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Uncertainty principle

Captures the inherent “fuzziness” of quantum mechanics

ApAx 2> h AEAt 2> h

Impossibility of accurately measuring conjugate observables

While the position-momentum uncertainty relation was given a solid physical
grounding in short order, the energy-time relation was much more subtfle....




Uncertainty principle

Position-momentum relation can be understood from Fourier analysis of
wave packets.
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The product of their uncertainties is maintained

Often considered in relation to simultaneous measurements

Which lead to the following thought experiment....




Uncertainty principle

Einstein considered a box with photons, a controllable shutter, and a
classical clock which, at a preset time, will allow photons to escape.

Since

E = mc?

we can workout the change in energy
precisely

Seemingly negating the existence of
the E-t uncertainty relation

Bohr had a counter argument...




A naive derivation

Consider a wave packet moving with some velocity v

The time it passes a particular point has a given uncertainty directly
related to the uncertainty in x

A
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And we know there is an associated uncertainty in its momentum which
gives a corresponding uncertainty in the energy

AFE =~ 8—EAp = vAp
Op

From which we “get” the E-t uncertainty principle

But




The uncertainty relations

The uncertainty principle is one of the
most characteristic and important conse-
quences of the new quantum mechanics. This
principle, as formulated by Heisenberg for
two conjugate quantum-mechanical variables,
states that the accuracy with which two such
variables can be measured simultaneously is
subject to the restriction that the product of
the uncertainties in the two measurements is
at least of order & (Planck’s constant). Con-
don* has remarked that an uncertainty rela-
tion of this type can not hold in the general
case where the two variables under consider-
ation are not conjugate, and has stressed the
desirability of obtaining a general formulation
of the principle. It is the purpose of the
present letter to give such a general formula-
tion, and to apply it in particular to the case
of angular momentum.
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principle, as formulated by Heisenberg for as
two conjugate quantum-mechanical variables,
states that the accuracy with which two such
variables can be measured simultaneously is
subject to the restriction that the product of . / (ie.
the uncertainties in the two measurements is
at least of order % (Planck’s constant). Con-
don* has remarked that an uncertainty rela-

Ay=[yAydr
where the integral is extended over the entire
coordinate space. The Hermitean character

JoAvdr=[yA¢dr
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In 1929 Robertson clarified things - at least for x and p
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We here confine ourselves to sketching the
proof of this principle for a one-particle sys-
tem and for quantum mechanical variables
A(g, p), B(g, p) which are linear in the
momenta (pz, py, pz)! (The proof for the
general case in which the operators can be
expanded in powers of the momenta can be
made along exactly the same lines.) Writing

A =a+a.p:t+a,p,tap.
where p.=(h/27i)d/dx, etc. and the a's are
functions of position, the Hermitean character
of A requires that these functions be real and
that div (as, @y, @;)=0. The expression for
(A4)? may be written, on integrating once by
parts, using the fact that div (¢) =0 and dis-
carding the resulting surface integral, in the
form

(a4 ={](4—Ayy|dr.

© We are now in a position to apply the

Schwarzian inequality?
[f(f1j1+f§-f2)dT] [f(gxél +g2§2)d71

= |[(fa+hgdr|
Taking
fi=U—A)y=f, a=B-B)y=—g
and reducing the integral on the right hand
side by integration by parts we find
AA-AB2 3| [E(AB—BA)ydr|,
the required result.

1 Cf. proof of special case 4 =p, B=gq in
H. Weyl “Gruppentheorie und Quanten-
mechanik” pp. 66, 272.

2 Weyl, L. c. p. 272.

We obviously obtain Heisenberg’s result if
the two variables are conjugate, for then C,
and consequently C,, are +1. As a further
illustration of the principle, we apply it to the
case of angular momentum. Here we have

M, =yp.—zpy, Mo My— M,M,=—hM,/2ni
so the product of the uncertainties in two of the
components of angular momentum 1is not les.
than h/Aw times the mean value of the thir
component in the state under consideratio
Consider in particular the state, treated
Condon, defined by

¥ =f(r)eim* Py (cos 0)
where the pole of the spherical coordinates lies
onthe z-axis. Then M, M*(= M2+ M,>+ M.?)
have the definite values

M. = M.o=mh/2x, M2=1(1+1)(h/27)*
the mean values of M., M, are zero and the
uncertainties are given by
(AM,)2=(AM,)? =1 [1(1+1) —m2](h/2x)?,
AM.=0.
Now from the uncertainty principle for M.,
M, we find
10+1) 2 mim+1)
which is in fact the case. This example shows
that for m =/ the equality holds; the in-
equality is consequently the most restrictive
one that can be deduced for angular momenta,
for we have here a case in which the ultimate
limit has (in principle) been reached.
H. P. ROBERTSON

Palmer Physical Laboratory,

Princeton, N. J.,
June 18, 1929.

