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and corresponds to their polar decomposition. The POVM elements determine the
absolute values leaving the unitary part open.

Overall, the detection operators M
x

represent a generalization of the projectors
P
x

while the POVM elements generalize P 2
x

. The above postulates may be reformu-
lated as follows

N1 Observable quantities are associated to POVMs, i.e. decompositions of identityP
x

⇧

x

= in terms of positive ⇧

x

� 0 operators.

N2 The elements of a POVM are positive operators expressible as ⇧
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= M †
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M
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where the detection operators M
x

are generic operators with the only con-
straint

P
x

M †
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M
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N3 A measurement yields one of the alternatives corresponding to an element of
the POVM. eigenvalues x as possible outcomes.

N4 The probability that a particular outcome is found as the measurement result
is (Born rule) p
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= Tr
h
M

x

%M †
x

i
= Tr

h
%M †

x

M
x

i
= Tr [%⇧
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].

N5 The state after the measurement (reduction rule) is %
x

=

1
p

x

M
x

%M †
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if the
outcome is x.

N6 If we perform a measurement but we do not record the results, the post-
measurement state is given by e% =

P
x

p
x

%
x

=

P
x

M
x

%M †
x

.

Since orthogonality is no longer a requirement the number of elements of a POVM
has no restrictions and so the number of possible outcomes from the measurement.
The above formulation generalizes both the Born rule and the reduction rule, and
says that any set of detection operators satisfying N2 corresponds to a legitimate
operations leading to a proper probability distribution, which is referred to as a
generalized measurement.

Of course, up to this point, this is just a formal a mathematical generalization of
the standard description of measurements in textbook quantum mechanics and few
questions naturally arise. Do POVMs describe physically realizable measurements?
How they can be implemented? And if this is the case, does it means that standard
formulation is too restrictive or wrong? To all these questions an answer will be
provided by the following sections where we state and prove the Naimark Theorem,
and discuss an example of measurement described by POVM.

2. THE NAIMARK THEOREM

The Naimark theorem basically says that any generalized measurement may be
viewed as a standard measurement in a larger Hilbert and, viceversa, if we focus
attention on a portion of a composite system where a standard measurement
takes place than the statistics of the outcomes and the post-measurement states
of the subsystem may be obtained with the tools of generalized measurements
introduced in the previous section.

Let us start by looking at what happens when we couple the system of our
interest with and additional system, usually referred to as ancilla (or apparatus), let
them evolve, and then perform a projective measurement on the ancilla. This kind of
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setup is schematically depicted in the Figure. The Hilbert space of the overall system
is H

A

⌦H
B

and we assume that the system and the ancilla are initially independent i.e.
the global initial preparation is R = %

A

⌦%
B

. We also assume that the ancilla is prepared
in the pure state %

B

= |!
B

ih!
B

| and notice that this is always possible, upon a suitable
purification of the ancilla degrees of freedom. We want to obtain information
on the state of the system by measuring an observable X on the ancilla after the
system-ancilla interaction, which is described by the unitary operation U . According
to the Born rule the probability of the outcomes is given by
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object that would permit to write the Born rule at the level of the subsystem A, i.e.
it is our candidate POVM.
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FIG. 1: Schematic diagram of generalized measurement. The system of interest is coupled to
an ancilla prepared in a known state |!Bi by the unitary evolution U , and then a projective
measurement is performed on the ancilla.

In order to prove this in full generality let us define the operators M
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thus showing that ⇧

x

= M †
x

M
x

is indeed a positive operator. Besides, for any vector
|'

A

i in H
A

we have

h'
A

|
X

x

M †
x

M
x

|'
A

i =
X

x

hh!
B

,'
A

|U †|xihx|U |'
A

,!
B

ii = hh!
B

,'
A

|U †U |'
A

,!
B

ii = 1 , (F2
)



Journal of Modern Optics
Vol. 57, No. 3, 10 February 2010, 160–180

TUTORIAL REVIEW

Discrimination of quantum states

János A. Bergou*

Department of Physics and Astronomy, Hunter College of the City University of New York,
695 Park Avenue, New York, NY 10021, USA

(Received 1 August 2009; final version received 2 November 2009)

