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Extending QSLs

So far we have focussed mostly on the so-called “minimal time
approach”

what is the shortest time | can achieve some process

One can equivalently ask what is the maximal speed a given evolution
can attain

This is the basic starting point of applying a purely geometric approach to
guantum speed limits

In general, we are interested in dynamics governed by a master equation

pt = L(p¢)




Defining a geometric guantum speed

We need a notion of distance in our state space
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The speed and the QSL time characterise the dynamics and geometry of
the dynamics

The interpretation of 7TQsL is still not entirely clear




Quantum speed for mixed states

The ‘correct’ statistical distance for mixed states is the Bures angle

L(p1, p2) = arccos v/ F(p1, p2)

F(p1,p2) = {U‘\/\/Em\/P_lr

U = ,C(,O(), IOt)

But it is, in general, a very difficult quantity to calculate

So we look for some bounds instead!
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The evaluation of the minimal evolution time between two distinguishable states of a system is
important for assessing the maximal speed of quantum computers and communication channels. Lower
bounds for this minimal time have been proposed for unitary dynamics. Here we show that it is possible to
extend this concept to nonunitary processes, using an attainable lower bound that is connected to the
quantum Fisher information for time estimation. This result is used to delimit the minimal evolution time
for typical noisy channels.
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The QSL is then given by the quantum Fisher information ‘;} |

1
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Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum
metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty
relation for open quantum systems undergoing a general, completely positive, and trace preserving
evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form,
the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role
of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of
the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the
determination of precision limits for quantum metrology in the presence of dephasing noise.
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del Campo employed the relative purity as an easily computable metric
to bound the speed
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We derive a Margolus-Levitin-type bound on the minimal evolution time of an arbitrarily driven open
quantum system. We express this quantum speed limit time in terms of the operator norm of the
nonunitary generator of the dynamics. We apply these results to the damped Jaynes-Cummings model
and demonstrate that the corresponding bound is tight. We further show that non-Markovian effects can
speed up quantum evolution and therefore lead to a smaller quantum speed limit time.
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Without loss of generality Deffner+Lutz assume initially pure states and
use the Bures angle
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Deffner-Lutz M-L Type Bound
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This is the starting point for their deviations of both M-L + M-T type bounds
If we consider unitary dynamics again (just for illustration!)
2L cos Lsin £ < |{(1o|[Hy, pe]|1o)] nequge
< [tr{Hiprpo}| + [tr{ptHipo}

Now applying the von Neumann inequality we obtain the bound(s)
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Deffner-Lutz M-L Type Bound

A virtually identical analysis can be followed if we instead consider an
open system dynamics governed by the arbitrary master equation

pr = Li(pt)

And we arrive at the bound
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The operator norm provides the sharpest bound




Deffner-Lutz M-T Type Bound

Similarly a Mandalstam-Tamm-type bound can be derived
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Employing the Cauchy-Schwarz inequality
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(1 1

SiI12 [E(IO(% /07')]

1

TQSL — IMaX <

Ag)-p ) Atr ) Ahs } SiIlZ [L(,O(), 107')]




Tightening guantum speed limits

PHYSICAL REVIEW LETTERS 120, 060409 (2018)

If we once again restrict to only unitary dynamics we SO
notice something about the Bures angle
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FIG. 1. Let p and ¢ be two mixed qubit states with the same T > TQSL —
spectrum, p = A|r){(ri| + (1 =2)|rp)(r,|, and o = A|s)(s;|+
(1 —=2)|s2)(s2], 2€(0,1), 2#1/2, where {|r).|r»)} and
{|s1).|s2)} are two orthonormal bases. The problem of unitarily

evolving p to o can be mapped to evolving |ry) to |s;) (or \/
i / tr[p

») to |s»)). Equation (1) is tight for pure states;
thus, any Hamiltonian that takes |r;) to |s;) will also take p to ¢ in
the same time. For any Hamiltonian with bounded standard
deviation AE <&, this time is bounded from below by 6/&,
where € = d(|ry),|s;)) is the distance between |r;) and |s;), i.e.,
half of the angle between the vectors associated with |r;) and |s).

However, Eq. (1) for the same constraint on the Hamiltonian Reduces to the “Standard” MT

suggests that T, = L(p, o) /&, with L(p, o) < 0 for every choice

of 2#0, 1 [see Eq. (9)], making the QSL unattainable for all bound for pure states

mixed states.
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An abundance of bounds
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PHYSICAL REVIEW LETTERS 120, 060409 (2018)

Generalized Geometric Quantum Speed Limits
Tightening Quantum Speed Limits for Almost All States

Diego Paiva Pires,l‘* Marco Cianciaruso,2'3‘4‘% Lucas C. Céleri,‘c"i Gerardo Adesso,z‘§ and Diogo O. Soares-Pinto"!

B e e o b et A Mo
'School of Physics and Astronomy, Monash University, Victoria 3800, Australia

2School of Physical & Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore
® (Received 13 October 2017; published 9 February 2018)

Conventional quantum speed limits perform poorly for mixed quantum states: They are generally not
tight and often significantly underestimate the fastest possible evolution speed. To remedy this, for unitary
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Geometric quantum speed limits: a case for Wigner phase space
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For every metric you can write down an associated quantity that can be

viewed as a quantum speed limit. Just let

me define one
more speed limit

I

Unravelling the meaning of these
quantities is the focus of much
current work




QSLs and non-Markovian dynamics

A classic example is the Jaynes-Cummings model
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Figure 3. Quantum speed limit time 7ggt. (82) (upper panel, (a)) and quantum speed
limit vggr. (81) (lower panel, (b)) for the damped-Jaynes—Cummings model (91) and the
initial state po (96). Parameters are 7 = 0.5, A= 1 and A\ = 50.




QSLs and non-Markovian dynamics
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Thereisno general connection between the quantum speed limit
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s and non-Markovianity
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licence. The quantum speed limit (QSL) setsa bound on the minimum time required fora quantum system to
Any further distribution of evolve between two states. For open quantum systems this quantity depends on the dynamical map

this work must maintain

TQ SL, — ribution to the describing the time evolution in presence of the environment, o the evolution time 7> and on the
authort® and the e of nitial state of the systerm- We considera general single qubit open dynamics and show that there isno
e work, journal citation . . . .

and DOL simple relationship between memory effects and the tightness of the QSL bound. We prove that only
for specific classes of dynamical evolutionsand {nitial states, there exists alink between non-

BLP Markovianity and the QSL. Our results shed lighton the connection between information back-flow

Marko Vign - between system and environment and the speed of quantum evolution.
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