The Emission of Positive Ions from Metals
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initially but these disappeared after a few
minutes’ heating. When the temperature of
the metals was increased to the point where
vaporization became appreciable, positive ion
emissions were again observed. The atomic
weights of these ions check within the limits
of error with the atomic weights of the re-
spective metals.

It is hoped to extend these results to other
metals as well as to study the emission as a
function of the temperature.

H. B. WAHLIN

University of Wisconsin,
June 24, 1929,




The uncertainty relations

For any two operators, through the Cauchy-Schwarz inequality

AAAB > %|<(AB — BA))|

where AO = +/(02) — (0)?

From the canonical commutation relation

x,p| = ih

It readily follows that
h
AxAp > 5

But we do not have a time operator!




The Mandelstam-Tamm Bound

It was some 20 years before a conceptually solid interpretation was

established

Leonid Mandelstam

Vol. IX, No. 4 JOURNAL of PHYSICS 1945

THE UNCERTAINTY RELATION BETWEEN ENERGY
AND TIME IN NON-RELATIVISTIC QUANTUM MECHANICS

By L, MANDELSTAM * and Ig. TAMM

Lebedev Physical Institute, Academy of Sciences of the USSR

(Received February 22, 1945)

LA uncertainty relation between energy and time having a simple physical meaning is
rigorously deduced from the principles of quantum mechanics. Some examples of its application

are discussed.

1. Along with the uncertainty relation
between coordinate ¢ and momentum p one
considers in quantum mechanics also the
uncertainty relation between energy and time.

The former relation in the form of the
inequality

h
Ag-Ap= 3, @

where Ag and Ap are respective standards **
and k—Planck’s constant divided by 2,
follows, as well known, directly from the
quantum mechanical formalism. As regards
the usual considerations referring to the
so-called Heisenberg’s microscope, to the
determination of velocity by means of the
Doppler effect, etc., their aims consist essen-
tially but in the elucidation of the connection
between the measurements of coordinates and
momenta and the formalism of the quantum
mechanics.

* The manuseript of this paper was almost com-
pletely prepared for publication when Prof. Mandel-
stam suddenly died on November the 27th, 41944.

** Standard denotes the square root of the ave-
rage quadratic deviation from the mean value.

An entirely different situation is met
with in the case of the relation

AH . AT ~h, @

where AH is the standard of energy, AT —
a certain time interval, and the sign ~ denotes
that the left-hand side is at least of the
order of the right-hand one.

In order to establish this relation, one usu-
ally refers, on one hand, to the relation ener-
gy =hv, and, on the other hand, to the tri-
vial relation Av.AT'~1, connecting the “un-
certainty” Av in the measurement of tne
frequency of a monochromatic vibration with
the time interval AT, dyring which this
measurement is carried out.

It has, however, more than once been point-
ed out, that in non-relativistic quantum
mechanics it is consistent to consider the
energy as an “observable” in Dirac’s sense,
corresponding to the Hamiltonian of the given
mechanical system. If one accepts this defi-
nition of energy, one cannot, of course, iden-
tify energy with the frequency of a mono-
ehromatic vibration multiplied by h. There-
fore, the above derivation of the relation (2)

— 249 —

lgor Tamm




The Mandelstam-Tamm Bound

Consider some observable A which evolves according to the Liouville-
von Neumann equation

0A 1
— = —-|H,A
Robertson’s uncertainty relation tells us

smaas 1(24)

ot

If A is our initial state then

A=[pO)w0)  AA=/(42) — (A)2 = \/(A) — (A)?

Robertson’s inequality can be “easily” integrated

1 8 .
ﬁAHt > 5 — arcsin (A)y




The Mandelstam-Tamm Bound

1 ™ .
ﬁAHt > 5 — arcsin (A)y

From here we arrive at the first Quantum Speed Limit Time.