In quantum information processing and quantum computing protocols the carrier of information is a quantum
system and information is encoded in the state of a quantum system. After processing the information it has to be
read out what is equivalent to determining the final state of the system. When the possible final states are not
orthogonal this is a highly nontrivial task that constitutes the general area of what is known as quantum
state discrimination. It consists in finding measurement schemes that, according to some figure of merit, will
determine the state of the system. Optimized measurement schemes often lead to generalized measurements
(Positive Operator Valued Measures [POVMs]). In this tutorial review we illustrate the power of the POVM
concept on examples relevant to applications in quantum cryptography. In order to keep the flow of the
presentation we give a brief introduction to the quantum theory of measurements, including generalized
measurements (POVMs), in the Appendices.
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1. Introduction

In this tutorial overview of state discrimination the
emphasis is on tutorial. There are now a growing
number of reviews available on the subject [1–8] and we
neither want to compete with nor duplicate them. It is
our aim to provide an introduction to this fascinating
and rapidly evolving area and convey our own enthu-
siasm about the subject to the interested reader. Instead
of providing a comprehensive overview, we discuss the
fundamental principles that are behind state discrimi-
nation and show its close connection to quantum
cloning and entanglement. This immediately puts
limitations on the cited literature. Therefore, our
apologies from the beginning to those whose works
are not directly mentioned. It is by nomeans a reflection
of any judgement on the quality of their work, rather it
is a result of subjectively selecting papers for a particular
purpose. The hope is that all of the relevant literature
can be found by consulting the works cited here.
One rather obvious omission is the literature on
experiments. While the maturity of a field is in some
sense measured by the number of experimental papers,
there are excellent recent reviews covering progress in
the experimental implementation of state discrimina-
tion [5,8] and, therefore only a few experimental works
are included in this overview. In particular, experiments
are extensively covered by Barnett and Croke in [8]

and we cite only experiments that appeared after
their review.

In quantum information and quantum computing
the carrier of information is a quantum system and
information is encoded in its state [9]. In fact, one can
even say that information is the state itself. The state,
however, even after a century of quantum mechanics
remains a mysterious and controversial concept. While
we are using it, following well defined prescriptions, to
calculate detection probabilities and statistical proper-
ties of observations in general, the state itself is not an
observable in quantum mechanics [10]. Perhaps this is
Nature’s way of telling us that, even though there is an
underlying quantum world, our world as we see it is
classical. The quantum is not directly accessible, it is
measurements that connect the two and provide
information about this mysterious underlying quantum
world. Measurement outcomes are always classical, the
click in a detector or the positioning of a meter or
fringes on a film, in them we see the consequences of
the quantum layer.

Thus, a fundamental problem arises: after process-
ing the information – i.e. after the desired transforma-
tion is performed on the input state by the quantum
processor – the information has to be read out or, in
other words, the state of the system has to be
determined. When the set of the possible output
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Abstract. The problem of discriminating among given nonorthogonal quantum
states is underlying many of the schemes that have been suggested for quantum
communication and quantum computing. However, quantum mechanics puts severe
limitations on our ability to determine the state of a quantum system. In particu-
lar, nonorthogonal states cannot be discriminated perfectly, even if they are known,
and various strategies for optimum discrimination with respect to some appropri-
ately chosen criteria have been developed. In this article we review recent theoreti-
cal progress regarding the two most important optimum discrimination strategies.
We also give a detailed introduction with emphasis on the relevant concepts of
the quantum theory of measurement. After a brief introduction into the field, the
second chapter deals with optimum unambiguous, i. e error-free, discrimination.
Ambiguous discrimination with minimum error is the subject of the third chap-
ter. The fourth chapter is devoted to an overview of the recently emerging subfield
of discriminating multiparticle states. We conclude with a brief outlook where we
attempt to outline directions of research for the immediate future.

11.1 Introduction

In quantum information and quantum computing the carrier of information
is some quantum system and information is encoded in its state [1]. The
state, however, is not an observable in quantum mechanics [2] and, thus,
a fundamental problem arises: after processing the information - i.e. after
the desired transformation is performed on the input state by the quan-
tum processor - the information has to be read out or, in other words, the
state of the system has to be determined. When the possible target states
are orthogonal, this is a relatively simple task if the set of possible states is
known. But when the possible target states are not orthogonal they cannot
be discriminated perfectly, and optimum discrimination with respect to some
appropriately chosen criteria is far from being trivial even if the set of the
possible nonorthogonal states is known. Thus the problem of discriminat-
ing among nonorthogonal states is ubiquitous in quantum information and
quantum computing, underlying many of the communication and computing
schemes that have been suggested so far. It is the purpose of this article to
review various theoretical schemes that have been developed for discriminat-
ing among nonorthogonal quantum states. The corresponding experimental
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Figure 1: Picture taken in Prof. Ingarden’s o�ce (December 1975). From left to right: Roman Ingarden,
Andrzej Kossakowski, George Sudarshan and Vittorio Gorini.

