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Oerservarle quarttities are associated to POVMs | ie. decompositions of identity
> 1L =T in terms of positive 11, > 0 operators.

The elements of a8 POVM are positive operators expressigle as II, = Mi M,
where the detection operators M, are ceneric operators with the only con-
straint 52 MI M, =1

A measurement yields one of the alternatives corresponding to an element of
the POVM eigenvalues x as possigle outcomes.

The proeagility that a particular outcome is found as the measurement result
is (Born rue) p, = Tr [ngqu = Tr [QM;fo} = Tr |oll,].

The state after the measurement (reduction rule) is g, = p% M,oM,) i$ the
outcome is .

£ we perform a measurement But we do Not record the resutts, the post-
Mmeasurement state is given By o= > pr 0. =) . MxQMxT.
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In quantum information processing and quantum computing protocols the carrier of information is a quantum
system and information is encoded in the state of a quantum system. After processing the information it has to be
read out what i1s equivalent to determining the final state of the system. When the possible final states are not
orthogonal this 1s a highly nontrivial task that constitutes the general area of what 1s known as quantum
state discrimination. It consists in finding measurement schemes that, according to some figure of merit, will
determine the state of the system. Optimized measurement schemes often lead to generalized measurements
(Positive Operator Valued Measures [POVMs)). In this tutorial review we illustrate the power of the POVM
concept on examples relevant to applications in quantum cryptography. In order to keep the flow of the
presentation we give a brief introduction to the quantum theory of measurements, including generalized
measurements (POVMs), in the Appendices.
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11 Discrimination of Quantum States

Jénos A. Bergou!, Ulrike Herzog?, and Mark Hillery!

! Department of Physics and Astronomy, Hunter College of The City University
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2 Institut fiir Physik, Humboldt-Universitéit Berlin, Newtonstrasse 15,

12489 Berlin, Germany, ulrike.herzog@physik.hu-berlin.de

Abstract. The problem of discriminating among given nonorthogonal quantum
states is underlying many of the schemes that have been suggested for quantum
communication and quantum computing. However, quantum mechanics puts severe
limitations on our ability to determine the state of a quantum system. In particu-
lar, nonorthogonal states cannot be discriminated perfectly, even if they are known,
and various strategies for optimum discrimination with respect to some appropri-
ately chosen criteria have been developed. In this article we review recent theoreti-
cal progress regarding the two most important optimum discrimination strategies.
We also give a detailed introduction with emphasis on the relevant concepts of
the quantum theory of measurement. After a brief introduction into the field, the
second chapter deals with optimum unambiguous, i. e error-free, discrimination.
Ambiguous discrimination with minimum error is the subject of the third chap-
ter. The fourth chapter is devoted to an overview of the recently emerging subfield
of discriminating multiparticle states. We conclude with a brief outlook where we
attempt to outline directions of research for the immediate future.
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B directweaswrentents

u ndirect measurements

d—) influence on a different quantity

S)\ W ' X xz(ml,:cz,...)



Bl Measurement and estimation

B divect measwrencents

u ndirect measurements

d—) influence on a different quantity

S)\ W ' X X:(ml,mg,...)

B choice of the measurement p(fE ‘ )\)

B choice of the estimator X /): T f (X)



Bl Measurement and estimation

B alobal estimation theory
(Whew you have no a priort tnformation)
Look for a measurement which is optimal in average
(over the possible values of the parameter)

B local estimation theory
(Whew you have some a priovt information)
look for a measurement which s optimal for a
specific value of the parameter (better, but...)



I local estimation theory: Cramer - Rao bouwnd

B variance of unbiased estimators

~ 1
Vary[A] > ME(N

B M ->number of measurements

B F -> Fisher information

F()) = / dz p(2/) [0 log p(z|)

12

[, :@Ap(wp\)_
_/ U ()




I local estimation theory: Cramer - Rao bouwnd

The proof of the Cramer-Rao Bound is Ortained By OBserving that aiven two
functions fi(z) and f3(2) the averace

(1 fa) = /da:ml» f1(z) fa(z)

defines a scalar product. Lpon chosing fi(z) = A(z) — A and fa(z) = Oy Inp(z|)) we have

| f1][? = Var(X)
| f2l[* = F(X)
<f13f2> =1

xi, T3, ..., ) INdependent we have p(z1,x,...,xp|A) = ]_[2/1:1 log p(zi|A\) and, In tum,

