In order to
separate the two contribution to the QFI we explicitly evaluate ∂λϱλ

∂λϱλ =
∑

p

∂λϱp|ψp⟩⟨ψp| + ϱp|∂λψp⟩⟨ψp| + ϱp|ψp⟩⟨∂λψp| (15)

The symbol |∂λψn⟩ denotes the ket |∂λψn⟩ =
∑

k ∂λψnk|k⟩, where ψnk are obtained
expanding |ψn⟩ in arbitrary basis {|k⟩} independent on λ. Since ⟨ψn|ψm⟩ = δnm we
have ∂λ⟨ψn|ψm⟩ ≡ ⟨∂λψn|ψm⟩ + ⟨ψn|∂λψm⟩ = 0 and therefore

Re⟨∂λψn|ψm⟩ = 0 ⟨∂λψn|ψm⟩ = −⟨ψn|∂λψm⟩ = 0.

Using Eq. (15) and the above identities we have

Lλ =
∑

p

∂λϱp

ϱp
|ψp⟩⟨ψp| + 2

∑

n̸=m

ϱn − ϱm

ϱn + ϱm
⟨ψm|∂λψn⟩|ψm⟩⟨ψn| (16)
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and in turn

H(λ) =
∑

p

(∂λϱp)
2

ϱp
+ 2

∑

n̸=m

σnm |⟨ψm|∂λψn⟩|2 (17)

where

σnm =
(ϱn − ϱm)2

ϱn + ϱm
+ any antisymmetric term, (18)

as for example

σnm = 2ϱn
ϱn − ϱm

ϱn + ϱm
σnm = 2ϱn

(
ϱn − ϱm

ϱn + ϱm

)2

(19)

The first term in Eq. (17) represents the classical Fisher information of the dis-
tribution {ϱp} whereas the second term contains the truly quantum contribution.
The second term vanishes when the eigenvectors of ϱλ do not depend. In this case
[ϱλ, ∂λϱλ] = 0 and Eq. (11) reduces to Lλ = ∂λ log ϱλ.

Finally, upon substituting the above Eqs. in Eq. (10), we obtain the correspond-
ing optimal quantum estimator

Oλ =
∑

p

(
λ +

∂λϱp

ϱp

)
|ψp⟩⟨ψp| +

2
H(λ)

∑

n̸=m

ϱn − ϱm

ϱn + ϱm
⟨ψm|∂λψn⟩|ψm⟩⟨ψn|. (20)

So far we have considered the case of a parameter with a fixed given value. A
question arises on whether a bound for estimator variance may be established also
for a parameter having an a priori distribution z(λ). The answer is positive and
given by the Van Trees inequality28,29 which provides a bound for the average
variance

Var(λ) =
∫

dx

∫
dλz(λ)[λ̂({x}) − λ)]2

of any unbiased estimator of the random parameter λ. Van Trees inequality states
that

Var(λ) ≥ 1
ZF

(21)

where the generalized Fisher information ZF is given by

ZF =
∫

dx

∫
dλp(x,λ) [∂λ log p(x,λ)]2 , (22)

p(x,λ) being the joint probability distribution of the outcomes and the parameter
of interest. Upon writing the joint distribution as p(x,λ) = p(x|λ)z(λ) Eq. (22)
may be rewritten as

ZF =
∫

dλz(λ)F (λ) + M

∫
dλz(λ)[∂λ log z(λ)]2. (23)

Equation (23) says that the generalized Fisher information is the sum of two terms,
the first is simply the average of the Fisher information over the a priori distribution
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whereas the second term is the Fisher information of the priori distribution itself. As
expected, in the asymptotic limit of many measurements the a priori distribution is
no longer relevant. The quantity ZF is upper bounded by the analogue expression
ZH where the average of the Fisher information is replaced by the average of the
QFI H(λ) The resulting quantum Van Trees bound may be easily written as

Var(λ) ≥ 1
ZH

. (24)

3. Estimability of a Parameter

A large signal is easily estimated whereas a quantity with a vanishing value may be
inferred only if the corresponding estimator is very precise i.e. characterized by a
small variance. This intuitive statement indicates that in assessing the performances
of an estimator and, in turn, the overall estimability of a parameter, the relevant
figure of merit is the scaling of the variance with the mean value rather than its
absolute value. This feature may be quantified by means of the signal-to-noise ratio
(for a single measurement)

Rλ =
λ2

Var(λ)
which is larger for better estimators. Using the quantum Cramer-Rao bound one
easily derives that the signal-to-noise ratio of any estimator is bounded by the
quantity

Rλ ≤ Qλ ≡ λ2H(λ)

which we refer to as the quantum signal-to-noise ratio. We say that a given param-
eter λ is effectively estimable quantum-mechanically when the corresponding Qλ is
large.