Equation (3) defines a quantum channel and ⇤ is usually called a superoperator. It is
assumed to be linear, it must preserve trace and hermiticity, and it must be completely positive.
We shall delve into these properties in the following.

In the Markovian approximation, (3) yields the following di↵erential (“master”) equation

⇢̇ = L⇢  ! ⇢t = etL⇢
0

, (4)

where L is the generator of a (one-parameter) quantum dynamical semigroup. The evolution
(4) inherits from (3) linearity, trace- and hermiticity-preservation, and complete positivity.

Our focus will be on the mathematical structure of (4), but also on (3). Physicists did not
pay much attention to open quantum systems until rather recently, when, with the advent of
the quantum era, topics such as quantum information and quantum technologies became crucial
for the foundations and applications of quantum mechanics.

3 The Structure of the GKLS Generator

The central problem addressed by Gorini, Kossakowski, Sudarshan and Lindblad (GKLS) [2,3]
was the characterization of the generator L of a quantum dynamical semigroup. Consider
quantum states, represented by density operators ⇢ 2 T

+

(H) (positive trace-class operators) with
||⇢||

1

= Tr⇢ = 1. The axioms for a dynamical semigroup had been elaborated by Kossakowski
in 1972 [4] (see also [5]): it is a one-parameter family of maps ⇤t : T (H)! T (H) satisfying

1. ⇤t is a positive map, i.e. ⇤t : T+(H)! T
+

(H),

2. ⇤t is strongly continuous,

3. ⇤t⇤s = ⇤t+s, for all t, s � 0 (Markov property).
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direct measurements 
indirect measurements 

◗s X

influence on a different quantity



Measurement and estimation

direct measurements 
indirect measurements 

◗s X

influence on a different quantity

choice of the measurement

choice of the estimator

p(x|�)



Measurement and estimation

global estimation theory 
(when you have no a priori information) 
look for a measurement which is optimal in average 
(over the possible values of the parameter)

local estimation theory 
(when you have some a priori information) 
look for a measurement which is optimal for a  
specific value of the parameter (better, but…)



local estimation theory: Cramer - Rao bound

variance of unbiased estimators

M -> number of measurements

F -> Fisher Information

=

Z
dx

h
@�p(x|�)

i2

p(x|�)
<latexit sha1_base64="SDrfukfiuRNg04Hucv42puQGCX0="></latexit><latexit sha1_base64="SDrfukfiuRNg04Hucv42puQGCX0="></latexit><latexit sha1_base64="SDrfukfiuRNg04Hucv42puQGCX0="></latexit><latexit sha1_base64="SDrfukfiuRNg04Hucv42puQGCX0="></latexit>



local estimation theory: Cramer - Rao bound



Optimal estimation scheme(classical)

Optimal measurement  -> maximum Fisher 
(no recipes on how to find it)

Optimal estimator -> saturation of CR inequality 
(e.g. Bayesian or MaxLik asymptotically)

◗s X



M indipendent events: a posteriori distribution

Bayesian estimator: 
   
mean of the a  posteriori distribution

Bayes theorem●

●

●

Bayesian estimators (1)



Laplace - Bernstein - von Mises theorem

Bayes estimator is asymptotically efficient

●

●

Bayesian estimators (2)



Probability distribution 

Random sample 

Joint probability of the sample  
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Parameter estimation in quantum optics
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We address several estimation problems in quantum optics by means of the maximum-likelihood principle.

We consider Gaussian state estimation and the determination of the coupling parameters of quadratic Hamil-

tonians. Moreover, we analyze different schemes of phase-shift estimation. Finally, the absolute estimation of

the quantum efficiency of both linear and avalanche photodetectors is studied. In all the considered applica-

tions, the Gaussian bound on statistical errors is attained with a few thousand data.