FM()\) _ /dZL‘ld:L‘M p($1,$2, ,$M|)\) [c’),\ lnp(:cl,:cg, ,$M|/\)]2

= M [dz p(z|)\) [0)Inp(z|\)]* = MF()\).



i Ooptimal estimation scheme (classieal)

S)\ W ' X XZ(ibl,ZBQ,...)
X — A= f(x)

B OPtimaL measurement -> maximum Flsher
(no recipes on how to finad it)

B Optimal estimator -> saturation of CR tnequality
(e.09. Ba 5csiaw or MaxLLk asy mptoticaLLH)



] Bagesiaw estimeators (1)

® =®ayestheorem  p(z|A)p(A) = p(A|z)p(z)

@ M iwdﬁpewdew‘c events: a posteriori distribution

M
p(A\{z}) = Hp k| \) N = [dX | ] p(zk|M)
=

() Bayesitan estimator: g = /d/\ )\p()\l{x})

meawn of the a posteriort distribution



] Bages'mw estimeators (2)

® Laplace- Bernsteln - Vo MLses theorem

p(A[{z}) 7= G(\*,0?)

@ ®Bayes estimator is asymptotically efficient
o2 = !
MF(\*)




B Maxtik estimation

® Probability distribution  p(x|\)
@ Random sample  x1,Z9,..., T
@ oint probability of the sample

L(z1,Tq,..ch|\) = L, p(xk| M)

Maxlik estimation =P take the valuwe of the parameters
which maximize the Likelthood of the observed data



B Quantum estimation
® \what about time and temperature tn quantum mechanics?

® 1he "resources” involved in gquantum-enahnced technology
are entanglement, wnownloca Litg, entropy, interferometric
phase-shift, ete.. n general they are not observable quantities
Ln strict sense (do not correspond to a selfadjoint operator)

@ No correspondence principle

® No uncertainty relations



B Quantum estimation
® \what about time and temperature tn quantum mechanics?

® 1he "resources” involved in gquantum-enahnced technology
are entanglement, wnownloca Litg, entropy, interferometric
phase-shift, ete.. n general they are not observable quantities
Ln strict sense (do not correspond to a selfadjoint operator)

ruUuantum
estimation
th eory



Bl uantum estimation

= (Z1,%2,...)

B optimal measurements

B ultimate bounds to precision



Bl uantum estimation

= (21,22, - -)

B Probability density p(:}j‘)\) — 'IT [QA Ha:]



B Let's go quantum (Local) (1)

Q W ' {Hx}a:EX

= (x1,Zo,...)

] probabLLLtg olewsitg p(gj‘)\) — Iy [QA Ha:]

B sywmw. log. derivative (SLD) Lyox +oxLx _ Ooa

2 O\

selfadjoint, zero mean. Tt [py Ly] =0

Re (Tr [oAI1, Ly])*

B Fisher information F()\) = / dx
( ) TT[QAH:B]



B Lct's go quantum (local) (2)

Tr[Q)\Ha:L)\]
F()) < /da: \/TY —

2

Helstrom 1976
Braunstein § caves 1994

_ Vorvile
—/da: Tr W \ﬁL,\\ﬁ

< /dx Tr [I1, Ly oxL]
Tr[oaL5]

= Tr[LyxorL)| =

@ Fisher ve uantum Fisher

F()\) < H()\) — TI‘[Q)‘LK] — Ti‘[a)\g)\L)‘]

® 1
ulttmeate bound on preciston. Var(\) >
P ar(A) 2 MH)




B Optimal estimation scheme (quantum, Local)

Q W ' {HSU}:L'EX

= (%1, %2,...)

[ ] OptimaL measurement -> Fisher = quantum Flsher

It Ls projective! The spectral measure of the SLD

B Optimal estimator -> saturation of CR Lnequality
(classical postprocessing, e.g9. Bayesian or MaxLix)

X — A= f(x)



B ceneral formulas (basis indepedent)

Lyox +oxLx _ OJox

Q)\’\/*—). 2 )

Lyapunov equatiow

@ sywmmetric logarithwmic derivative

Ly=2 / dt exp{—oxt} Dx0x exp{—oxt}
0

@® uuantum Fisher Information

H(\) = 2/ dt Tr [Or0x exp{—oat} Orox exp{—oxrt}]
0



B ceneral formulas

O FamlLH of gquantum states Q)\ W .
0x =D 0nlton)(¥n

® sywmwmetric logarithmic derivative

L= 30 220, wyl +2 3 2R 30) ) (W

p n#Em Om

® Ruuantum Flsher lwformatiow

8)\91) Qn_Qm)2 2
HN) =) -9 O,




PHYSICAL REVIEW A 91, 042104 (2015)