Upon taking into account repeated measurements we have that the number of
measurements leading to a 99.9% (3σ) confidence interval corresponds to a relative
error

δ2 =
9Var(λ)
Mλ2

=
9
M

1
Qλ

=
9

Mλ2H(λ)
Therefore, the number of measurements needed to achieve a 99.9% confidence inter-
val with a relative error δ scales as

Mδ =
9
δ2

1
Qλ

In other words, a vanishing Qλ implies a diverging number of measurements to
achieve a given relative error, whereas a finite value allows estimation with arbitrary
precision at finite number of measurements.

4. Examples

In this section we provide explicit evaluation of the symmetric logarithmic deriva-
tive and the quantum Fisher information for relevant families of quantum states,
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including sets of pure states and the generic unitary family. We also consider the
multiparameter case and the problem of repametrization.

4.1. Unitary families and the pure state model

Let us consider the case where the parameter of interest is the amplitude of a unitary
perturbation imposed to a given initial state ϱ0. The family of quantum states we are
dealing with may be expressed as ϱλ = Uλϱ0U

†
λ where Uλ = exp{−iλG} is a unitary

operator and G is the corresponding Hermitian generator. Upon expanding the
unperturbed state in its eigenbasis ϱ0 =

∑
ϱn|ϕn⟩⟨ϕn| we have ϱλ =

∑
n ϱn|ψn⟩⟨ψn|

where |ψn⟩ = Uλ|ϕn⟩. As a consequence we have

∂λϱλ = iUλ[G, ϱ0]U †
λ.

and the SLD is may be written as Lλ = UλL0U
†
λ where L0 is given by

L0 = 2i
∑

n,m

⟨ϕm|[G, ϱ0]|ϕn⟩
ϱn + ϱm

|ϕn⟩⟨ϕm|

= 2i
∑

n̸=m

⟨ϕm|G|ϕn⟩
ϱn − ϱm

ϱn + ϱm
|ϕn⟩⟨ϕm|. (25)

The corresponding quantum Fisher information is independent on the value of
parameter and may be written in compact form as

H = Tr[ϱ0 L2
0] = Tr[ϱ0 [L0, G]] = Tr[L0 [G, ϱ0]] = Tr[G [ϱ0, L0]]

or, more explicitly, as

H = 2
∑

n̸=m

σnmG2
nm

where the elements σnm are given in Eq. (18), or equivalently (19), and Gnm =
⟨ϕn|G|ϕm⟩ = ⟨ψn|G|ψm⟩ denote the matrix element of the generator G in either
the eigenbasis of ϱ0 or ϱλ.

For a generic family of pure states we have ϱλ = |ψλ⟩⟨ψλ|. Since ϱ2
λ = ϱλ we

have ∂λϱλ = ∂λϱλ ϱλ + ϱλ∂λϱλ and thus Lλ = 2∂λϱλ = |ψλ⟩⟨∂λψλ| + |∂λψλ⟩⟨ψλ|.
Finally we have

H(λ) = 4[⟨∂λψλ|∂λψλ⟩ + (⟨∂λψλ|ψλ⟩)2] (26)

For a unitary family of pure states |ψλ⟩ = Uλ|ψ0⟩ we have

|∂λψλ⟩ = −iGUλ|ψ0⟩ = −iG|ψλ⟩,
⟨∂λψλ|∂λψλ⟩ = ⟨ψ0|G2|ψ0⟩,

⟨∂λψλ|ψλ⟩ = −i⟨ψ0|G|ψ0⟩.
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The quantum Fisher information thus reduces to the simple form