PACS number!s": 42.50.Ar

I. INTRODUCTION

In order to gain information about a physical quantity one

should, in principle, measure the corresponding quantum ob-

servable. In cases when the measurement can be directly

implemented the statistics of the outcomes is governed !in
ideal conditions, i.e., neglecting thermal, mechanical or other
sources of classical noise" only by the intrinsic fluctuations
of the observable, namely by the quantum nature of the sys-
tem under investigation. In practice, however, it is most
likely that the desired observable does not correspond to a
feasible measurement scheme, or the physical quantity does
not correspond to any observable at all. In such case one has
to infer the value of the quantity of interest from the mea-
surement of a different observable, or generally of a set of
observables. In this situation, even in ideal conditions, the
indirect parameter estimation gives an additional uncertainty
for the estimated value, and the quantum estimation theory
#1,2$ provides a general framework to optimize the inference
procedure.
In the recent years, the indirect reconstruction of observ-

ables and quantum states has received much attention.
Among the many reconstruction techniques, the most suc-
cessful is quantum homodyne tomography #3$, which, in-
deed, is the only method which has been experimentally
implemented #4$. Quantum tomography provides the com-
plete characterization of the state, i.e., the reconstruction of
any quantity of interest by simple averages over experimen-
tal data. In many cases, however, one may be interested not
in the complete characterization of the state, but only in
some specific feature, like the phase or the amplitude of the
field. Moreover, one can address the problem of characteriz-
ing an optical device, rather than a quantum state, like mea-
suring the coupling constant of an active medium or the
quantum efficiency of a photodetector. In all these cases, the
desired parameter does not correspond to a measurable ob-
servable, and contains only partial information about the
quantum state of light involved in the process. Our goal is to
link the estimation of such parameters with the results from
feasible measurement schemes, as homodyne, heterodyne or
direct detection, and to make the estimation procedure the
most efficient.
Among all possible procedures for parameter estimation,

the maximum-likelihood !ML" method is, in the sense dis-

cussed below, the most general, and widely usable in prac-
tice. The ML procedure answers to the following question:
which values of the parameters are most likely to produce
the results which we actually observe in the measurement?
This statement can be quantified, and the resulting procedure
is the ML estimation of the parameters.
Recently, the ML principle has been applied to the recon-

struction of the whole state of a generic quantum system
#5,6$. In that case the parameters of interest are the matrix
elements of the density operator in a suitable representation.
Bayesian and ML approaches have been also applied in neu-
tron interferometry #7$.
In this paper, we focus our attention on the determination

of specific parameters which are relevant in quantum optics,
and analyze their ML estimation procedure in some details.
In the next section we briefly review the ML estimation

procedure as well as the method to evaluate its precision. In
Sec. III we consider the estimation of the parameters of a
Gaussian state and of the coupling constants of a generic
quadratic single-mode Hamiltonian. As we will show, the
two estimation problems are closely related, and ML prin-
ciple leads to a fully general solution. In Sec. IV we study
different schemes of phase estimation, whereas in Sec. V the
ML principle is applied to the estimation of the quantum
efficiency of both linear and avalanche photodetectors. Sec.
VI closes the paper by summarizing our results.

II. MAXIMUM-LIKELIHOOD ESTIMATION

Here we briefly review the theory of the maximum-
likelihood !ML" estimation of a single parameter. The gen-
eralization to several parameters is straightforward. Let
p(x!%) be the probability density of a random variable x,
conditioned to the value of the parameter % . The form of p is
known, but the true value of the parameter % is unknown,
and will be estimated from the result of a measurement of x.
Let x1 ,x2 , . . . ,xN be a random sample of size N. The joint
probability density of the independent random variable
x1 ,x2 , . . . ,xN !the global probability of the sample" is given
by

L!x1 ,x2 , . . . ,xN!%"!&k!1
N p!xk!%", !1"
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Maxlik estimation  ➞   take the value of  the parameters 
which maximize the likelihood of  the observed data

MaxLik estimation

●

●

●



Quantum estimation
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No correspondence principle

No uncertainty relations

The "resources" involved in quantum-enahnced technology 
are entanglement, nonlocality, entropy, interferometric 
phase-shift, etc.. In general they are not observable quantities 
in strict sense (do not correspond to a selfadjoint operator)

●

●

What about time and temperature in quantum mechanics?
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Quantum 
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Quantum estimation

◗
 Optimal measurements

 Ultimate bounds to precision



Quantum estimation

◗

Probability density



Let’s go quantum (local)(1)

probability density

 symm. log. derivative (SLD)                                      

Fisher Information

selfadjoint, zero mean

◗



Let’s go quantum (local) (2)

Fisher vs Quantum Fisher●

Helstrom 1976 
Braunstein & Caves 1994
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We prove an extended convexity for quantum Fisher information of a mixed state with a given convex
decomposition. This convexity introduces a bound which has two parts: (i) The classical part associated with
the Fisher information of the probability distribution of the states contributing to the decomposition, and
(ii) the quantum part given by the average quantum Fisher information of the states in this decomposition.
Next we use a non-Hermitian extension of a symmetric logarithmic derivative in order to obtain another upper
bound on quantum Fisher information, which helps to derive a closed form for the bound in evolutions having
the semigroup property. We enhance the extended convexity with this concept of a non-Hermitian symmetric
logarithmic derivative (which we show is computable) to lay out a general metrology framework where the
dynamics is described by a quantum channel and derive the ultimate precision limit for open-system quantum
metrology. We illustrate our results and their applications through two examples where we also demonstrate how
the extended convexity allows identifying a crossover between quantum and classical behaviors for metrology.