Consider if we are interested in orthogonal states

W(0)|ib(7)) =0

It follows then

T h
2AH

The QSL sets an intrinsic timescale for the dynamics to occur on

T 2 TQSL =




The Mandelstam-Tamm Bound -

The relationship is clear for the simple example

1
H = hwo, [9(0)) = ﬁ(|0> +11))

The variance is simply
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The QSL sets an intrinsic timescale for the dynamics to occur on




The Margolus-Levitin Bound

Quantum) computation brought a renewed interest to the question of
minimal evolution times

ELSEVIER

Physica D 120 (1998) 188-195
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The maximum speed of dynamical evolution

Norman Margolus **, Lev B. Levitin

 Center for Computational Science and MIT Artificial Intelligence Laboratory, Boston University, Boston, MA 02215, USA
b Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA

Abstract

We discuss the problem of counting the maximum number of distinct states that an isolated physical system can pass
through in a given period of time - its maximum speed of dynamical evolution. Previous analyses have given bounds in terms
of AE, the standard deviation of the energy of the system; here we give a strict bound that depends only on E — Ej, the
system’s average energy minus its ground state energy. We also discuss bounds on information processing rates implied by
our bound on the speed of dynamical evolution. For example, adding 1J of energy to a given computer can never increase
its processing rate by more than about 3 x 1033 operations per second. © 1998 Published by Elsevier Science B.V. All rights

reserved.

1. Introduction

In the realm of computation, the first two quantita-
tive questions that one is likely to ask about a machine
are: (i) How much memory does it have? and (ii) How
fast does it run? In exploring the computational limits
of physical dynamics, one might try to ask the same
questions about an arbitrary physical system.

Question (i) essentially asks, “How many distinct
states can my system be put into, subject to what-
ever physical constraints [ have?” This is really a very
old question: the correct counting of physical states
is the problem that led to the introduction of Planck’s
constant into physics [17], and is the basis of all of
quantum statistical mechanics. This question can be
answered by a detailed quantum mechanical counting
of distinct (mutually orthogonal) states. It can also be
well approximated in the macroscopic limit {9,21] by

* Corresponding author. Supported by NSF grant DMS-
9596217 and by DARPA contract DABT63-95-C-0130.

simply computing the volume of phase space acces-
sible to the system, in units where Planck’s constant
is 1.

Question (ii) will be the focus of this paper. This
question can be asked with various levels of sophis-
tication. Here we will discuss a particularly simple
measure of speed: the maximum number of distinct
states that the system can pass through, per unit of
time. For a classical computer, this would correspond
to the maximum number of operations per second.

For a quantum system, the notion of distinct states is
well-defined: two states are distinct if they are orthogo-
nal. The connection between orthogonality and rate of
information processing has previously been discussed
[3.,4,7,10,12,13], but no universal bound on compu-
tation rate was proposed. The minimum time needed
for a quantum system to pass from one orthogonal
state to another has also previously been characterized,
in terms of the standard deviation of the energy AE
[5,11,15,16,20]. This bound places no limit, however,
on how fast a system with bounded average energy can

0167-2789/98/$19.00 © 1998 Published by Elsevier Science B.V. All rights reserved.

PII: S0167-2789(98)00054-2




The Margolus-Levitin Bound

Consider a system with Hamiltonian
H=Y E,|E.)E,|
n

Any state can then be written and evolves as

o) = Z Cn|En) ) = Z cn exp(—iEnt/h)|Ep)

n n

Now consider the overlap

S(t) = (Wolthe) =Y el exp(—iEnt/h)

Margolus+Levitin asked what is the smallest t such that S(t)=0 ?

RIS(t)] =) |en|? cos(—Ent/h)




The Margolus-Levitin Bound

Some mathematical manoeuvres

RIS(t)] =) |en|? cos(—Ent/h)

2_ _z Er,,fl ' % _
J22 el ! w(/h “( h >>
21 )

If we again restrict to evolving to orthogonal states then

RIS(1)] = S[S(t)] = 0

And we achieve the second Quantum Speed Limit Time.

1 h (Averg
T Z TQSL — 3bove the groy oy




M-T vs M-L EesEm i

But how can we have two seemingly independent bounds based on two
different physical properties of the same quantum state?