Extended convexity of quantum Fisher information in quantum metrology

S. Alipour and A. T. Rezakhani
Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
(Received 8 July 2014; revised manuscript received 16 November 2014; published 7 April 2015)

We prove an extended convexity for quantum Fisher information of a mixed state with a given convex
decomposition. This convexity introduces a bound which has two parts: (i) The classical part associated with
the Fisher information of the probability distribution of the states contributing to the decomposition, and
(11) the quantum part given by the average quantum Fisher information of the states in this decomposition.
Next we use a non-Hermitian extension of a symmetric logarithmic derivative in order to obtain another upper
bound on quantum Fisher information, which helps to derive a closed form for the bound in evolutions having
the semigroup property. We enhance the extended convexity with this concept of a non-Hermitian symmetric
logarithmic derivative (which we show is computable) to lay out a general metrology framework where the
dynamics is described by a quantum channel and derive the ultimate precision limit for open-system quantum
metrology. We illustrate our results and their applications through two examples where we also demonstrate how
the extended convexity allows identifying a crossover between quantum and classical behaviors for metrology.

DOI: 10.1103/PhysRevA.91.042104 PACS number(s): 03.65.Yz, 03.67.Lx, 06.20.—f, 03.65.Ta



Quantum probes for complex systems

p(T, A)

¥ i — )

e

Maximizing the extraction of information by optimizing
the preparation of the probe, the interaction time and the
measurement at the output.




Quantum probes for complex systems

Quantum probes for the cutoff frequency of Ohmic environments

Claudia Benedetti,' Fahimeh Salari Sehdaran,? Mohammad H. Zandi,? and Matteo G. A. Paris'
! Quantum Technology Lab, Physics Department, Universita degli Studi di Milano, Milano, Italy
2Faculty of Physics, Shahid Bahonar University of Kerman, Kerman, Iran PRA 97 ! 012126 (2() 1 8)

Quantum thermometry by single-qubit dephasing

Sholeh Razavian,! Claudia Benedetti,” Matteo Bina,> Yahya Akbari-Kourbolagh,® and Matteo G. A. Paris>*

' Faculty of Physics, Azarbaijan Shahid Madani University, Tabriz, Iran
?Quantum Technology Lab, Dipartimento di Fisica, Universita degli Studi di Milano, I-20133 Milano, Italy
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“Faculty of Physics, Azarbaijan Shahid Madani University, Tabriz, Iran .
*INFN, Sezione di Milano, 1-20133 Milano, Italy arX|V 1 807 1 1 81 O

Quantum metrology out of equilibrium

Sholeh Razavian'+?, Matteo G. A. Paris® arXiv:1808.07180

L QCSE School, Villa del Grumello, 1-22100, Como, Italy
2 Faculty of Physics, Azarbaijan Shahid Madani University, Tabriz, Iran
3 Quantum Technology Lab, Dipartimento di Fisica 'Aldo Pontremoli’, Universita degli Studi di Milano, 1-20133 Milano, Italy

Universal Quantum Magnetometry with Spin States at Equilibrium

Filippo Troiani"" and Matteo G. A. Paris™"
'Centro $3, CNR-Istituto di Nanoscienze, 1-41125 Modena, Italy
“Quantum Technology Lab, Dipartimento di Fisica dell’Universita degli Studi di Milano, I-20133 Milano, Italy

SINEN, Sezione di Milano, 1-20133 Milano, Italy
PRL 120, 260503 (2018)

® (Received 2 November 2017; published 29 June 2018)



Quantum probes for complex systems

Continuous-variable quantum probes for structured environments

Matteo Bina,''" Federico Grasselli,>! and Matteo G. A. Paris!+>
' Quantum Technology Lab, Dipartimento di Fisica, Universita degli Studi di Milano, 1-20133 Milano, Italy
2Institut fiir Theoretische Physik 11, Heinrich-Heine-Universitdt Diisseldorf, D-40225 Diisseldorf, Germany

3INFN, Sezione di Milano, 1-20133 Milano, Italy PRA 97.012125 (2() 1 8)