H = 4⟨ψ0|∆G2|ψ0⟩ (27)

which is independent on λ and proportional to the fluctuations of the generator
on the unperturbed state. Using Eq. (27) the quantum Cramer-Rao bound in (8)
rewrites in the appealing form27

Var(λ)⟨∆G2⟩ ≥ 1
4M

, (28)

which represents a parameter-based uncertainty relation which applies also when
the shift parameter λ in the unitary Uλ = e−iλG does not correspond to the observ-
able canonically conjugate to G. When the unperturbed state is not pure the QFI
may be written as

H = 4 Tr[∆G2ϱ0] + 4
∑

n

ϱn⟨ϕn|⟨G⟩2 − 2GK(n)G|ϕn⟩ (29)

K(n) =
∑

m

ϱm

ϱn + ϱm
|ϕm⟩⟨ϕm| ϱ0→|ϕ0⟩⟨ϕ0|−→ 1

2
|ϕ0⟩⟨ϕ0| (30)

and Eq. (28) becomes

Var(λ)⟨∆G2⟩ ≥ 1
4M

[
1 +

∑

n

ϱn⟨ϕn|⟨G⟩2 − 2GK(n)G|ϕn⟩
]−1

. (31)

The second term in Eqs. (29) and (31) thus represents the classical contribution to
uncertainty due to the mixing of the initial signal.

As we have seen, for unitary families of quantum states the QFI is independent
on the value of the parameter. As a consequence the quantum signal-to-noise ratio
Qλ vanishes for vanishing λ and thus the number of measurements needed to achieve
a relative error δ diverges as Mδ ∼ (δλ)−2.

4.2. Quantum operations

Let us now consider a family of quantum states obtained from a given inital state
ϱ0 by the action of a generic quantum operation ϱλ = Eλ(ϱ0) =

∑
k Mkλϱ0M

†
kλ.

Upon writing the initial and the evolved states in terms of their eigenbasis ϱ0 =∑
s ϱ0s|ϕs⟩⟨ϕs|, ϱλ =

∑
s ϱn|ψn⟩⟨ψn| we may evaluate the SLD and the quantum

Fisher information using Eqs. (12) and (13) where

ϱn =
∑

ks

ϱ0s|⟨ψn|Mkλ|ϕs⟩|2 (32)

⟨ψm|∂λϱλ|ψn⟩ =
∑

ks

ϱ0s[⟨ψm|∂λMkλ|ϕs⟩⟨ϕs|M †
kλ|ψn⟩

+ ⟨ψm|Mkλ|ϕs⟩⟨ϕs|∂λM †
kλ|ψn⟩]. (33)

For a pure state at the input ϱ0 = |ψ0⟩⟨ψ0| the above equation rewrites without
the sum over s.
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4.3. Multiparametric models and reparametrization

In situations where more than one parameter is involved, the family of quantum
states ϱλ depends on a set λ = {λµ}, µ = 1, . . . , N . In this cases the relevant object
in the estimation problem is given by the so-called quantum Fisher information
matrix, whose elements are defined as

H(λ)µν = Tr
[
ϱλ

LµLν + LνLµ

2

]
= Tr[∂νϱλLµ] = Tr[∂µϱλLν ]

=
∑

n

(∂µϱn)(∂νϱn)
ϱn

+
∑

n̸=m

(ϱn − ϱm)2

ϱn + ϱm

× [⟨ψn|∂µψm⟩⟨∂νψm|ψn⟩ + ⟨ψn|∂νψm⟩⟨∂µψm|ψn⟩] (34)

where Lµ is the SLD corresponding to the parameter λµ. The Cramer-Rao theorem
for multiparameter estimation says that the inverse of the Fisher matrix provides
a lower bound on the covariance matrix Cov[γ]ij = ⟨λiλj⟩ − ⟨λi⟩⟨λj⟩, i.e.