DOI: 10.1103/PhysRevA.91.042104 PACS number(s): 03.65.Yz, 03.67.Lx, 06.20.−f, 03.65.Ta

I. INTRODUCTION

The advent of precise quantum technologies in recent years
has spurred the need for devising metrological protocols with
the highest sensitivity allowed by the laws of physics. Quantum
metrology [1] investigates fundamental limits on the estima-
tion error through the quantum Crámer-Rao bound [2–6].
Without quantum resources, the central limit theorem indicates
that parameter estimation error is bounded by the “shot-noise
limit” [7]; however, employing quantum resources, such
as quantum correlations between probes [8–10], allows for
scaling of the error to beat the shot-noise limit and reach the
more favorable “Heisenberg (sub-shot-noise) limit” [11]—and
beyond [12]. This feature of quantum metrology has been
realized experimentally [13].

In realistic systems, interaction with the environment is
inevitable. Since quantum procedures are susceptible to noise,
the formulation of a framework for noisy or dissipative
quantum metrology is required [1]. Recently, some attempts
have been made toward proposing systematic analysis of
open-system quantum metrology [14] where some purification
for density matrices has been used [15–17]. Some other
methods based on different approaches, such as using a right
or left logarithmic derivative [18] and the channel extension
idea [19,20], have also been proposed.

The exact calculation of quantum Fisher information (QFI)
in general is difficult since it needs diagonalization of the
system density matrix, which appears through the key quantity
of the symmetric logarithmic derivative (SLD). Besides, it
is not straightforward (except when the dynamics is unitary)
to conclude from the exact form of the QFI how underlying
physical properties of the system contribute to classical or
quantum mechanical scaling of the QFI. Given these difficul-
ties, resorting to upper bounds on the QFI can be beneficial
both theoretically and practically [9,15,17,19,20]. In deriving
such bounds, different properties of the QFI may prove useful.
Convexity is an appealing property, which unfortunately does
not hold for the QFI in general [21,22]. Notwithstanding,
here we derive an extended convexity relation for the QFI,
which obviously gives rise to an upper bound on the QFI.

We remind that every quantum state can be written (in
infinite ways) as a convex decomposition of states which
prepare the very state when mixed according to a given
probability distribution. Having such a decomposition, we
show that the upper bound contains classical and quantum
parts. The classical part is the Fisher information associated
with the (classical) probability distribution of the mixture,
and the quantum part is related to the weighted average of
the QFI of the constituting states of the mixture. This result
is completely general and always holds—unlike some earlier
results in the literature [20,21]. Additionally, we show that how
having such a classical-quantum picture for the QFI enables
us to find when a quantum metrology scenario exhibits either
classical (shot-noise) or quantum (Heisenberg) regimes.

We also employ an extension of the SLD which is non-
Hermitian (hereafter, nSLD) and define an extended QFI
which is shown to upper bound the QFI. This nSLD has this
extra utility that for dynamics with a semigroup property, its
associated (extended) QFI is directly related to the quantum
jump operators of the dynamics. In addition, we show that this
extended QFI (irrespective of the underlying dynamics) for a
density matrix is the same as the Uhlmann metric, obtained
earlier in the context of the geometry of a state [23,24]. This
endows a geometric picture for the nSLD. Our nSLD concept
also allows supplementing the extended convexity property
for the case of a general open quantum dynamics given by
a quantum channel. Interestingly, by putting the concepts of
the extended convexity and the nSLD together, we recover
the exact QFI for an open system [15], whence the ultimate
precision for the estimation of a parameter of an open system.
We illustrate the utility of our results through two important
examples.

II. EXTENDED CONVEXITY OF THE QFI

We first briefly remind the definition of the Fisher informa-
tion and its role in metrology. In estimation of a parameter x
of a classical system, the estimation error δx is lower-bounded

1050-2947/2015/91(4)/042104(7) 042104-1 ©2015 American Physical Society
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A B S T R A C T

Molecular spins have shown genuine quantum properties, both as collections of independent units and as in-
dividual objects. Their properties and performances can be engineered at molecular level, while advanced
technologies to coherently manipulate magnetic objects and to address them with unprecedented spatial and
energy resolution have emerged in the last years. Here we address the question on how to exploit quantum
features of molecular spins for quantum sensing. To this end, we summarise some basic ideas and discuss some
examples where molecular spins can play a role in the field.