The walker speaks its graph: global and

nearly-local probing of the tunnelling

amplitude in continuous-time quantum

walks J. Phys. A: Math. Theor. 52 (2019) 10530

Luigi Seveso’, Claudia Benedetti©" and Matteo G A Paris

Quantum Technology Lab, Dipartimento di Fisica Aldo Pontremoli,
Universita degli Studi di Milano, 1-20133 Milano, Italy

Quantum walker as a probe for its coin parameter

PRA 99, 052117 (2019)
Shivani Singh” and C. M. Chandrashekar’
The Institute of Mathematical Sciences, CIT campus, Taramani, Chennai 6001 13, India
and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

Matteo G. A. Paris*
Quantum Technology Lab, Dipartimento di Fisica “Aldo Pontremoli,” Universita degli Studi di Milano, I-20133 Milano, Italy



Quantum probes for complex systems

Journal of Magnetism and Magnetic Materials 491 (2019) 165534

journal of

Contents lists available at ScienceDirect M;..:..m.
magnetic

materials

Journal of Magnetism and Magnetic Materials M

journal homepage: www.elsevier.com/locate/jmmm M

Towards quantum sensing with molecular spins g

Check for

. . . * 9 . . . a.x updates
F. Troiani®, A. Ghirri®, M.G.A. Paris”, C. Bonizzoni®?, M. Affronte®®

& CNR, Instituto Nanoscienze, via G. Campi 213A, 41125 Modena, Italy
b Quantum Technology Lab, Dipartimento di Fisica Aldo Pontremoli, Universita degli Studi di Milano, I-20133 Milano, Italy
¢ Dipartimento di Scienze Fisiche Informatiche e Matematiche, Universita di Modena e Reggio Emilia, via G. Campi 213A, 41125 Modena Italy

PHYSICAL REVIEW A 94, 042129 (2016)

Characterization of qubit chains by Feynman probes

Dario Tamascelli,":2-" Claudia Benedetti,!*" Stefano Olivares,3-* and Matteo G. A. Paris!-3-8
Y'Quantum Technology Lab, Dipartimento di Fisica, Universita degli Studi di Milano, 1-20133 Milano, Italy
2 Institut fiir Theoretische Physik and IQST, Universitat Ulm, Albert-Einstein-Allee 11, Ulm, Germany
3INFEN, Sezione di Milano, I-20133 Milano, Italy
(Received 25 July 2016; published 26 October 2016)




In the search of new physics

International Journal of Theoretical Physics (2019) 58:2914-2935
https://doi.org/10.1007/s10773-019-04174-9

Annals of Physics 380 (2017) 213-223

Contents lists available at ScienceDirect
. Annals of Physics
Quantum Sensing of Curvature
journal homepage: www.elsevier.com/locate/aop | |
Daniele Bonalda' - Luigi Seveso' - Matteo G. A. Paris'
Can quantum probes satisfy the weak @CmsMark
Received: 16 March 2019 / Accepted: 27 May 2019 / Published online: 3 July 2019 equivalence principle?

© Springer Science+Business Media, LLC, part of Springer Nature 2019 o _
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PHYSICAL REVIEW D 94, 024014 (2016)
Probing deformed quantum commutators

Matteo A.C. Rossi
Quantum Technology Lab, Dipartimento di Fisica, Universita degli Studi di Milano, 20133 Milano, Italy

Tommaso Giani'

Dipartimento di Fisica, Universita degli Studi di Milano, 20133 Milano, Italy

Matteo G. A. Paris”

Quantum Technology Lab, Dipartimento di Fisica, Universita degli Studi di Milano,
20133 Milano, Italy and INFN, Sezione di Milano, 1-20133 Milano, Italy
(Received 21 June 2016; published 6 July 2016)




Current topics (not covered in the lectures)

B Multiparameter quantum estimation, see e.g.

arXiv:1911.12067

A perspective on multiparameter quantum metrology:

from theoretical tools to applications in quantum imaging

Francesco Albarelli, Marco Barbieri, Marco G. Genoni, Ilaria Giananil

(Physics Letters A, in press)

. 2 metrotogg begowd the RCR bound

Quantum metrology beyond the Quantum Cramér-Rao theorem
Luigli Seveso, Matteo A. C. Rossi, Matteo G. A. Paris
Phys. Rev. A 95, 012111 (2017) arXiv:1605.08653

Estimation of general Hamiltonian parameters via..
Luigl Seveso, Matteo G. A. Paris
Phys. Rev. A 98, 032114 (2018) arXiv:1712.07858