In our simple example there are no issues

1
H = hwo, [9(0)) = ﬁum +11))

and
(H)=AH — Tgsr{ — TgSLL

There are also cases where Eq. (4) gives a much
better bound than Eq. (5). Consider, for example, the
state

[Y0) = a(|0) + |e)) + b(|ne) + [(n + De)), (12)

I n g e n e ral tho u g h O ne Wi I I which evolves into an orthogonal state in a time 7| =

h/2e. Given E, as long as we choose ¢ < 2F (i.e.,

fi nd th at the Va riance and 7, > h/4E) the average energy of the first pair of

kets will be less than E. Given ¢, for large enough n

th e ave rag e e n e rgy Wi I I the average energy of the second pair of kets will be

greater than E. Then we can always find coefficients

be d iffe re n t' a and b that make the average energy of |{) to be E
" and also normalize the state. But this state has a AE

that depends on our choice of n: in fact AE = @ (/n).

With fixed E, AE can be as large as we like. Thus in

this case, Eq. (5) is not a useful bound and Eq. (4) is

optimal.
- —




The Unified Bound

It became generally assumed that the minimal time was given by

m™ h @ h
2AH’2<H>

TQSL — 1nax

PHYSICAL REVIEW A 67, 052109 (2003)

Quantum limits to dynamical evolution
Vittorio Giovannetti,1 Seth Lloyd,l’2 and Lorenzo Maccone'
'Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
2Departmem‘ of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, Massachusetts 02139
(Received 12 February 2003; published 30 May 2003)
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Fundamental Limit on the Rate of Quantum Dynamics: The Unified Bound Is Tight

Lev B. Levitin® and Tommaso Toffoli"

Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
(Received 16 June 2009; published 13 October 2009)

How fast a quantum state can evolve has attracted considerable attention in connection with quantum
measurement and information processing. A lower bound on the orthogonalization time, based on the
energy spread AE, was found by Mandelstam and Tamm. Another bound, based on the average energy E,
was established by Margolus and Levitin. The bounds coincide and can be attained by certain initial states
if AE = E. Yet, the problem remained open when AE # E. We consider the unified bound that involves
both AE and E. We prove that there exist no initial states that saturate the bound if AE # E. However, the
bound remains tight: for any values of AE and E, there exists a one-parameter family of initial states that
can approach the bound arbitrarily close when the parameter approaches its limit. These results establish
the fundamental limit of the operation rate of any information processing system.




The Unified Bound

However, what remained unnoticed is the paradoxical
situation of the existence of two bounds based on two
different characteristics of the quantum state, seemingly

g . independent of one another. Since the average energy E
AS Stated by LeV|t|n+TOffOII and It)he energy uncertainty AE play the mos% deterrﬁiyna-
tive role in quantum evolution, it is important to have a
unified bound that would take into account both of these

characteristics.
- —

B T h B mh
TQsL = maX{EE’ §ﬁ} " (H)+ AH — [(H) — AH|

1 We see both bounds are
(H) identical and achievable

What states actually achieve the bound(s)?

1
Y) = 7 (1Eo) + | E1))




The Unified Bound

Following a similar approach to M-L they establish the M-T bound

To prove statement (1) we shall use the trigonometric
inequality

cosx = 1 — — xsinx — — x?, (5)

which is valid for any real x. Note that (5) turns into an
equality 1ff x = (0 or x = 7. Let the initial state be
|4(0)) = 3> ,c,|E,), where the |E,) are energy eigen-
states of the system and Y% ,|c,|* = 1. Then

1S()|> = Ky (0)| ()
= Z o || e EnmEnt/n

n,n' =0

/

= z le, e, |7C09f". (6)

n,n' =0

Using inequality (5), we obtain

4 — E _E/ E _E/
S(t 2 > 1 o 21 . / 2 &~n n . n n
1S()] ~ Z= leal*ley S

i e, []e,| (M)
h/t

n,n' =0

4t d|S(H))]*> 1 (AE)2
=1+ — — = .
mr  dt > \h/2t

(7)

Since |S(¢)|> = 0, it follows that W = () whenever
S(#) = 0. Thus, at a time 7 such that S(7) = 0, the second

term 1n (7) vanishes, and we obtain

)

47+
739

T h-

which yields inequality (1); this is just another way to
derive that bound. Yet, for (8) to turn into an equality it
i1s necessary that inequality (5) turn into an equality for

every term of the double summation (6). Hence, either

E,—E, E,—E,
n__n_  — — =n Enl + /
h/T =0 or Xnn! = )‘1/7 7 for all n, n

such that ¢, # 0, ¢, # 0. It follows that, to attain bound
(1), |4(0)) must be a superposition of only two energy
eigenstates with energies E, = 0 and E|.

0=1-

(AE), (8)

Xnn' =

Notice that this does not explicitly involve any uncertainty relation

argument
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