1. Introduction

Scientific discoveries and development of novel technologies are
often driven by advances in the design of measuring apparata [1] and
by the corresponding enhancement of their precision. At the same time,
any detector is a physical system itself and, when a new physical effect
is discovered, it may be used to improve measuring techniques and
their accuracy. A recent and fruitful example of this interplay, causing a
major change in the paradigms of metrology, is that of quantum sensing
(Q-sensing) [2–5], i.e. the art of exploiting the peculiar features of
quantum systems to realise novel enhanced sensors and measuring
protocols.

Quantum systems may be prepared in superpositions of states and
this peculiarity leads to phenomena known as quantum coherence and
entanglement. Q-sensing exploits both these features in order to get
advantages with respect to the performances of classical sensors.
Coherence and entanglement may be used to make composite quantum
systems sensible to the action of an external agent, even if only a por-
tion of the probe has interacted with the external source of perturba-
tion. On the other hand, the inherent fragility of quantum coherence
and entanglement against decoherence may itself be exploited, and
suggests the possibility of using quantum systems as probes of the
surrounding environment.

1.1. Quantum sensing in a nutshell

As for quantum computation, basic requirements for a system to
work as quantum probe can be summarised in few (DiVincenzo)

criteria: 1) the quantum sensor has well defined energy-resolved levels;
2) it must be possible to initialise it and read out its final state; 3) it can
be coherently manipulated. This latter condition, however, is not
strictly required and sensing with continuous or relaxation measure-
ments may well do the job too. An additional and specific request for
sensing is the capability of the quantum system to interact with the
parameter X to be sensed. This generally implies a shift or a transition
between energy levels, or the acquisition of a quantum phase.
Alternatively, read out of an observable of choice (Y) can be used in
different schemes of measurement. A preliminary issue is actually re-
lated to the choice of the observable that optimises the quantum
measurement. This is a general problem of quantum information theory
that we shall discuss in the next section.

Broadly speaking, the sensing protocol includes three steps: first,
one prepares the quantum probe in a state that contains a dependence
on the unknown parameter X; in a second step, one performs a mea-
surement of an observable of choice; finally, the value of the parameter
is inferred from the outcome of the measurement. The advantages in
using genuine quantum features are related to the performances of the
quantum sensor, that, ideally, should not be achievable with classical
sensors. Thus, for instance, any operation that is not allowed by clas-
sical probe certainly brings some quantum advantage. Likewise, when
nanometer scale resolution is required, single atoms or molecules may
perform better than any classical sensor. As far as the preparation step
is concerned, it has been shown that a quantum advantage typically
results from the use of highly nonclassical states, which exhibit en-
tanglement between subsystems (in the case of a composite quantum
probe) or linear superpositions between semiclassical and
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Characterization of qubit chains by Feynman probes
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2Institut für Theoretische Physik and IQST, Universität Ulm, Albert-Einstein-Allee 11, Ulm, Germany

3INFN, Sezione di Milano, I-20133 Milano, Italy
(Received 25 July 2016; published 26 October 2016)

We address the characterization of qubit chains and assess the performances of local measurements compared to
those provided by Feynman probes, i.e., nonlocal measurements realized by coupling a single-qubit register to the
chain. We show that local measurements are suitable to estimate small values of the coupling and that a Bayesian
strategy may be successfully exploited to achieve optimal precision. For larger values of the coupling Bayesian
local strategies do not lead to a consistent estimate. In this regime, Feynman probes may be exploited to build a
consistent Bayesian estimator that saturates the Cramér-Rao bound, thus providing an effective characterization
of the chain. Finally, we show that ultimate bounds to precision, i.e., saturation of the quantum Cramér-Rao
bound, may be achieved by a two-step scheme employing Feynman probes followed by local measurements.