Cov[γ] ≥ 1
M

H(λ)−1

The above relation is a matric inequality and the corresponding bound may not
be achievable achievable in a multiparameter estimation. On the other hand, the
diagonal elements of the inverse Fisher matrix provide achievable bounds for the
variances of single parameter estimators at fixed value of the others, in formula

Var(λµ) = γµµ ≥ 1
M

(H−1)µµ. (35)

Of course, for a diagonal Fisher matrix Var(λµ) ≥ 1/Hµµ.
Let us now suppose that the quantity of interest g is a known function g(λ) of the

parameters used to label the family of states. In this case we need to reparametrize
the familiy with a new set of parameters λ̃ = {λ̃j = λ̃j(λ) that includes the quantity
of interest, e.g. λ̃1 ≡ g(λ). Since ∂̃µ =

∑
ν Bµν∂ν where Bµν = ∂λν/∂λ̃µ it is easy

to prove that

L̃µ =
∑

ν

BµνLν H̃ = BHBT .

The ultimate precision on the estimation of g at fixed values of the other parameters
is thus given by

Var(g) ≥ 1
M

(H̃
−1

)11

5. Geometry of Quantum Estimation

The estimability of a set of parameters labelling the family of quantum states
{ϱλ} is naturally related to the distinguishability of the states within the quantum
statistical model i.e. with the notions of distance. On the manifold of quantum
states, however, different distances may be defined and a question arises on which of
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them captures the notion of estimation measure. As it can be easily proved it turns
out that the Bures distance30–36 is the proper quantity to be taken into account.
This may be seen as follows. The Bures distance between two density matrices is
defined as D2

B(ϱ,σ) = 2[1 −
√

F (ϱ,σ)] where F (ϱ,σ) = (Tr[
√√

ϱσ
√
ϱ])2 is the

fidelity. The Bures metric gµν is obtained upon considering the distance for two
states obtained by an infinitesimal change in the value of the parameter

d2
B = D2

B(ϱλ, ϱλ+dλ) = gµνdλµdλν .

By explicitly evaluating the Bures distance37 one arrives at gµν = 1/4Hµν(λ),
i.e. the Bures metric is simply proportional to the QFI, which itself is symmetric,
real and positive semidefinite, i.e. represents a metric for the manifold underlying
the quantum statistical model. Indeed, a large QFI for a given λ implies that the
quantum states ϱλ and ϱλ+dλ should be statistically distinguishable more effectively
than the analogue states for a value λ corresponding to smaller QFI. In other words,
one confirms the intuitive picture in which optimal estimability (that is, a diverging
QFI) corresponds to quantum states that are sent far apart upon infinitesimal
variations of the parameters.

The structures described above are pictorially described in Fig. 1. The idea
is that any measurement aimed to estimate the parameters λ turns the set of
parameters into a statistical differential manifold endowed with the Fisher metric
F µν(λ). On the other hand, when the parameters are mapped into the manifold of
quantum states the statistical distance is expressed in terms of the Bures metric.
The connection between the two constructions is provided by the optimization of the
estimation procedure over quantum measurements, which shows that the Quantum

Fig. 1. Geometry of quantum estimation.



January 19, 2009 10:44 WSPC/187-IJQI 00483

136 M. G. A. Paris

Fisher metric Hµν(λ) is the bound to F µν(λ) and coincides, apart from a factor
four, with the Bures metric.

6. Conclusion and Outlook

As a matter of fact, there are many quantities of interest that do not correspond
to any quantum observable. Among these, we mention the amount of entanglement
and the purity of a quantum state and the coupling constant of an interaction
Hamiltonian or a quantum operation. In these situations, the values of the quantity
of interest can be indirectly inferred by an estimation procedure, i.e. by measuring
one or more proper observables, a quantum estimator, and then manipulating the
outcomes by a suitable classical processing.

In this paper, upon exploiting the geometric theory of quantum estimation,
we have described a general method to solve a quantum statistical model, i.e. to
find the optimal quantum estimator and to evaluate the corresponding bounds to
precision. To this aim we used the quantum Cramer-Rao theorem and the explicit
evaluation of the quantum Fisher information matrix. We have derived the explicit
form of the optimal observable in terms of the symmetric logarithmic derivative
and evaluated the corresponding bounds to precision, which represent the ultimate
bound posed by quantum mechanics to the precision of parameter estimation. For
unitary families of quantum states the bounds may expressed in the form of a
parameter-based uncertainty relation.

The analysis reported in this paper has a fundamental interest and represents a
relevant tool in the design of realistic quantum information protocols. The approach
here outlined is currently being applied to the estimation of entanglement38 and
the coupling constant of an interaction Hamiltonian.25,39
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