DOI: 10.1103/PhysRevA.94.042129

I. INTRODUCTION

Spin networks and strongly coupled systems of qubits are
crucial building blocks for large-scale quantum computers
[1,2]. They also represent a resource for short-distance quan-
tum communication [3,4], state transfer [5–8], and quantum
engineering, e.g., generation of entanglement between distant
qubits [9–14]. These tasks usually require fine-tuning of the
interaction parameters and, in turn, precise characterization
of the spin coupling. Coupling constants, however, are often
unaccessible in a direct way, either because of experimental
impediments or because they do not correspond to any proper
observable. This happens for several quantities of interest
in quantum technology, and in all these cases, quantum
estimation theory [15–17] provides tools to evaluate the
ultimate precision attainable by any estimation procedure and
to design optimal measurement schemes. Examples include
the estimation of the phase [18–21], quantum correlations
[22–24], temperature [25,26], characterization of classical
processes or environmental parameters [27–30], and, indeed,
the coupling constants of different kinds of interactions
[31–35].

Here, we address the characterization of qubit systems made
of linear chains of coupled two-level systems, with emphasis
on strongly coupled ones, and assess performances of local
measurements compared to Feynman probes, i.e., nonlocal
measurements realized by entangling a single-qubit register
to the chain of qubits. The Feynman probes implement the
idea of characterizing complex systems, with many degrees
of freedom, by coupling them to a simple quantum system,
such as a qubit in our case, whose dynamics depends on the
features of the complex systems we want to describe [36–39].
By performing measurements on the quantum probe, we are
able to extract useful information about the system, causing
minimal disturbance.

*dario.tamascelli@unimi.it
†claudia.benedetti@unimi.it
‡stefano.olivares@unimi.it
§matteo.paris@fisica.unimi.it; http://users.unimi.it/aqm

In this work we show that local measurements provide
optimal characterization for small values of the coupling
constant, whereas for larger couplings Feynman probes allow
one to build a consistent Bayesian estimator that saturates the
Cramér-Rao (CR) bound, i.e., provides an effective charac-
terization of the qubit system. We also show that estimation
by Feynman probes, complemented by local measurement,
represents an optimal characterization scheme for strongly
coupled qubit systems, achieving the ultimate bound to
precision. Indeed, nonlocal measurements have already been
suggested as a convenient toolbox for quantum circuits based
on trapped ions [40,41] and superconducting qubits [42,43].

The system we are going to investigate is a linear lattice of
equally coupled two-level systems σ⃗ j = (σ j

x ,σ
j
y ,σ

j
z ), where

σ
j
k denotes the Pauli matrix in direction k = x,y,z for the j th

particle and j = 1,2, . . . ,s, whose interaction Hamiltonian is
given by

H0 = −ν

2

s−1∑

j=1

σ
j+1
+ σ

j
− + σ

j
+σ

j+1
− , (1)

where σ
j
± = 1

2 (σ j
x ± iσ

j
y ) and ν is the coupling constant be-

tween nearest-neighbor spins. The Hamiltonian H0 preserves
the number Nz =

∑s
j=1

1
2 (I + σ

j
z ) of “up” spins, i.e.,

[H0,Nz] = 0. (2)

The characterization of the system amounts to the determina-
tion of the unknown value of the effective coupling λ = ντ ,
with τ being the interaction time from the initialization of
the chain. To this aim, we focus on initial preparations of the
system where a single spin is up, whereas all the others are
down. We will refer to the single spin up as the excitation of the
chain. Thanks to the conservation law (2), the Hamiltonian (1),
restricted to the single-excitation subspace, can be rewritten as

H0 = −ν

2

s−1∑

j=1

|j + 1⟩⟨j | + |j ⟩⟨j + 1|, (3)

where |j ⟩ denotes a state having an excitation at site j
and the set {|j ⟩} constitutes an orthonormal basis in the

2469-9926/2016/94(4)/042129(8) 042129-1 ©2016 American Physical Society
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Abstract
We address the problem of sensing the curvature of a manifold by performing measurements
on a particle constrained to the manifold itself. In particular, we consider situations where
the dynamics of the particle is quantum mechanical and the manifold is a surface embedded
in the three-dimensional Euclidean space. We exploit ideas and tools from quantum estima-
tion theory to quantify the amount of information encoded into a state of the particle, and to
seek for optimal probing schemes, able to actually extract this information. Explicit results
are found for a free probing particle and in the presence of a magnetic field. We also address
precision achievable by position measurement, and show that it provides a nearly optimal
detection scheme, at least to estimate the radius of a sphere or a cylinder.

Keywords Quantum sensing · Curvature

1 Introduction

In order to describe the kinematics and the dynamics of a physical system, from now on a
particle, one should at first specify the manifold where the dynamics of the particle takes
place, i.e. the manifold where the particle propagates. Depending on the nature of the sys-
tem, this manifold may be flat or characterized by a curvature. In modelling a system,
geometrical constraints are often postulated by looking at basic principles, or on the basis of
general considerations. However, a question arises on whether it may be possible to obtain
information about the manifold by a purely operational approach, i.e. by performing mea-
surements on the system under investigation. Besides the fundamental interest, sensing the
curvature has potential applications, e.g. due to the interest in two-dimensional curved sys-
tems, to describe physical effects such as Aharonov-Bohm oscillations [1], formation of
Landau levels [2–6] and quantum Hall effect [7].

In this paper, we address the problem of probing a manifold by performing measurements
on a particle constrained to move on the manifold itself. In particular, we focus on estimating
the curvature of a manifold, and consider regimes where the dynamics of the particle is

! Matteo G. A. Paris
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1 Quantum Technology Lab, Dipartimento di Fisica Aldo Pontremoli, Università degli Studi di
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Probing deformed quantum commutators
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Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length,
under which the concepts of space and time lose their physical meaning. In quantum mechanics, the
insurgence of such a minimal length can be described by introducing a modified position-momentum
commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position
measurements has a lower bound. The value of the minimal length is not predicted by theories and must be
estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal
uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in
the deformed algebra induced by the deformed commutation relations.

DOI: 10.1103/PhysRevD.94.024014

I. INTRODUCTION

The existence of a minimal length is a general feature
of many quantum gravity theories (see Refs. [1,2] and
references therein). According to these theories, the
Planck length

lP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

q
≃ 1.6 × 10−35 m ð1Þ

sets an order of magnitude under which the concepts
of space and time lose their physical meaning. In turn,
this corresponds to the existence of a minimal uncertainty
in position measurements, which sets a limit to the
localizability of an object.
The uncertainty principle derived from the standard

commutation relations between position and momentum
does not predict the existence of any inferior bound to the
position uncertainty, as the latter may be arbitrarily small,
provided that the momentum uncertainty gets bigger. From
this fact originates the idea of modifying the commutation
relation between position andmomentum, in order to obtain
the prediction of a minimal position uncertainty [3–7].
In one dimension, let us consider the minimal

deformation

½x; p% ¼ iℏ
"
1þ β0

#
lPp
ℏ

$
2
%
; ð2Þ

with β0 being a positive dimensionless parameter. It is easy
to see that the following generalized uncertainty principle
holds:

ΔxΔp ≥
ℏ
2

"
1þ β0

#
lPΔp
ℏ

$
2
%
: ð3Þ

Equation (3) does indeed predict an inferior bound to
position uncertainty, given by Δx0 ¼ lP

ffiffiffiffiffi
β0

p
.

The introduction of a deformed commutator as in Eq. (2)
modifies the algebra of the Hilbert space and alters the
spectral decomposition of the Hamiltonian operator of
many quantum systems of theoretical and experimental
interest. Among them, the harmonic oscillator is of para-
mount theoretical importance, and several studies have
been focused on it in the context of deformed commutators
[5,8,9]. The energy eigenvalues can be found analytically in
an arbitrary number of dimensions and the eigenstates in
the momentum basis can be obtained [5,9].
The value of β0 in Eqs. (2) and (3), usually assumed to be

around unity [10], has to be found experimentally since
theoretical predictions are still lacking. Recently, beside
proposed tests with high-energy or neutrino experiments
[11,12], an optomechanical experimental scheme has been
proposed [13], and an upper bound to the value of β0 has
been set in Ref. [14], using micro- and nanomechanical
harmonic oscillators. Since β0 does not correspond to a
proper quantum observable, its value should be inferred
through some indirect measurements, which causes an
additional error in its estimation. In particular, if this extra
uncertainty is too big compared to the value of the
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Can quantum probes satisfy the weak
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h i g h l i g h t s

• Can quantum probes under gravity be approximated as test-bodies?
• A formulation of the weak equivalence principle for quantum probes is proposed.
• Quantum probes are found to violate it as a matter of principle.
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a b s t r a c t

We address the question whether quantum probes in a gravita-
tional field can be considered as test particles obeying the weak
equivalence principle (WEP). A formulation of theWEP is proposed
which applies also in the quantum regime, while maintaining the
physical content of its classical counterpart. Such formulation re-
quires the introduction of a gravitational field not to modify the
Fisher information about the mass of a freely-falling probe, ex-
tractable through measurements of its position. We discover that,
while in a uniform field quantum probes satisfy our formulation of
the WEP exactly, gravity gradients can encode nontrivial informa-
tion about the particle’s mass in its wavefunction, leading to viola-
tions of the WEP.

© 2017 Elsevier Inc. All rights reserved.
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